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Abstract The aetiology and pathogenesis of inflammatory bowel disease (IBD) remains unclear
but involves a complex interplay between genetic risk, environmental exposures, the immune
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system and the gut microbiota. Nearly two decades ago, the first susceptibility gene for Crohn’s
disease, NOD2, was identified within the IBD 1 locus. Since then, over 230 genetic risk loci
have been associated with IBD and yet NOD2 remains the strongest association to date. As an
intracellular innate immune sensor of bacteria, investigations into host–microbe interactions,
involving both innate and adaptive immune responses, have become of particular interest in
understanding the pathogenesis of IBD. Advancements in sequencing technology have lead to
the groundbreaking characterization of the gut microbiota and its role in health and disease.
While an altered microbiome has been described for IBD, whether it is a cause or an effect of
the intestinal inflammation has yet to be determined. Moreover, the bidirectional relationship
between the gut microbiota and the mucosal immune system adds to the multifaceted complexity
of intestinal homeostasis. A better understanding of how host genetics, including NOD2, influence
immune–microbe interactions and alter susceptibility to IBD is necessary in order to develop
therapeutic and preventative treatments.
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Abstract figure legend The multi-factorial etiology of IBD. Genetically susceptible individuals may experience some
form of environmental trigger that induces an immune response against gut microbiota. The uncontrolled immune
activation is thought to initiate disease or result in a flare.

Introduction

The nucleotide-binding oligomerization domain
(NOD)-like receptors (NLRs) are a family of evolutionarily
conserved, intracellular sensors that recognize a wide
range of microbial- and damage-associated signals during
infection and inflammation. Upon activation, these innate
immune receptors can lead to nuclear factor κB (NF-κB)
and mitogen-activated protein kinase (MAPK) signalling
or inflammasome cascades (Rubino et al. 2012). There
are currently 22 human and 34 mouse NLR proteins
that are classified based on their structure (Franchi et al.
2009). NLRs contain an N-terminal protein-binding
domain responsible for downstream signalling, a
central nucleotide-binding domain responsible for
oligomerization, and a leucine-rich repeat domain
located at the C-terminal, responsible for ligand sensing
and binding. Identification of the NLR, NOD2, as the
strongest genetic risk factor for the inflammatory bowel
disease (IBD), Crohn’s disease, has paved the way for
nearly 20 years of research into the role it plays in
immunity, host–microbe interactions and, ultimately,
intestinal disease. Here, we will review the genetic,
immune and microbial associations with IBD, with a
focus on the role for NOD2 in the pathogenesis of Crohn’s
disease.

Overview of IBD

Inflammatory bowel diseases encompass illnesses
characterized by chronic, relapsing inflammation of the
gastrointestinal tract. The highest prevalence of IBD is in
western countries in Europe, Oceania and North America,
with prevalence exceeding 0.3% in most (Ng et al. 2018).

Interestingly, IBD incidence seems to be stabilizing in the
western countries, whereas newly industrialized countries
are experiencing rapid increases in IBD incidence (Kaplan,
2015). Canada continues to have one of the highest rates of
IBD in the world, with 1 in every 150 Canadians (�0.6%
prevalence) living with either Crohn’s disease (CD) or
ulcerative colitis (UC), the two main types of IBD (Crohn’s
and Colitis Foundation of Canada, 2012). CD can cause
inflammation at any point along the alimentary canal,
from mouth to anus, whereas inflammation is localized to
the colon and rectum in UC. Disease onset typically begins
in late teens to early adulthood, and symptoms include
severe diarrhoea, abdominal pain, bloating, fatigue and
weight loss. With disease induction occurring during the
most productive years and symptoms severely impacting
the patient’s quality of life, IBD is a huge burden to the
patient, their families, society and the health care system.

While the aetiology of IBD remains unclear,
it is currently hypothesized to be a multi-hit,
multi-factorial auto-inflammatory disease. The most
widely accepted hypothesis is that a genetically susceptible
person experiences an environmental trigger that
leads to an inappropriate immune response against
the commensal gut microbiota, resulting in chronic
immune activation, inflammation, epithelial damage,
bacterial translocation and further amplification of the
inflammatory response (Sartor, 2006). Despite significant
efforts, the environmental trigger(s) leading to this
chronic inflammatory cycle remains unknown. The
search for a “cure” for IBD requires understanding
the fundamental principles governing the interaction
between the intestinal immune system and gut micro-
bes and in particular, mechanisms that control responses
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to “normal” commensal bacteria. Indeed, the challenge to
the mucosal immune system is to maintain a controlled
and appropriate response to the trillions of gut micro-
bes that make up the gut microbiota. One can imagine
that loss of this regulation could lead to chronic intestinal
inflammation and play a key role in the pathogenesis of
IBD.

Genetic risk in IBD

The genetic influence on IBD development has been
well studied. Some of the first studies looking at IBD
occurrence in twins identified a higher concordance in
monozygotic twins than dizygotic twins, 58.3% versus
0%, respectively, for CD (Orholm et al. 2000). Moreover,
a study of Swedish monozygotic twins identified a
concordance of 18% in UC and 50% in CD (Halfvarson
et al. 2003). This indicated that IBD development,
particularly CD, is influenced by genetics. To date over
230 genetic loci have been identified that are associated
with an increased risk of developing IBD, 30 of which are
specific to CD (Jostins et al. 2012; Liu et al. 2015; de Lange
et al. 2017). The majority of IBD susceptibility genes are
linked to pathways involved in immune–microbe inter-
actions. Pathways highlighted by these IBD-linked genes
include: microbial detection, immune activation and
suppression, and fucosylation of the mucosal epithelium.
Some of these genes include the interleukin (IL)-23
receptor (IL-23R), the autophagy-related protein 16-1
(ATG16L1) and the IL-10 receptor (IL-10R) (Jostins
et al. 2012). The strongest genetic association with CD
is nucleotide-binding oligomerization domain-containing
protein 2 (NOD2) mutations, with the largest odds ratio
of 3.1 (Hugot et al. 2001; Ogura et al. 2001; Jostins et al.
2012).

NOD2. NOD2 is a cytosolic pattern recognition receptor
that senses muramyl dipeptide (MDP), a component of
peptidoglycan found in the cell wall of Gram-positive
and -negative bacteria (Girardin et al. 2003). Located

within the leucine rich repeat (LRR) domain responsible
for microbial sensing are the three main IBD-associated
NOD2 mutations: Arg702Trp and Gly908Arg, which result
in amino acid substitutions, and the 1007fs frameshift,
which results in a premature stop codon and a truncated
protein (Hugot et al. 2001; Ogura et al. 2001) (Fig. 1).
These mutations are thought to result in “loss of function”
and cause defective bacterial sensing. Up to 40% of CD
patients have at least one allele mutated in NOD2, while
mutations in both NOD2 alleles are found in �10% of
CD patients (Lesage et al. 2002). Upon activation, NOD2
signalling is mediated by Rip2 kinase, which activates
NF-κB and MAPKs leading to increased immune gene
expression and inflammation. These observations suggest
that innate immune responses to bacteria are a key element
in the pathogenesis of CD; however, the mechanism by
which this occurs is still unclear (Girardin et al. 2003;
Watanabe et al. 2004; Kobayashi et al. 2005; Fritz et al.
2006).

NOD2 is expressed in numerous cell types, including
T and B cells (Shaw et al. 2009; Petterson et al. 2011),
macrophages and dendritic cells (Hedl et al. 2007;
Cooney et al. 2010), plus epithelial cells, goblet cells
and Paneth cells (Rosenstiel et al. 2003; Ogura et al.
2003a; Ramanan et al. 2014). Each of these cell sub-
sets are located within the intestine and are involved
in either maintaining the epithelial barrier thus limiting
bacterial translocation into the tissue, or bacterial sensing
and clearance. Indeed, a study showed that NOD2 is
constitutively expressed within Lgr5+ stem cells within
intestinal crypts, and sensing of MDP resulted in increased
stem cell survival and epithelial restitution (Nigro et al.
2014). Therefore, it is clear that defects in the bacterial
sensor NOD2 could impair any or all of the mechanisms
available for protecting the host from bacterial-induced
inflammation in the gut. Indeed, polymorphisms in
NOD2 lead to defective NF-κB activation resulting
in inefficient epithelial and macrophage clearance of
invasive bacteria (Sartor, 2004). Furthermore, patients
with NOD2 mutations have reduced defensin production

NOD2

MDP

Arg702Trp Gly908Arg

1007fs

744273127291 1040

CARD: Caspase activation and recruitment domain
NBD: Nucleotide binding domain
LRR: Leucine rich repeat domain

CARD CARD NBD LRR

Figure 1. NOD2 gene and IBD associated mutations
NOD2 has three functioning domains: CARD, responsible for NF-κB activation through interactions with receptor
interacting protein-2 (RIP2); NBD, responsible for oligomerization; and the LRR domain, responsible for bacterial
sensing via binding of muramyl dipeptide (MDP). The three main mutations in NOD2 are all located near or in the
LRR domain and arrows indicate their locations.
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and secretion by Paneth cells, increased T cell and humoral
immune responses and a proposed loss of tolerance to the
commensal gut microbiota (Kobayashi et al. 2005).

NOD2 is also involved in other cellular defence
mechanisms, such as autophagy, where MDP sensing
by NOD2 induces recruitment of the autophagy
protein ATG16L1 to the bacterial entry site in the
plasma membrane (Travassos et al. 2010). Indeed, the
CD-associated frameshift mutation of NOD2 fails to
induce ATG16L1 recruitment and results in incomplete
autophagasome formation. Additionally, there is evidence
suggesting a role for NOD2 in antiviral immune responses;
however, the exact mechanism and cells involved remain
unclear (Sabbah et al. 2009; Lin et al. 2013). Together, this
suggests that NOD2 mutations not only impair bacterial
sensing but also influence other defence pathways that
could be associated with CD.

Involvement of the immune system in IBD

Multiple components of the immune system are involved
in the pathogenesis of IBD, from innate sensing of bacteria
to adaptive anti-commensal responses. The gut is home to
the largest number of immune cells in the body and only a
single layer of columnar epithelial cells physically separates
the numerous luminal antigens from the primed mucosal
immune system. The mucosal immune system exists to
protect against invading pathogens, while at same time
it must remain tolerant to food antigens and commensal
microbes.

Structure and function of the intestine. In order to
understand the role of the gut microbiota on mucosal
immune development and disease, the structure of the
intestine must be considered. The alimentary tract runs
from mouth to anus, and while microbial colonization
does exist in the mouth and stomach, the majority of the
gut microbiota live in the small and large intestine (Sender
et al. 2016). The small intestine can be considered as three
functionally distinct sections: the proximal duodenum,
responsible for enzymatic breakdown of ingested food, the
medial jejunum and the distal ileum, which are responsible
for nutrient absorption. Function dictates the structure of
the epithelial barrier along the small intestine, from long
villi and crypts in the duodenum and jejunum to increase
surface area necessary for absorption, to shorter villi in
the ileum (Mowat & Agace, 2014). Multipotent stem cells
inhabit the base of the crypt alongside Paneth cells, and
give rise to new epithelial cells to replace the constant
turnover of the barrier every 4–5 days (Barker et al. 2008).
As the epithelial cells migrate up the crypt and villi, they
mature into one of the various cell types within the barrier:
absorptive enterocytes (the most common), tuft cells,
enteroendocrine cells, or mucus-producing goblet cells.
Tuft cells have come into the spotlight for their recently

discovered ability to initiate type 2 immune responses in
the gut, and involvement in the complex network between
immune cells and the intestinal epithelium (Gerbe & Jay,
2016; Middelhoff et al. 2017). Together, these cell sub-
sets maintain a secure barrier along the small intestine,
a barrier between the microbes in the lumen and the
immune cells in the mucosa. Some of the mechanisms used
to protect the barrier include expression of tight junction
proteins to reduce the permeability of the epithelium,
release of anti-microbial peptides including defensins
from Paneth cells, and mucus production by goblet
cells (Peterson & Artis, 2014). Furthermore, expression
of pattern recognition receptors, such as NOD2, by
epithelial cells provides another protective checkpoint.
Indeed, NOD2 expression is particularly high in Paneth
cells within the ileum, and NOD2 mutations have been
associated with ileal inflammation in Crohn’s disease
patients (Hugot et al. 2001).

In contrast, the large intestine has no villi, only crypts,
and its main physiological function is the reabsorption of
water (Mowat & Agace, 2014). The crypts still maintain
a base of regenerating stem cells (but lack Paneth cells),
which populate the colonic epithelium with enterocytes,
enteroendocrine cells and goblet cells. Goblet cells produce
a protective mucus composed of two layers: a thin inner
layer that is firmly attached to the colonic epithelium
and impervious to bacterial translocation during homeo-
stasis, and an outer layer which is significantly thicker
but looser, allowing bacterial habitation (Hansson &
Johansson, 2010). Mucins, such as Muc2, are the structural
components of the mucus layer, which can be quantified
and used as a measure of the host’s response to microbes
(Johansson et al. 2011). Moreover, immune mediators,
such as IL-9 and IL-13, stimulate mucus production
(Steenwinckel et al. 2009).

Immune response in IBD. The gut represents the largest
and most diverse site of interaction between the host
and the environment. As such, patients with IBD can
experience a flare in response to numerous triggers of
inflammation. As described above, the lumen is physically
separated from the immune cells by highly specialized
epithelial cells. IBD patients have altered intestinal
permeability (i.e. leaky gut due to reduced intercellular
adhesion), possibly allowing for bacterial translocation
into the lamina propria (Peeters et al. 1997; Soderholm
et al. 1999; Buhner et al. 2006), although it remains to be
determined if this is due to the inflammation, alterations
of the gut microbiota, or represents an underlying genetic
defect. Recent work from our laboratory failed to show a
genetic association with abnormal intestinal permeability
in healthy subjects (Kevans et al. 2015).

Paneth cells, located in the base of the crypts, are
secretory cells that specialize in host defence by secreting
potent anti-microbial α-defensins. NOD2 is highly
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expressed in Paneth cells, suggesting that polymorphisms
in NOD2 could result in defective anti-microbial defence
(Ogura et al. 2003a). Indeed, CD patients have a
reduction in anti-microbial peptide production and
morphologically abnormal Paneth cells (Cadwell et al.
2008; VanDussen et al. 2014). A thick layer of mucus
lines the gut epithelium acting as a chemo-physical barrier
limiting bacterial adherence and translocation (Duerkop
et al. 2009). IBD is associated with a thinner mucus layer
that may enhance bacterial invasion of the mucus (Pullan
et al. 1994). Collectively, epithelial barrier defects are a
characteristic feature in IBD patients and may represent a
key feature in the breakdown of host–microbe interactions
as it is the main contact point between luminal microbes
and mucosal immune cells.

IBD patients have elevated levels of many
pro-inflammatory cytokines such as IL-1β, tumour
necrosis factor α (TNFα), IL-6 and IL-12 in serum
and mucosal tissue compared to healthy controls. It
has been postulated that this elevation is due primarily
to the inability to control the immune response to
commensal bacterial antigens. Indeed, several groups
have identified increased anti-microbial responses in
IBD patients (Round & Mazmanian, 2009; Manichanh
et al. 2012). Specifically, one team identified an increase
in highly IgA-coated microbes in the stool of IBD
patients, indicating an increased adaptive immune
response against commensals (Palm et al. 2014). Another
group investigated the reactivity of serum antibodies
to microbial antigens and found that CD patients have
elevated serum IgG reactive to bacterial flagellin (Lodes
et al. 2004). Tissue specific responses also indicate an
inability to control inflammation in IBD patients. For
example, the alarmin, IL-33, is increased in inflamed
tissue of IBD patients (Kobori et al. 2010). Moreover,
increases in neutrophils and monocytes within the tissue
result in increased reactive oxygen species and further
tissue damage (Brown & Mayer, 2007). Mucosal T cells
in IBD patients survive longer than normal T cells and
remain within the mucosa (Neurath et al. 2001). This
latter finding has resulted in a new avenue of therapeutics
targeted against gut homing receptors, including the
integrin α4β7 (Ghosh et al. 2003). Another effective
treatment of CD is anti-TNFα therapy, which suppresses
immune activation by binding to and neutralizing TNFα
produced by immune cells. Limiting the inflammatory
response in this way allows for the epithelial barrier to
heal thus preventing further microbial translocation into
the lamina propria and continuous immune stimulation.
Alternatively, some patients respond to oral antibiotic
therapy, which reduces the total microbial load in
the gut lumen and limits bacterial invasion into the
tissue; however, the mechanism by which antibiotics
mediate remission are likely due to alterations of the gut
microbiota (Sartor, 2004).

Gut microbiota

The human body is truly an ecosystem, colonized by a
wide variety of microbes, including Archaea, bacteria,
protists, viruses and bacteriophages, and some not so
“micro” organisms, such as worms and fungi. The “micro-
biota” collectively refers to all of these components but
more specifically relates to the bacterial community both
on and in the body, whereas the “microbiome” denotes
the genes and genetics of this community (Hooper &
Gordon, 2001). While the existence and influence of
the “virome” and “mycobiome” have been established,
much less is known about their role in health and
disease, or the co-evolution with gut bacteria (Cui et al.
2013; Minot et al. 2013; Lim et al. 2015). Symbiosis
between the host and its resident microbiota has important
consequences for human health and physiology. These
interactions may have beneficial nutritional, immuno-
logical and developmental effects or pathogenic effects
for the host (Penders et al. 2006). Research characterizing
which bacteria are present at various anatomical locations,
their abundance and function has exploded over the last
decade as we have come to appreciate their essential role
in both health and disease.

Quantification and assessment of the microbiota. The
community of microbes varies by anatomical location,
from skin to vagina, mouth to gut (Costello et al. 2009;
Cho & Blaser, 2012). While many microbes are found on
the skin, the highest concentration of bacteria is located
within the gastrointestinal tract. Bacteria live in the mouth
(109), stomach (103) and small intestine (104–108) but
the majority are located in the colon, with nearly 1011

bacteria per gram of intestinal content or 3.8 × 1013

bacteria in total (Sender et al. 2016). The complexity of
the community makes it difficult to ascertain exactly how
many bacterial species are represented but it is estimated
that 500–1000 species colonize the average human colon,
the majority of which are obligate anaerobes (Claesson
et al. 2009; Human Microbiome Project Consortium,
2012). Actual biodiversity and community structure,
particularly how the microbes co-habitat and inter-
act with each other, are difficult to ascertain since
many organisms cannot yet be cultured ex vivo. Some
researchers are developing new ways to culture commensal
bacteria in physiologically relevant conditions and in
ways that attempt to address the community structure,
including invention of the “robogut” and other novel
culturing techniques (Petrof et al. 2013; Lau et al.
2016). Advancement of these methodologies will allow
for significant advancement of microbial manipulation
experiments and testing of potential therapeutics that
could alter the microbiota to prevent or eliminate
disease. However, until then, molecular methods for
investigating the microbial population primarily involve
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genetic analysis via sequencing variable regions of the
16S ribosomal RNA (rRNA) genes. High throughput
sequencing of selected variable regions of the 16S rRNA
gene is currently the most common method for taxonomic
identification and assessing community structure (Case
et al. 2007; Caporaso et al. 2010). In this way, sequencing
data provide insight into the presence or absence of
bacterial taxa and their abundance relative to the entire
population, and as such are used to discern the community
structure of the microbiota at a given time. Specific
measures of the community include α-diversity, which
evaluates species richness or the presence of taxa (e.g.
Chao1 or Shannon diversity index), and β-diversity, which
determines the presence and abundance of taxa and how
it relates to the community (e.g. Unifrac, Bray-Curtis
dissimilarity) (Human Microbiome Project Consortium,
2012). Longitudinal sampling of the same subjects allows
for both inter- and intra-individual comparisons of
the microbial composition, providing insight into how
environmental cues (e.g. diet, drugs) can influence the
community over time within an individual and if the same
patterns can be observed across individuals.

Microbiota in IBD. The gut microbiota in IBD has been
characterized as increased abundance of Bacteroidetes
and Proteobacteria, with loss of Firmicutes (Oyri et al.
2015). Moreover, IBD patients exhibit a reduction in
total bacterial diversity (Manichanh et al. 2006). Loss
of certain beneficial microbes in IBD patients, such as
Faecalibacterium prausnitzii, has also been associated with
“dysbiosis” (Sokol et al. 2008, 2009). The term ‘dysbiosis’
refers to a state of imbalance or altered composition or
altered function (and not necessarily composition) of
the microbiota, leading to altered host–microbe inter-
actions. It has been proposed that a state of dysbiosis
occurs when harmful microbes overtake the beneficial
ones, which is particularly observed during diseased
states, such as IBD, obesity, metabolic disorders and
infections (Carding et al. 2015). The issue with dysbiosis
in IBD is that it is nearly impossible to ascribe causation
since microbial community functional or structural
alterations observed during disease are likely linked to
treatment regimens and/or the on-going inflammatory
state within the gut. Indeed, few studies have identified
that an altered microbiome precedes disease onset or
causes inflammation. One study attempted to more
accurately address this issue by looking at the micro-
biome of newly diagnosed, treatment naive paediatric
patients (Gevers et al. 2014). They found CD patients
exhibited increased abundance of Enterobacteriaceae,
Pasteurellaceae and Fusobacteriaceae, and decreased
abundance of Erysipelotrichaceae, Bacteroidales and
Clostridiales compared with unaffected controls. These
differences were observed in mucosal samples (from
the terminal ileum and rectum), but were not well

reflected in the stool. Moreover, antibiotic treatment
further exacerbated this phenotype with further loss of
Erysipelotrichaceae and Clostridiales. Others have also
identified a reduction in Clostridiales in IBD, particularly
members of Clostridium clusters XIVa and IV, which are
taxa thought to promote immune regulation (Frank et al.
2007, 2011). Another study investigated the microbial
and metabolic profiles of healthy first-degree relatives of
paediatric IBD patients; the authors identified that some
healthy relatives displayed microbial dysbiosis, which
in some cases was also associated with a perturbed
metabolome and increased fecal calprotectin indicating
a possible pre-disease, sub-clinical state of inflammation
(Jacobs et al. 2016). Clearly, there is a need for prospective
studies in healthy susceptible first-degree relatives of IBD
patients, such as the Genetics, Environment, Microbial
(GEM) project, to help resolve whether changes in the
microbial communities precede disease onset in IBD.

In summary, IBD implicates a significant role for the
gut microbiota, either in driving or perpetuating chronic
relapsing inflammation (Huttenhower et al. 2014). While
an altered microbiota certainly exists in patients with active
IBD, whether a “dysbiotic” microbiome is a cause or an
effect of IBD is yet to be determined.

Immune–microbe interactions in IBD

The mucosal immune system develops and/or matures in
response to the presence of a gut microbiome (Shroff &
Cebra, 1995; Duerkop et al. 2009; Tlaskalova-Hogenova
et al. 2011). From birth, the newly colonizing gut
microbiota interacts with the gut epithelium and host
immune system, influencing development, maturation
and regulation, which, in turn, influence the development
of the microbiota (Tomas et al. 2013; Francino, 2014).
Indeed, IBD can be viewed as an imbalance in the
bidirectional interactions between immune responses and
the gut microbiome in genetically susceptible individuals;
however, it is not clear if this is due to an abnormal gut
microbiome or an abnormal immune response or both. A
better understanding of the mechanisms involved in this
bidirectional relationship is essential.

Role of microbes in host immune development. The
mucosal immune system functions to distinguish between
friend (non-threatening symbiotic bacteria) and foe
(pathogenic microbe). The latter requires a protective,
often inflammatory response while the former, either no
response or a controlled response with minimal collateral
damage from inflammation. A major challenge to the
mucosal immune system is ensuring an “appropriate”
response to the large and diverse population of the
commensal gut microbiota (Littman & Pamer, 2011).

The critical window for immune development is
immediately following birth and during the first year of
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life (Holt & Jones, 2000; Arrieta et al. 2014; Bokulich
et al. 2016; Tamburini et al. 2016). From birth, micro-
organisms, including bacteria, viruses and fungi, colonize
humans and animals. These microorganisms stimulate the
development of the local and systemic immune system,
which, in turn, influences the development of the micro-
biota.

Innate receptors detect microbe-associated
molecular patterns (MAMPs) by germline-encoded
pattern-recognition receptors (PRRs), e.g. Toll-like
receptors (TLRs) (Iwasaki & Medzhitov, 2004) and
NOD-like receptors (NLRs) (Fritz et al. 2006). These PRRs
regulate first-line host responses but also influence the
antigen-specific or adaptive immune responses. Tolerance
developed in early life during immune and microbiota
co-development is essential for maintaining a homeo-
static mucosal environment throughout life (Sartor,
2004). The concept of a mucosal “firewall” elegantly
describes the multiple layers of protection involved in
maintaining tolerance and limiting inflammation within
the mucosa (Macpherson et al. 2009). Physically, the
epithelial barrier and the mucus layer(s), along with
secretory IgA and anti-microbial peptides, limit contact
of bacteria to underlying immune cells. If bacteria
are able to get close to or through the epithelial layer,
intestinal macrophages engulf and kill them; alternatively,
dendritic cells phagocytose and transport live bacteria
to mesenteric lymph nodes to initiate a local, targeted
immune response (Belkaid & Hand, 2014). Thus, it is
not surprising that perturbation of the gut microbiota
can affect immune health. Bacteria interact with the
immune system via numerous ligands, including: capsular
polysaccharide (CPS), lipopolysaccharide, peptidoglycan,
muramic acid, flagellin and unmethylated CpG motifs
of bacterial DNA (Platt & Mowat, 2008). In response
to these bacterial ligands, cytokines are produced that
shape the differentiation of the adaptive immune system,
including T cells. Indeed, gut immune maturation
depends on colonization, as germ-free mice possess
severely depleted mucosal immune development (Shroff
& Cebra, 1995; Hooper et al. 2012). Studies of germ-free
mice have highlighted the essential roles microbes play
in immune, epithelial and metabolic development of the
host (Backhed et al. 2004; Macpherson & Harris, 2004;
Sommer & Backhed, 2013).

Using gnotobiotic mice, researchers have begun to
understand the profound effects of microbial stimulation
on immune development (Tlaskalova-Hogenova et al.
2011). Specifically, studies have determined that IgA and
germinal centre formation are strongly linked to gut
colonization with a diverse microbiota (Macpherson et al.
2000; Fagarasan, 2006; Mora et al. 2006; Macpherson &
Slack, 2007). Phenotypic differentiation of T cells is also
coordinated through microbial sensing, demonstrated, for
example, by development of Th17 cells in response to

segmented filamentous bacteria (SFB) in mice (Ivanov
et al. 2008). Moreover, microbial components, such as
polysaccharide A (PSA) or cocktails of Clostridia species
are potent inducers of regulatory T cells (Mazmanian
et al. 2008; Round & Mazmanian, 2010; Atarashi et al.
2011, 2013). Chung et al. colonized germ-free mice
with either human- or mouse-derived microbiota (Chung
et al. 2012). Human versus mouse colonization results in
different recipient microbial community profiles, which
induces different numbers and transcriptomic profiles
of mucosal T cells (Chung et al. 2012). Furthermore,
gut bacteria heavily influence Treg cell development and
may be of particular importance in preventing bacterial
driven mouse models of colitis (Thorstenson & Khoruts,
2001). We are just beginning to appreciate the influence
of microbial colonization on the modulation of mucosal
B and T cell development and function. Understanding
the mechanisms involved and the impact of host genetics
on this process will provide opportunities for personalized
treatment of IBD patients.

Animal models of IBD. The constant exposure of
the intestinal tissue to gut microorganisms maintains
the mucosa in a state of minimal “physiological
inflammation”, which balances tolerogenic and
pro-inflammatory responses to maintain homeostasis.
IBD is thought to result from an imbalance in this response
to commensal microbes causing mucosal damage. Mouse
models of intestinal inflammation have facilitated
investigations of the role of host–microorganism inter-
actions on the development and regulation of disease.
These include pathways involved in the maintenance
of intestinal epithelial barrier integrity, the promotion
of protective and tolerant immune responses within
the intestinal mucosa and regulation of the microbiota
(Philpott et al. 2014).

Over 100 animal models of colitis exist (Strober
et al. 2002; Jiminez et al. 2015), including those that
are genetically driven, chemically induced or immune
mediated, all of which are represented in mouse
models of colitis. Genetically driven models include the
interleukin-10 (IL-10) deficient mouse, whose inability to
produce IL-10 results in uncontrolled inflammation in the
gut (Kuhn et al. 1993; Sellon et al. 1998), the SAMP1/YitFc
mouse, which develops spontaneous ileitis (Pizarro et al.
2011), the TRUC mouse, whose deficiency in both
T-bet and Rag2 results in exacerbated TNFα responses
and a colitogenic microbiota (Garrett et al. 2007),
and the Mdr1a−/− mouse, which lacks P-glycoprotein
170, resulting in increased gut permeability, microbial
translocation and colitis development (Panwala et al.
1998). Chemically induced models involve oral or rectal
administration of a compound that induces epithelial
damage, allowing for microbial translocation and immune
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activation. These include administration of dextran
sulfate sodium (DSS), piroxicam or 2,4,6-trinitrobenzene
sulfonic acid. Models that are driven primarily by immune
activation include the T cell transfer model, where trans-
fer of naive T cells into a lymphopenic recipient results
in wasting disease that can be prevented by co-transfer of
regulatory T cells (Powrie et al. 1993, 1994) and anti-CD3ε
monoclonal antibody model, which induces acute small
intestinal mucosal damage through T cell activation and
a cytokine storm (Merger et al. 2002; Zhou et al. 2004).
Infections that drive intestinal inflammation, including
Citrobacter rodentium or rotavirus, are also models used
to study the inflammatory response in the gut (Little &
Shadduck, 1982; Higgins et al. 1999; Franco et al. 2006;
Collins et al. 2014). Interestingly, many mouse models of
colitis fail to develop disease under germ-free conditions,
including IL-10−/− mice (Sellon et al. 1998), IL-2−/− mice
(Schultz et al. 1999), T cell receptor-α deficient mice
(Dianda et al. 1997) and T cell transfer colitis (Aranda
et al. 1997). This indicates that the inflammatory response
or perpetuation of the inflammation is driven in large part
by the microbes (Kuhn et al. 1993; Simpson et al. 1998;
Macpherson & Harris, 2004).

Recently, the use of gnotobiotic mice colonized
with human-derived microbiota has become a popular
way to explore the role of specific human micro-
bes on immune modulation and host–microbe
interactions (Geva-Zatorsky et al. 2017). Human
microbiota-associated mice have been used to model
recurrent Clostridium difficile infections (Collins et al.
2015), asthma (Arrieta et al. 2015) and, most famously,
obesity (Ridaura et al. 2013). A study investigating
the effect of UC-derived microbiota in humanized
mice found expansion of Th17 cells and related gene
expression, and increased sensitivity to DSS colitis
compared to mice colonized with healthy donor micro-

biota (Natividad et al. 2015). Similar findings were
observed in mice colonized with CD-derived micro-
biota, where the microbes increased pro-inflammatory
immune responses but did not induce overt pathology in
gnotobiotic wild-type mice (Nagao-Kitamoto et al. 2016).
However, CD-microbiota did induce severe colitis when
used to colonize germ-free IL-10−/− mice. Thus, while
colonization of germ-free mice with IBD-derived micro-
biota does not result in spontaneous inflammation, it
increases susceptibility to induced colitis, possibly through
increasing the pro-inflammatory status of mucosal
immune cells.

Although mutations in the NOD2 gene represent the
strongest genetic link to Crohn’s disease, Nod2-deficient
mice do not spontaneously develop colitis (Ogura
et al. 2003b). Work in our laboratory has shown that
Nod2−/− T cells show no overt functional defect in
terms of proliferative and suppressive function and
cytokine production (Zanello et al. 2013). However,
there are conflicting results on whether Nod2−/− mice
are more or less susceptible to various models of
intestinal inflammation (Table 1). Ramanan et al.
suggested that Nod2−/− mice harbouring Bacteroides
vulgatus had increased piroxicam-induced small intestinal
damage (Ramanan et al. 2014). This correlates with
our laboratory’s recent finding that Nod2−/− mice had
delayed epithelial recovery and prolonged small intestinal
mucosal damage following intraperitoneal injection
of anti-CD3ε monoclonal antibody (mAb) (Zanello
et al. 2016). Conversely, we were unable to identify a
difference in susceptibility to T cell transfer colitis using
Nod2−/− T cells (Zanello et al. 2013), and Amendola
et al. identified a protective effect of Nod2 deficiency
in 2,4,6-trinitrobenzene sulfonic acid induced colitis
(Amendola et al. 2014). These findings suggest that Nod2
may play a more significant role in modulating small

Table 1. Susceptibility of Nod2-deficient mice to models of intestinal inflammation

Model of intestinal
inflammation

Susceptibility in
Nod2-deficient mice

Inflammatory
response

Location of
inflammation

Use of
littermates

Reference

Anti-CD3ε mAb Increased Increased IL-17A
and myeloper-
oxidase (MPO)

Small intestine Yes (Zanello et al. 2016)

Piroxicam Increased Increased
interferon
gamma (IFN-γ)

Small intestine No (Ramanan et al. 2014)

Citrobacter rodentium Increased Decreased IL-17A Caecum No (Geddes et al. 2011)
T cell transfer No difference or reduced None or decreased

IFN-γ
Colon No (Shaw et al. 2009;

Zanello et al. 2013)
Dextran sulfate sodium

(DSS)
Increased Increased IL-6 Colon No (Natividad et al. 2012;

Couturier-Maillard
et al. 2013)

2,4,6-Trinitrobenzene
sulfonic acid (TNBS)

Reduced Decreased IL-17A Colon No (Amendola et al.
2014)
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intestinal rather than colonic inflammation. On the other
hand, Natividad et al. showed that Nod1−/−;Nod2−/−
(NOD-DKO) mice have increased epithelial permeability,
which leads to an exacerbated response to DSS colitis
(Natividad et al. 2012). The response to infection by
bacteria, viruses and parasites also varies significantly in
Nod2-deficient mice (Al Nabhani et al. 2017). Therefore,
under the appropriate conditions, there could be a
perpetuated inflammatory response in the gut related
to the Nod2 mutation. Proper control of environmental
variables, including the use of heterozygous-derived
littermate mice to equalize the microbiota and early
life environmental exposures between wild-type and
Nod2-deficient mice, will help to better elucidate the role
of Nod2 in intestinal homeostasis and inflammation.

Concluding remarks

IBD is complex, multifactorial and likely no one causative
agent will be identified. Instead, a combination of genetic
predisposition, environmental exposures and the gut
microbiota will culminate in an unfortunate perfect storm
for some individuals, resulting in disease development.
In order to identify new therapeutic targets and develop
preventative and therapeutic strategies, a better under-
standing of how these factors influence each other and
come together to initiate IBD pathogenesis is required.
NOD2 has remained the strongest genetic risk factor
associated with CD development for nearly two decades,
although exactly how it is related to disease onset remains
elusive. Its involvement in microbial sensing, innate and
adaptive immune activation, plus its role in autophagy,
the gut epithelial barrier and shaping the gut microbiota
suggest that it is a versatile protein with many roles in IBD
pathogenesis. To this end, further investigation into the
multi-faceted roles of NOD2 is required, at both the basic
science and clinical level.
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