
European Journal of Human Genetics (2018) 26:1369–1377
https://doi.org/10.1038/s41431-018-0168-5

ARTICLE

A fine-mapping study of central obesity loci incorporating functional
annotation and imputation

Xiaoyu Zhang1
● L. Adrienne Cupples2,3 ● Ching-Ti Liu 2

Received: 22 November 2017 / Revised: 8 March 2018 / Accepted: 11 April 2018 / Published online: 2 July 2018
© European Society of Human Genetics 2018

Abstract
A recent genome-wide association study (GWAS) of central obesity identified 27 loci, from sex-combined analysis,
associated with waist-to-hip ratio adjusted for body-mass index (WHRadjBMI) in European-ancestry individuals.
Nevertheless, the identified variants may not be the biological causal ones due to the presence of linkage disequilibrium
(LD). To better understand the mechanisms underlying the identified loci from the GWAS meta-analysis, we first imputed
summary statistics at GWAS loci to increase genetic resolution, and then we applied a Bayesian statistical fine-mapping
method through PAINTOR, incorporating LD structure and functional annotations to select and prioritize the most plausible
causal variants across WHRadjBMI-associated regions. Using adipose tissue- and cell-specific annotations that showed
significant associations with WHRadjBMI, we identified 33 single-nucleotide polymorphisms (SNPs) from 27 sex-combined
fine-mapping loci with posterior probability of causality greater than 0.9. Six of the selected 33 SNPs belong to at least one
of the top five identified annotations. SNPs rs1440372 (SMAD6) and rs12608504 (JUND) are particularly important since
they not only have associated functional annotations but are also GWA hits in the original study. Incorporation of functional
annotations helps identify additional plausible causal variants, such as rs2213731 (DNM3-PIGC) and rs4531856 (JUND),
that did not reach genome-wide significance in GWAS. Our results provide promising candidates for future functional
validation experiments.

Introduction

Central obesity is known to increase the risk and mortality
of metabolic and cardiovascular disease in addition to body-
mass index (BMI) [1–3]. Evidence has shown that genetic
effects have important roles in body fat distribution and are
different from those influencing BMI and overall adiposity
[4]. Waist-to-hip ratio adjusting for BMI (WHRadjBMI), a
proxy for central obesity, is a heritable trait with age-adjusted

heritability ranging from 36 to 61% [5]. Although recent
genome-wide association studies (GWAS) have identified
many genetic variants associated with WHRadjBMI [6],
these variants may not be the biological causal ones due to
the presence of linkage disequilibrium (LD) [7]. This cir-
cumstance is an inherent drawback of the GWAS design
and leads to a challenge that needs to be solved in the post-
GWAS era [8].

Identification of the true causal variants for a complex
trait is fundamental to understanding the biological
mechanism underlying the trait. Fine-mapping studies to
select and prioritize causal variants within GWAS-
associated regions is a first step toward this goal [8–11].
Statistical methods for fine-mapping studies can roughly be
divided into two classes. One is selecting causal variants
based on association p-values such as p < 5 × 10−8 (standard
genome-wide significance). The second is a Bayesian
approach that assigns posterior probabilities of causality to
each variant through a Bayes Factor [8]. The Bayesian
method can also directly provide a quantitative way to
incorporate prior biological knowledge such as pathway
analysis and functional annotations into fine-mapping
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studies [12]. It has been demonstrated that the Bayesian
approach of fine-mapping successfully helps refine GWAS
risk loci and identifies causal variants with functional
interpretation in several studies [9, 11]. A recent research
effort demonstrates that more dense imputation at GWAS
loci with fine-mapping and genomic annotation can provide
insight into the functional and regulatory mechanisms on
glycemic and obesity-related traits [13]. Hence, in this study
we investigate the plausible causal variants associated with
WHRadjBMI through fine-mapping, using imputation and
annotation.

There are numerous statistical methods for fine-mapping
with a variety of publicly available software packages. For
instance, SNPTEST [14] and Bim-Bam [15] assess the
association strength through a Bayesian framework based
on individual level genotype data. Other approaches
including CAVIAR [16], PAINTOR [17], and CAVIARBF
[18] only require the marginal test statistics and LD infor-
mation to conduct Bayesian analysis. In addition, toolkits
like fgwas [19] and PAINTOR link prior biological
knowledge of these variants to the Bayesian model through
selecting the most phenotype-related annotations. More-
over, PAINTOR allows more than one causal variant within
each locus of interest in calculating the posterior probability
of causality for each single-nucleotide polymorphism
(SNP), a more biologically tenable hypothesis.

We applied PAINTOR to recent GWAS summary sta-
tistic results for WHRadjBMI [6], incorporating LD struc-
ture and various types of functional annotation information
to identify the most plausible causal variants across GWAS
risk loci. Our objective in this study is to better understand
the results of the WHRadjBMI GWAS meta-analysis,
identify the SNPs that are most likely causal with functional
interpretation, and then provide a list of candidate causal
SNPs for future biological validation experiments.

Materials and methods

GWAS dataset

The summary statistics used in this paper came from a 2015
GWAS meta-analysis of association for WHRadjBMI
released by the Genetic Investigation of Anthropometric
Traits (GIANT) Consortium [6]. This meta-analysis
includes up to 210,088 European-ancestry individuals,
evaluating a total of 2,542,447 autosomal SNPs from
HapMap imputed data and Metabochip genotyped data. We
used the sex-combined results for the European-ancestry
sample since the proportion of non-European-ancestry
samples is relatively small in Shungin et al. [6]. The data-
set consists of p-values for SNP associations with
the WHRadjBMI trait, effect sizes and their standard errors.

Z-scores were computed from effect sizes divided by their
standard errors.

Further imputation and defining fine-mapping loci

The original available GIANT GWAS results for this ana-
lysis were based on HapMap Phase 2 imputation or directly
genotyped data from Metabochip. To increase the resolution
of our data, we utilized DIST (see Web Resources) to fur-
ther impute the summary statistics corresponding to the
variants available in the 1000 Genomes Phase 1 EUR
population reference panel [20].

We identified 27 loci whose reported significances in
GWAS were from sex-combined meta-analysis results in
Shungin et al. [6]. We followed up each locus with fine-
mapping. Each one is a 100 kb contiguous region of the
genome centered on the GWA hit, the most significant SNP
for the region in meta-analysis results for European ances-
try. Although there is no agreed upon length to choose for
each fine-mapping locus, previous studies have shown that
a range of 10–30 kb for European population is relatively
safe to include adequate information for LD [21]. Therefore,
we conservatively chose a genome window of 100 kb with
50 kb on each side of the GWA hit to consider enough
information from LD. The University of California Santa
Cruz (UCSC) Genome Browser was used to locate the
SNPs with missing positions. All SNPs were based on the
UCSC hg19 assembly and sorted by their physical position
within each locus.

Since we do not have individual level genotype data, we
used PAINTOR utilities (see Web Resources) to estimate
the LD structure between SNPs in each fine-mapping locus
from the 1000 Genomes Phase 1 EUR population reference
panel [20], consistent with the one used for imputation.

Functional annotations

It has been shown that integration of functional annotation
data for SNPs can improve statistical fine-mapping perfor-
mance [17, 19]. Various types of functional information
were available for the purpose of fine-mapping. A total of
123 different annotations were used in this paper (Supple-
mentary Table 1). Both general categorical annotations and
tissue- and cell-specific functional annotations were inclu-
ded for our analysis.

The general annotations came from the Broad Institute
(see Web Resources), including six primary categories: (1)
coding, area overlaps exon, (2) untranslated region (UTR), a
5′ or 3′ untranslated region; (3) promoter, area within 2 kb
of a transcription start site (TSS), (4) DNase I Hypersensi-
tivity Sites (DHSs), regions that are sensitive to cleavage by
DNase I enzyme and exposes the DNA for binding of
transcription factors, (5) intron, area does not code proteins,
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and (6) intergenic, all other regions that lie between genes.
In general, 88% of GWA hits lie in either intronic or
intergenic regions, and only 2% of GWA hits belong to
synonymous codes [22]. DHSs are important regulatory
DNA regions. And many common disease and trait-
associated variants identified by GWAS are more con-
centrated in DHSs, instead of lying in coding regions [23].
Gusev et al. reported that across 11 diseases DHS sites from
127 cell types spanned 16% of SNPs but explained an
average of 79% trait heritability from imputed data [24].
Thus, recent studies tend to analyze associations between
specific DHSs and their subclasses with known diseases.

We also combined 117 types of tissue- and cell-specific
annotations from different resources, mainly from Roadmap
Epigenomics Project [25], others from FANTOM5 project
[26] and super-enhancers reported by Hnisz et al. [27].
Because the original GWA hits were shown to be sig-
nificantly enriched in adipose tissue [6], we focused on
adipose nuclei, mesenchymal stem cell-derived adipocyte,
and adipose tissue-related regulatory and transcriptional
features to human genome. Datasets of imputed and assayed
histone modifications, adipose nuclei- and adipocyte-
specific DHSs, and the core 15 chromatin states from
Roadmap Epigenomics Project were selected. The Core 15-
state model is based on the five core histone marks
(H3K4me3, H3K4me1, H3K27me3, H3K9me3, and
H3K36me3) across 127 epigenomes to capture the sig-
nificant combinatorial interactions between different chro-
matin marks in their chromatin states [25]. Chromatin is a
complex entity that controls gene expression and DNA
replication. A cluster of histone modifications as a principal
component of chromatin has a crucial role in DNA reg-
ulation [28]. Therefore, analysis of SNPs related to histone
modifications helps us reveal the DNA regulation
mechanism of traits. We also included datasets of adipose
tissue-specific enhancers from FANTOM5 [26] and super-
enhancers reported by Hnisz et al. [27]. Enhancers are DNA
sequences that can bind transcription factors to increase the
activity of promotor and transcription of genes [29]. Super-
enhancers are large groups of transcriptional enhancers that
control cell-specific gene expression [27].

Statistical analysis

We applied a Bayesian approach to prioritize causal variants
in this fine-mapping study with PAINTOR software
(Probabilistic Annotation Integrator version 3.0) (see Web
Resources). The PAINTOR method is a probabilistic fra-
mework that integrates the association strength of genotype
to phenotype with two independent sources of information,
LD structure and functional annotation data to calculate the
posterior probability to be a causal variant for each SNP
across all fine-mapping loci [17]. In this method, the

Z-scores for the SNPs at each fine-mapping locus are
assumed to follow a multivariate normal distribution with
LD as the covariance. Functional annotation data was
introduced into the model through a logistic function. Let
ϒ= (ϒ1, ϒ2, …, ϒk) be a vector of the effects of every
functional annotation on the probability of causality. The
Expectation Maximization (EM) algorithm is used to yield
the maximum likelihood estimation over the effect size
parameter ϒ for each annotation across all fine-mapping
loci. Therefore, the effect of each annotation on the causal
probability is determined by the data itself. A likelihood
ratio test is applied to determine which annotation has a
significant effect with p-value threshold of 0.05 on the
probability of causality and then the algorithm chooses
those significant annotations to estimate the probability of
causality. Bayes theorem is implemented to compute pos-
terior probabilities of causality for SNPs belonging to each
causal configuration over the set of all possible causal
configurations. Individual posterior probabilities for each
SNP to be causal are obtained by marginalizing across all
causal variants at each locus.

In our study, we first ran PAINTOR independently on
different types of functional annotations and obtained effect
size estimates ϒ and the sum of log-Bayes Factors (BFs).
Let ϒ0 be the baseline estimate when there is no annotation
at all. The prior causal probability for any SNP belonging to
the kth annotation was estimated through ϒk in a logistic
model. The log2 relative causal probability for kth annota-
tion, a measure for annotation effect, is equal to the log2 of
the ratio of prior causal probability between the kth anno-
tation and baseline. We used log2 relative causal probability
to compare the effects between different annotations on
causal probability for SNPs. Since BFs are proportional to
the full likelihood, the sum of log-BFs is used to construct a
LRT to assess significance of annotation effect sizes. We
then selected the top significant annotations (usually no
more than five) to calculate the posterior probability for
each SNP within our fine-mapping loci by PAINTOR.

Results

Fine-mapping loci for WHRadjBMI

The GWAS-identified 27 sex-combined loci located on 15
different chromosomes [6]. Each fine-mapping locus was
defined as a 100 kb region surrounding the GWA hit in the
center. There are 3374 SNPs from the original summary data
within 27 fine-mapping loci. After using Direct Imputation
of Summary Statistics (DIST) [30] to perform further
imputation with the 1000 Genome as a reference panel, we
obtained 10,725 SNPs for the sex-combined fine-mapping
loci with an average (SD) of 397 (247) per locus (Table 1).
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Among all SNPs, 801 reach genome-wide significance (i.e.,
p < 5 × 10−8). There is great variability in the number of
significant SNPs within each locus. For example, region
RSPO3 has as many as 150 significant SNPs out of total 321
SNPs in contrast to region SPATA5-FGF2 which has only
one SNP reaching the genome-wide significance.

We used PAINTOR utilities to calculate the LD corre-
lation matrix for each locus using the 1000 Genome Phase 1
European (EUR) population [20] as the reference panel.
Ambiguous SNPs that are not bi-allelic or do not match the
reference panel were discarded. We also dropped SNPs
whose positions cannot be identified. We finally had 7693
SNPs with 27 LD matrices corresponding to the sex-
combined fine-mapping loci.

Integrating functional annotations

We evaluated general annotations and adipose tissue- and
cell-specific annotations. For general annotations, we used
data from the Broad Institute (https://data.broadinstitute.

org/alkesgroup/). The six general categories of annotation
cover all SNPs in our fine-mapping loci. About 80% of the
SNPs lie in intronic and intergenic regions (Table 2). In
order to know the effects of functional annotations on the
causal probability for each SNP in the fine-mapping loci
and to test whether these effects of annotations are statis-
tically significant for our trait, we ran PAINTOR indivi-
dually on each of the six annotations. None of these
annotations has a great effect on the prior probability of
causality for the SNPs residing in the fine-napping regions.
The log2 relative causal probability, a measure for the
annotation effect, ranges from −0.41 to 0.93. SNPs that
belong to promoters are most likely to be causal. Through
testing each functional dataset by the likelihood ratio test
(LRT), we found that none of these annotations has a sig-
nificant enrichment to improve information on the causal
probability for the WHRadjBMI trait, indicating that more
specific annotation information may be required to increase
the accuracy of selecting the potential true causal variants
by PAINTOR.

Table 1 Sex-combined fine-mapping loci for WHRadjBMI with different counts of SNPs related to imputation, original GWAS p-values, and
final results calculated by PAINTOR

Locus Nearest gene Chr Index GWA hits rs ID (hg19 HGVS
identifier)

Number of
SNPs
before
imputation

Number of
SNPs after
DIST
imputation

Number of
SNPs
achieving
genome-wide
significance

Number of
SNPs
Identified by
PAINTOR

1 TBX15-WARS2 1 rs2645294 chr1:g.119574587C>T 161 365 55 2

2 DNM3-PIGC 1 rs714515 chr1:g.172352990G>A 93 236 51 1

3 MEIS1 2 rs1385167 chr2:g.66200648A>G 162 431 14 1

4 CALCRL 2 rs1569135 chr2:g.188115398A>G 88 317 3 2

5 PBRM1 3 rs2276824 chr3:g.52637486C>G 93 295 5 1

6 LEKR1 3 rs17451107 chr3:g.156797609T>C 83 276 15 0

7 SPATA5-FGF2 4 rs303084 chr4:g.124066948G>A 115 427 1 0

8 CPEB4 5 rs7705502 chr5:g.173320815G>A 189 391 72 2

9 FGFR4 5 rs6556301 chr5:g.176527577G>T 51 362 1 0

10 LY86 6 rs1294410 chr6:g.6738752T>C 155 402 50 0

11 BTNL2 6 rs7759742 chr6:g.32381736T>A 352 1586 19 2

12 RSPO3 6 rs1936805 chr6:g.127452116C>T 182 321 150 1

13 HOXA11 7 rs10245353 chr7:g.25858614C>A 131 276 84 2

14 NFE2L3 7 rs7801581 chr7:g.27223771C>T 121 247 2 2

15 MSC 8 rs12679556 chr8:g.72514228T>G 157 379 5 2

16 ABCA1 9 rs10991437 chr9:g.107735920C>A 131 569 7 0

17 ITPR2-SSPN 12 rs10842707 chr12:g.26471364C>T 44 371 52 1

18 CCDC92 12 rs4765219 chr12:g.124440110C>A 68 284 116 2

19 KLF13 15 rs8042543 chr15:g.31708263C>T 83 350 1 1

20 RFX7 15 rs8030605 chr15:g.56504598G>A 134 385 2 1

21 SMAD6 15 rs1440372 chr15:g.67033151T>C 121 329 2 1

22 PEMT 17 rs4646404 chr17:g.17420199G>A 82 304 10 1

23 JUND 19 rs12608504 chr19:g.18389135A>G 84 385 2 2

24 CEBPA 19 rs4081724 chr19:g.33824946G>A 64 392 33 2

25 BMP2 20 rs979012 chr20:g.6623374T>C 142 303 13 2

26 EYA2 20 rs6090583 chr20:g.45558831A>G 170 378 27 2

27 ZNRF3 22 rs2294239 chr22:g.29449477A>G 118 364 9 0

Total 3374 10,725 801 33
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We then extended the range of annotations to be tissue-
and cell-specific. It has been reported that DNA regulatory
regions are highly cell-specific and using more phenotype-
related tissue-specific annotation can further improve the
performance of signal prioritization in fine-mapping studies
[23, 24]. We focused on annotation data related to adipocyte
and adipose tissue for our phenotype of WHRadjBMI,
evaluating each type separately. Among the 117 types of
adipose nuclei, mesenchymal stem cell-derived adipocyte,
and adipose tissue-specific annotations, six showed sig-
nificant effects on the probability of causality as tested by
the LRT individually, including histone modification
H2AK9ac of adipose nuclei, histone modifications
H2BK20ac and H2AK5ac, Genic Enhancers, DHSs, and
strong transcription factors of mesenchymal stem cell-
derived adipocyte (Table 3). We chose the top five anno-
tations for our final model as recommended by PAINTOR,
covering 16.2% of the SNPs in our fine-mapping loci. The
effects of the top five annotations on the prior probability of
causality are higher on average than those from general
categorical annotations, ranging from 0.83 to 2.76 as eval-
uated by log2 relative causal probability and all these effects
are positive, indicating that the SNPs lying in these selected
five annotations are more likely to be causal variants. The
histone modification H2AK9ac of adipose nuclei from
imputed narrow peak data has the most significant
improvement on causal probability with p-value of 7.85 ×
10−4.

Identified SNPs with highest posterior probabilities

For the 27 fine-mapping loci, there are 33 SNPs with pos-
terior probability of causality greater than 0.9 computed by
PAINTOR (Supplementary Table 2). Nine of the fine-
mapping loci have one selected SNP per locus, and another
twelve loci have more than one selected variant likely to be
causal per locus. The remaining six loci have no selected
SNPs based on the posterior probability of causality >0.9.
At four loci, the original reported GWA hits remained the
lead SNP for that region as ranked by posterior probability:
rs8042543 at KLF13; rs8030605 at RFX7; rs1440372 at
SMAD6; and rs12608504 at JUND. Among the remaining
selected SNPs, their original GWAS p-values are not

always significant. Sixteen of the original p-values did not
reach genome-wide significance and would likely be
ignored in further analyses based on GWAS association
p-values alone.

Six of the selected 33 SNPs belong to at least one of the
five annotation categories, accounting for ~18% of the total
selected SNPs (Table 4). SNPs rs1440372 at locus SMAD6
(Fig. 1) and rs12608504 at locus JUND are particularly
important since they are not only located in several func-
tional annotation groups but are also GWA hits in the ori-
ginal study. In contrast, SNP rs1884897 at locus BMP2
residing in an adipocyte DHS region has more than 99%
probability to be causal even though it is not the index SNP
in the original GWAS study. SNPs rs2213731 at DNM3-
PIGC (Fig. 2) and rs4531856 at JUND are selected with
posterior probability >0.9, although their original GWAS
p-values did not reach genome-wide significance. In this
circumstance, functional information has a major role in
prioritizing them as the most likely causal variants. The
locus JUND has more than one selected variant likely to be
causal with high posterior probability and annotations.

Discussion

In this statistical fine-mapping study of central obesity loci,
we performed a Bayesian approach using PAINTOR and
incorporated functional annotations. We further refined the
results from the original GWAS analysis and provided a
more biologically meaningful set of SNPs with high prob-
ability to be causally associated with WHRadjBMI.
Meanwhile, we also identified some variants whose GWAS
association p-values did not reach genome-wide sig-
nificance and some variants not included in the original
HapMap or Metabochip meta-analysis data (Supplementary
Table 2). Our identified variants are valuable for future
functional validation experiments to assess the true trait-
associated variants.

The Bayesian approach in PAINTOR only requires
association signals from GWAS summary statistics and LD
structure. It also can incorporate functional annotations
directly to improve the accuracy of prioritization plausible
causal variants. As shown in Table 2, we observed that

Table 2 General functional
annotations with frequencies,
effect size estimates, and related
p-values from likelihood ratio
tests

Annotation class Frequency Estimate of annotation
effect (ϒk)

Prior
probability

Log2 relative causal
probability

LRT
p-value

Coding 0.95% 0.28 5.34 × 10−3 −0.41 0.84

UTR 1.07% −0.23 9.45 × 10−3 0.43 0.81

Promoter 5.43% −0.65 1.28 × 10−2 0.93 0.11

DHSs 25.50% −0.36 9.08 × 10−3 0.51 0.17

Intron 38.70% −0.03 7.19 × 10−3 0.05 0.89

Intergenic 43.10% 0.27 5.41 × 10−3 −0.38 0.24

A fine-mapping study of central obesity loci incorporating functional annotation and imputation 1373



general categorical functional annotations did not show
significant effects on the probability of causality for our
trait. A similar result was reported by Greenbaum et al. [31]
in a fine-mapping study related to bone mineral density. We
then extended the annotations to adipose tissue- and cell-
specific since many studies revealed that DNA regulation
regions are highly cell-specific [23, 24]. Several adipose
tissue- and cell-specific annotations were identified by
PAINTOR with significant enrichment and the top five were
selected to calculate the posterior probabilities (Table 3).
Therefore, we recommend choosing trait-associated tissue-
and cell-specific functional annotation data when conduct-
ing a fine-mapping study.

In particular, integration of functional data into PAINTOR
helps to identify additional plausible causal variants even
when original GWAS p-values did not meet the genome-wide
significant threshold. SNPs rs2213731 at DNM3-PIGC and
rs4531856 at JUND, lying in at least one of the five selected
annotations, were selected in this study with posterior prob-
ability >0.9, although their original GWAS p-values were
greater than 5 × 10−8. They could be easily neglected by
traditional GWAS analysis, especially when further studies
are based on p-value alone.

Aside from functional data, selection of plausible causal
variants by PAINTOR is also influenced by LD structure in
each fine-mapping locus. Since we do not have access to

individual level of genome data, all LD matrices were esti-
mated based on the 1000 Genome Phase 1 EUR population
reference panel [20]. We observed that some of our fine-
mapping loci had strong regional association statistics and
LD, consistent with results from a previous study [32]. This
circumstance makes it difficult for PAINTOR to distinguish
the true causal variants from a batch of similar tagging SNPs
(i.e., similar z-scores and LD). It becomes even worse when
no extra information such as functional annotations can be
introduced into the model. For instance, the locus MEIS1 in
our study has many tagging SNPs with similar Z-scores and
LD structures, but with no annotations. Hence, the selected
SNPs within this locus may not be very informative.

The six selected SNPs in Table 4 have posterior probability
greater than 0.9 for causality, lying in at least one of the five
selected annotations. Five candidate genes were identified.
The top selected SNP rs1884897 is located at the DHS site for
BMP2 of mesenchymal stem cell-derived adipocytes. BMP2
is a member of the transforming growth factor beta (TGF-β)
superfamily of genes. High levels of bone morphogenetic
protein 2 (BMP2) inhibit adipogenesis and induce chon-
drogenesis or osteogenesis on mesenchymal stem cells [33].
Another candidate gene SMAD6 is closely related to BMP2
[34]. The proteins encoded by SMAD6 negatively regulate
BMPs and TGF-β-signaling, which influence the formation of
adipose tissue [33]. Meanwhile, the identified SNP rs1440372

Table 4 Six selected SNPs lying in the top five annotations with posterior probabilities for causality >0.9

rs ID hg19 HGVS identifier Nearest gene Chr Original p-value Posterior probability Annotations

rs1884897 chr20:g.6612832A>G BMP2 20 4.57 × 10−13 >0.99 DNase

rs2213731 chr1:g.172359815C>A DNM3-PIGC 1 2.67 × 10−01 >0.99 H2AK5ac, DNase

rs13083798 chr3:g.52649748A>G PBRM1 3 6.68 × 10−12 >0.99 EnhG

rs1440372a chr15:g.67033151T>C SMAD6 15 1.34 × 10−10 0.99 H2BK20ac, EnhG, H2AK5ac, DNase

rs12608504a chr19:g.18389135A>G JUND 19 4.95 × 10−10 0.98 H2AK9ac, H2AK5ac, DNase

rs4531856 chr19:g.18388383C>T JUND 19 2.49 × 10−06 0.97 DNase

a Denotes the SNPs that are also original GWA hits

Table 3 Significant annotations among 117 types of adipose related tissue- and cell-specific functional annotations with frequencies, effect size
estimates, and related p-values from likelihood ratio tests

Annotation class Frequency Estimate of
annotation effect (ϒk)

Prior probability Log2 relative causal
probability

LRT p-value

Adipose Nuclei-H2AK9ac
(imputed)a

1.11% −1.95 4.48 × 10−2 2.76 7.85 × 10−4

Adipocyte-H2BK20ac (imputed)a 1.56% −1.79 3.84 × 10−2 2.53 3.99 × 10−3

Adipocyte-EnhG (core 15-state
model)a

1.44% −1.51 2.98 × 10−2 2.15 1.29 × 10−2

Adipocyte-H2AK5ac (imputed)a 3.88% −0.95 1.71 × 10−2 1.36 3.37 × 10−2

Adipocyte-DNase (imputed)a 8.18% −0.58 1.17 × 10−2 0.83 4.09 × 10−2

Adipocyte-Tx (core 15-state
model)

4.51% 4.29 1.01 × 10−4 −6.19 4.27 × 10−2

a Top five annotations used in the final PAINTOR model
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Fig. 1 Combining regional plots of locus SMAD6 with variants’
scatterplot of posterior probabilities, annotation bars, scatterplot of
original signals, and correlation heat-map of LD matrix. Top, a The
posterior probability for each variant calculated by PAINTOR after
integrating functional annotations and LD correlation. b The relative
coverage and location of the top five selected annotations corre-
sponding to the variants above. c A scatterplot that shows the original
GWAS signals of each variant in −log10 (p-value) unit. Bottom,
d The heat-map of LD structure estimated from 1000 Genome Phase 1
European population

Fig. 2 Combining regional plots of locus DNM3-PIGC with variants’
scatterplot of posterior probabilities, annotation bars, scatterplot of
original signals, and correlation heat-map of LD matrix. Top, a The
posterior probability for each variant calculated by PAINTOR after
integrating functional annotations and LD correlation. b The relative
coverage and location of top five selected annotations corresponding to
the variants above. c A scatterplot that shows the original GWAS
signals of each variant in −log10 (p-value) unit. Bottom, d The heat-
map of LD structure estimated from 1000 Genome Phase 1 European
population
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at locus SMAD6 is the index SNP in the original GWAS
analysis, belonging to four functional classes of annotations,
including histone modifications H2BK20ac and H2AK5ac,
generic enhancer, and DHSs of adipocyte. Therefore, further
study on this variant may be crucial to figuring out the bio-
logical mechanism of central obesity. Also, SMAD6 and
JUND encode transcriptional regulators at WHRadjBMI loci,
affecting differentiation and proliferation of adipocyte [6, 35].
SNP rs12608504 at locus JUND is also a GWA hit in the
original study. In addition, the locus JUND has two selected
variants likely to be causal with high posterior probability and
annotations. Thus, further investigation of the gene JUND
would be worthwhile to uncover the functional mechanisms
of central obesity.

Since the objective of this study was to further understand
the GWAS results, we identified our fine-mapping loci based
on the reported GWA hits with 50 kb windows on both sides.
Even though the length of our fine-mapping loci is relatively
conservative in order to consider all plausible causal variants
[21], there still may exist other causal variants outside our
fine-mapping loci. Also, some LD in our fine-mapping loci
may span further than 100 kb region, such as DNM3-PIGC,
CALCRL, and CCDC92. As whole genome sequence (WGS)
is more and more popular these days, future studies could take
advantage of such data and enlarge the length of fine-mapping
loci in order to include all possible true causal variants. We
chose GWA hits based on the original sex-combined meta-
analysis results for European ancestry reported by Shungin
et al. [6]. We suggest further fine-mapping studies could focus
on loci showing sex-specific or sex-interaction effects.

It is difficult for this statistical fine-mapping method to
distinguish real causal variants among a set of SNPs with
similar association signals and LD structure. Hence integra-
tion of extra information is critical. However, PAINTOR
recommends no more than five annotations in the final model
to help prioritize plausible causal variants. We believe that
expanding the available number of annotations may improve
the accuracy of selecting potential causal variants in the future
studies. We did not adjust for multiple testing when choosing
the top annotations as we regarded this work as leading to
further research. Multiple-testing adjustment may be needed
in future studies. Our study is also limited by using European
data only. Due to a relatively small number of non-European
samples included in Shungin et al. [6], we failed to impute the
multi-ethic summary statistics. Future fine-mapping studies
that incorporate all samples across different populations may
gain more power.

In summary, we performed a Bayesian statistical fine-
mapping study for WHRadjBMI with existing results from
meta-analysis GWAS through PAINTOR. We further
refined the results from original GWAS analysis and pro-
vided a list of biologically meaningful variants and genes
with high probability of causality. Through integration of

functional information, we also identified some additional
plausible causal variants that may be neglected by tradi-
tional GWAS analysis. Overall, our results are valuable for
future studies to determine the true causal variants and to
further understand the mechanisms of central obesity.

Web resources

Genetic Investigation of Anthropometric Traits (GIANT)
consortium data: http://portals.broadinstitute.org/collabora
tion/giant/index.php/GIANT_consortium_data_files

DIST: https://dleelab.github.io/dist/
PAINTOR: https://github.com/gkichaev/PAINTOR_V3.0
Annotation from Broad Institute: https://data.broa

dinstitute.org/alkesgroup/ANNOTATIONS/
Functional Annotations: https://github.com/gkichaev/

PAINTOR_V3.0/wiki/2b.-Overlapping-annotations
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