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Abstract

Background: Down syndrome (DS) is a common developmental disorder resulting from the presence of an additional
copy of chromosome 21. Abnormalities in dopamine signaling are suggested to be involved in cognitive dysfunction,
one of the symptoms of DS, but the pathophysiological mechanism has not been fully elucidated at the cellular level.
Stem cells from human exfoliated deciduous teeth (SHED) can be prepared from the dental pulp of primary teeth.
Importantly, SHED can be collected noninvasively, have multipotency, and differentiate into dopaminergic neurons
(DN). Therefore, we examined dopamine signaling in DS at the cellular level by isolating SHED from a patient with DS,
differentiating the cells into DN, and examining development and function of DN.

Methods: Here, SHED were prepared from a normal participant (Ctrl-SHED) and a patient with DS (DS-SHED). Initial
experiments were performed to confirm the morphological, chromosomal, and stem cell characteristics of both SHED
populations. Next, Ctrl-SHED and DS-SHED were differentiated into DN and morphological analysis of DN was examined
by immunostaining. Functional analysis of DN was performed by measuring extracellular dopamine levels under basal
and glutamate-stimulated conditions. In addition, expression of molecules involved in dopamine homeostasis
was examined by quantitative real-time polymerase chain reaction and immunostaining. Statistical analysis was
performed using two-tailed Student’s t-tests.

Results: Compared with Ctrl-SHED, DS-SHED showed decreased expression of nestin, a neural stem-cell marker.
Further, DS-SHED differentiated into DN (DS-DN) exhibiting decreased neurite outgrowth and branching compared
with Ctrl-DN. In addition, DS-DN dopamine secretion was lower than Ctrl-DN dopamine secretion. Moreover, aberrant
expression of molecules involved in dopaminergic homeostasis was observed in DS-DN.

Conclusions: Our results suggest that there was developmental abnormality and DN malfunction in the DS-SHED donor
in this study. In the future, to clarify the detailed mechanism of dopamine-signal abnormality due to DN developmental
and functional abnormalities in DS, it is necessary to increase the number of patients for analysis. Non-invasively harvested
SHED may be very useful in the analysis of DS pathology.
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Background

Down syndrome (DS) is caused by an extra copy of
chromosome 21 and is one of the most common develop-
mental disorders. Reported symptoms of DS include im-
pairment of cognitive functions, such as learning, memory,
language, and executive function [1-4]. Dopamine (DA) is
an important neurotransmitter in the regulation of cogni-
tive function. It has been suggested that disturbance of the
DA signaling system causes the cognitive impairments ob-
served in DS [5-7].

The amount of DA in the brain and cerebrospinal fluid
(CSF) of patients with DS has been reported to be both
higher and lower than that in healthy people [8, 9], sug-
gesting that a disturbance in DA homeostasis is implicated
in DS. It has also been reported that there is reduced
expression of DA receptors DIR and D2R in the brains of
patients with DS [10]. As observed in patients with DS,
varied amounts of DA have also been reported in mouse
models of DS [6, 7, 11, 12], suggesting that variable DA
levels are associated with abnormal brain development.
However, the role of the DA signaling system in DS path-
ology has yet to be analyzed at a cellular level.

Stem cells from human exfoliated deciduous teeth (SHED)
can be acquired noninvasively and used for research
[13-15]. Thus, using SHED, consent to participate in
research may be obtained more readily from the par-
ents of young patients. SHED can be differentiated into
dopaminergic neurons (DN) and used for the treatment
of a parkinsonian rat model [16, 17]. The authors have
also previously used SHED derived from a patient with
Rett syndrome to elucidate the relationship between ab-
normal DN development and decreased mitochondrial
function in vitro [18]. Therefore, SHED are a valuable
source of stem cells for DN transplantation and for in vitro
disease models.

The aim of this study was to elucidate a relationship
between DS and abnormal DN development and function.
Here, SHED were prepared from a normal participant and
a patient with DS and were then used to examine DS
pathology on a cellular level. Our results demonstrate the
utility of SHED as a disease model for DS.

Methods

Isolation and preparation of SHED

Human exfoliated deciduous teeth were provided by
Pediatric Dentistry and Special Need Dentistry at Kyushu
University Hospital in Japan. After informed parental con-
sent was obtained, deciduous teeth were collected from a
normal participant and a patient with DS at 6 and 14 years
of age, respectively. The isolation procedure was completed
as previously described [15]. Briefly, the pulp tissue was
subjected to an enzymatic dissociation in 3 mg/mL collage-
nase I (Washington, NJ, USA) and 4 mg/mL dispase II
(Wako, Osaka, Japan) for 1 h, and then maintained at 37 °C
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in a humidified 5% CO, incubator in the Alpha modifi-
cation of Eagle’s Minimal Essential Medium (a-MEM;
Sigma-Aldrich, MO, USA) containing 15% fetal bovine
serum (Sigma-Aldrich), 100 pM L-ascorbic acid 2-phosphate
(Wako), 2 mM L-glutamine (Life Technologies, NY, USA),
250 pg/mL Fungizone (Life Technologies), 100 U/mL
penicillin (Life Technologies), and 100 pg/mL strepto-
mycin (Life Technologies). Cells of not more than 10
passages were used, but Ctrl-SHED and DS-SHED were
not always of the same passage.

Fluorescence in situ hybridization

SHED were treated with 75 mM KCI for 40 min and
then fixed with 3:1 ethanol:acetic acid (v/v). Fluorescence in
situ hybridization (FISH) of chromosome 21 was performed
with a chromosome 21 control probe labeling the BAC
probe, followed by the standard procedure with green
5-Fluorescein dUTP (CHR21-10-GR; Empire Genomics,
NY, USA). Hybridization was performed by denaturing the
slides in 70% formamide/2x standard saline citrate, dehy-
drating the slides with serial ethanol washes, and applying
the probe to the slides. Post-hybridization, the slides were
washed and stained with 0.1 pg/mL 4',6-diamidino-2-phe-
nylindole (DAPI; Dojindo, Kumamoto, Japan) to identify
nuclei. Fluorescence images were taken with a Zeiss Axio
Imager M2 microscope (Zeiss, Oberkochen, Germany)
equipped with ApoTome2 (Zeiss).

Western blotting

Whole-cell lysates were extracted with lysis buffer (62.5 mM
Tris-HCI pH 6.8, 2% SDS, 5% [-mercaptoethanol, and 10%
glycerol), and the protein concentration was measured using
Bradford ULTRA (Novexin, Cambridge, UK). A total of
5 pg of protein was separated by SDS-PAGE and transferred
to a polyvinylidene difluoride membrane. After block-
ing with 5% non-fat milk for 30 min, the membrane
was incubated overnight at 4 °C with anti-nestin (1:1000;
Millipore, CA, USA) and anti-HSP90 (1:1000; Santa Cruz
Biotechnology, CA, USA) antibodies. Membranes were
washed and incubated with HRP-conjugated secondary
antibody (1:5000; Santa Cruz Biotechnology) for 1 h at
room temperature and visualized with ECL prime (GE
Healthcare, Buckinghamshire, UK). The chemilumines-
cent signals were detected and quantified using LAS-1000
pro (Fuji Film, Tokyo, Japan) with Image Gauge software
(Fuji Film). HSP90 was used as an internal control. To
normalize the nestin expression, the chemiluminescent
signal of nestin was divided by the chemiluminescent sig-
nal of HSP90.

DN differentiation

DN differentiation was induced as previously described
with minor modifications (brain derived neurotrophic
factor [BDNF] was excluded in the second step) [16]. In
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the first step, 1.5 x 10° SHED were plated onto a 6-well
culture plate or glass coverslips coated with 0.01% poly-L-
lysine (Sigma-Aldrich), in the same culture medium as
described above. They were incubated overnight at 37 °C
in the presence of 5% CO,, and were then cultured in
serum-free Dulbecco’s Modified Eagle’s Medium (DMEM,
Sigma-Aldrich) supplemented with 20 ng/mL epidermal
growth factor (Sigma-Aldrich), 20 ng/mL basic fibroblast
growth factor (Peprotech, NJ, USA), and 1% N2 supple-
ment (Life Technologies) for 2 days at 37 °C, in the
presence of 5% CO,. In the second step, DMEM was
replaced with neurobasal medium (Life Technologies)
supplemented with 2% B27 supplement (Life Technologies),
1 mM dibutyryladenosine 3,5-cyclic monophosphate
(Sigma-Aldrich), 0.5 mM 3-isobutyl-1-methylxanthine
(Sigma-Aldrich), and 200 uM ascorbic acid (Nacalai
Tesque, Kyoto, Japan), and cells were incubated for 5 days,
at 37 °C, in the presence of 5% CO,.

Immunocytochemistry

The cells cultured on coverslips were fixed with 4%
paraformaldehyde in 0.1 M phosphate buffer (pH 7.4)
for 10 min. The cells were permeabilized with 0.1%
TritonX-100 for 5 min, then blocked with 2% bovine
serum albumin (BSA; Wako) in PBS for 20 min at room
temperature. Next, cells were stained with primary anti-
bodies against STRO-1 (1:100; Millipore), nestin (1:250;
Millipore), B-tubulin IIT (1:250; Sigma-Aldrich), tyrosine
hydroxylase (TH; 1:100; Millipore), N-methyl-d-aspartate
receptor subunit 1 (NMDARI; 1:100; Millipore), and DA
(1:200; Abcam) for 90 min. Following this, cells were incu-
bated with Alexa Fluor secondary antibodies (1:500; Life
Technologies) for 1 h at room temperature in the dark.
The cells were counterstained with 0.1 pg/mL DAPI
(Dojindo) for 5 min, and then mounted with ProLong
diamond (Life Technologies). The fluorescence images
were taken with Nikon C2 confocal microscope (Nikon,
Tokyo, Japan) in Fig. 1c and 3a, with Zeiss LSM700 con-
focal scanning microscope (Zeiss) in Fig. 2a and d, with
Zeiss Axio Imager M2 microscope (Zeiss) equipped with
ApoTome?2 (Zeiss) in Fig. 4c and d.

Morphological analysis of DN

For morphological analysis, the TH-immunostained im-
ages were analyzed with MetaMorph software (Molecular
Devices, CA, USA). A morphological analysis of DN was
performed as previously described [19]. Briefly, neurite
length and number of branches were measured from 100
TH-positive cells in 20 non-overlapping TH-immunostained
images selected randomly from three experiments using
the Neurite Outgrowth and Multi-Wavelength Cell Scor-
ing module of MetaMorph software (Molecular Devices).
Next, the cells were classified into 4 stages based on neur-
ite length and cell diameter as previously described [19].
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Measurement of NMDAR1 puncta in neurite

To measure the number of NMDARI puncta per unit
length of neurite, DN were immunostained with anti-
NMDARI and anti-TH antibodies. Thirty neurites that
were in focus and clearly observed were chosen from
10 Ctrl-DN and 12 DS-DN that were positive for both
NMDARI and TH. These cells were randomly chosen
from three experiments. The number of NMDARI1
puncta per 25 um of neurite was analyzed.

Extracellular DA measurement

Extracellular DA was measured using a Dopamine Research
ELISA kit (BA E-5300, LDN, Nordhorn, Germany) accord-
ing to the manufacturer’s instructions. SHED were plated at
a concentration of 5 x 10° cells per 6-cm dish and differenti-
ated into DN. 500 pl of culture medium was collected to
measure extracellular DA. To measure extracellular DA
under glutamate stimulated conditions, the cells were treated
with 30 uM L-glutamate for 1 min at 37 °C before harvesting
the medium. Next, the cell culture medium was centrifuged
at 20400 g for 5 min at 4 °C to remove cell debris and
immediately stored at — 80 °C until assayed. Subsequently,
total protein was extracted from cells using lysis buffer
(62.5 mM Tris-HCI pH 6.8 supplemented with 2% SDS, 5%
[-mercaptoethanol, and 10% glycerol), and the protein con-
centration was measured using Bradford ULTRA (Novexin).
To normalize the DA amount in each sample, the DA
amount was divided by the total protein of that sample.

RNA extraction and quantitative real-time polymerase
chain reaction (RT-qPCR)

Total RNA was extracted from the cells using an RNAeasy
Mini Kit (Qiagen, Hilden, Germany). First-strand cDNA
was synthesized using a ReverTra Ace qPCR RT Master
Mix with gDNA Remover (Toyobo, Osaka, Japan). The se-
quences of primer sets used in this study were as follows:
DAT1: 5-TGCTGCACAGACACCGTGAG-3" (forward),
5-AATGGTCCAGGAGCGTGAAGA-3’ (reverse); VMA
T2: 5-TGAAGAGAGAGGCAACGTCA-3" (forward),
5-CGTCTTCCCCACAAACTCAT-3 (reverse); HPRTI:
5-CCTGGCGTCGTGATTAGTG-3" (forward), 5-TCCC
ATCTCCTTCATCACATC-3’ (reverse). Real-time quan-
titative PCR was performed using GoTaq qPCR Master
Mix (Promega, WI, USA) and analyzed with StepOnePlus
Real-Time PCR Systems (Life Technologies). The thresh-
old cycle (Ct) value of HPRT1 was subtracted from the Ct
value of the target genes (ACt). Statistical analysis was per-
formed using the ACt values from four experiments. The
relative expressions of the target genes are shown as fold
changes determined using the 2"**“* method.

Statistical analysis
Values are represented as mean * standard error of the
mean (SEM) from at least three experiments. Two-tailed



Pham et al. BMC Neurology (2018) 18:132

Page 4 of 9

Ctrl-SHED

DS-SHED

@)

Ctrl-SHED

DS-SHED

STRO-1 DAPI

Nestin DAPI

Fig. 1 Characterization of SHED isolated from a patient with DS. a The morphology of cells in the Ctrl- and DS-SHED was observed using phase-contrast
microscopy. Scale bar = 100 um. b Chromosome 21 (white arrows) from the Ctrl- and DS-SHED cells was visualized with FISH. Scale bar =5 pm. ¢ Ctrl- and
DS-SHED were stained with anti-STRO-1 (upper panel) and anti-nestin (lower panel) antibodies. The nuclei were counterstained with DAPI. Cells expressing
low levels of nestin are indicated with yellow arrows. Scale bar =50 um. d Nestin expression in Ctrl- and DS-SHED was analyzed using western
immunoblotting. The nestin expression was normalized with HSP90. The mean + SEM from three independent experiments is shown. *P < 0.05
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Student’s t-tests were used to compare the Ctrl and DS
groups. Differences were considered significant if p <
0.05. JMP software (SAS Institute, NC, USA) was used
for the statistical analysis.

Methods of figure S1 and S2 are described in
Additional file 4.

Results

Characteristics of SHED isolated from a patient with DS
We isolated SHED from the deciduous teeth of a child with
DS (DS-SHED) and a normal participant (Ctrl-SHED).
DS-SHED were spindle-shaped and exhibited a fibroblastic
cell morphology that was similar to Ctr]l-SHED (Fig. 1a).
The presence of 3 copies of chromosome 21 in the nuclei
of DS-SHED was verified by FISH (Fig. 1b). Next, analysis
of cell proliferation showed similar proliferation of
DS-SHED and Ctrl-SHED (Additional file 1: Figure S1).
SHED have multi-lineage potential and express mesenchy-
mal and neuronal stem cell markers. To examine the stem
cell characteristics of DS-SHED, immunofluorescence
staining was performed using antibodies against stem cell
markers. Both DS-SHED and Ctrl-SHED expressed STRO-1,
a mesenchymal stem cell marker (Fig. 1c, upper panel). In
contrast, expression of nestin, a neuronal stem cell marker,

was reduced in DS-SHED compared to Ctrl-SHED (Fig. 1c;
lower panel; yellow arrows denote cells with weak nestin ex-
pression). Western blotting (Fig. 1d) and flow cytometry ana-
lysis (Additional file 2: Figure S2) were also used to
examine nestin expression and showed reduced nestin
expression in DS-SHED compared to Ctrl-SHED.

Altered differentiation of DS-SHED into DN

We differentiated Ctrl-SHED and DS-SHED into DN, and
immunostained these with antibodies to the neuronal
marker B-tubulin IIT and DN marker TH. DN differentiated
from DS-SHED (DS-DN) expressed p-tubulin III and TH
(Fig. 2a), but neurite length and branching were reduced
compared to DN differentiated from Ctrl-SHED (Ctrl-DN).
Quantitative analysis also showed that neurite length and
branching were reduced in TH-expressing DS-DN com-
pared to Ctrl-DN (Fig. 2b, c). DN development, evaluated
in 4 stages according to cell morphology (Fig. 2d; based on
a report by Leach et al.) [19], showed that DS-DN develop-
ment was reduced compared to Ctrl-DN (Fig. 2e).

Disturbance of DA secretion in DS-DN
A functional analysis of DN was performed by examining
DA expression and DA secretion. DA expression was
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Fig. 2 DN differentiation of DS-SHED. a Ctrl- and DS-DN cells were observed by immunofluorescence microscopy using anti-3-tubulin Il (left
panel) and anti-TH (right panel) antibodies. The nuclei were counterstained with DAPI. Scale bar =50 um. b, ¢ Neurite length (b) and number of
branches (c) of Ctrl- and DS-DN cells were measured. The mean + SEM from 100 cells is shown. ***P < 0.001. d DN development was classified

into 4 stages. The upper panel shows original TH immunofluorescence images, and the lower panel shows the output from Neurite Outgrowth
module of MetaMorph software. e A total of 100 differentiated DN were categorized into 4 stages and shown on the graph
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examined by immunostaining cells, which showed that
DA expression was present in both Ctrl- and DS-DN
(Fig. 3a). Next, DA secretion was examined by measuring
extracellular DA and it was observed that extracellular DA
of DS-DN was significantly reduced compared with that
of Ctrl-DN under basal conditions (p = 0.046; Fig. 3b). Al-
though no significant differences between the DS- and
Ctrl-DN were observed (P =0.506), extracellular DA of
DS-DN was lower than that of Ctrl-DN under glutamate
stimulated conditions (Fig. 3c).

Aberrant expression of molecules involved in DA
homeostasis in DS-DN

Possible causes of reduced DA section from DS-DN in-
clude the abnormal expression of molecules involved in DA
homeostasis, such as dopamine transporter 1 (DAT1) that

mediates DA reuptake, vesicular monoamine transporter 2
(VMAT?2) that mediates packaging of DA into secretory
vesicles, and glutamate receptors. Analysis of DAT1 and
VMAT2 mRNA expression showed that DAT1 expression
was greater and VMAT?2 expression was reduced in
DS-DN compared to Ctrl-DN (Fig. 4a, b). Furthermore, ex-
pression of NMDAR], a subunit of glutamate receptor, by
immunostaining showed that the number of NMDARI1
puncta per unit length of neurite was reduced in DS-DN
compared to Ctrl-DN (Fig. 4c-e).

Discussion

In this study, various tests on SHED derived from a patient
with DS suggest that DN development is reduced and DN
function is disturbed in DS. Previous studies have impli-
cated abnormal neuronal cell development in DS based on
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Fig. 3 Altered DA secretion in DS-DN. a DA expression in Ctrl- and DS-DN cells was observed by immunofluorescence microscopy. Ctrl- and DS-
DN cells were stained with anti-DA and anti-TH antibodies, and fluorescence images were captured using the same acquisition settings. Nuclei
were counterstained with DAPI; merged images are shown in the right panels. Scale bar=50 um. b, ¢ Extracellular DA amount under basal
conditions b and glutamate-stimulated conditions ¢ were measured by ELISA. The DA amount was normalized with total protein extracted from
each cell. Graphs show the mean + SEM from four experiments. *P < 0.05; n.s.,, not significant
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the examination of induced pluripotent stem cells (iPSCs)
and neurospheres derived from the fetal brains of DS pa-
tients [20, 21]; however, these studies did not involve the
differentiation of stem cells into a specific type of neuronal
cell. Thus, the present study focused on DN and is the first
to elucidate a relationship between DS and abnormal DN
development and function.

Compared to Ctrl-SHED, the expression of the neuronal
stem cell marker nestin was reduced in DS-SHED. It has
been reported that when iPSCs from a patient with DS are
induced to become neural progenitor cells (NPCs), nestin
expression, neuronal cell differentiation capacity, neurite
length, and synapse formation are reduced compared to
controls [20]. In these NPCs, glia markers as well as the
differentiation into glia were enhanced over the differ-
entiation into neurons [20]. Although glia were not ex-
amined in the present study, because nestin expression

was reduced in SHED derived from the patient with
DS, it is possible that differentiation into glia was also
enhanced, though further investigation is required to
confirm this.

A reduction in DA secretion was observed from DS-DN
compared to Ctrl-DN. Expression of DAT1, which mediates
DA reuptake, was increased and expression of VMAT?2,
which is involved in packaging DA into secretory vesicles,
was decreased in DS-DN compared to Ctrl-DN. An in-
crease in DA reuptake and reduction of DA packaging into
secretory vesicles may have led to the observed reduction
in extracellular DA of DS-DN. Furthermore, though no
significant differences between the DS- and Ctrl-DN were
observed, extracellular DA of DS-DN was reduced under
glutamate stimulated conditions. The amount of NMDAR1
in neurites was reduced in DS-DN, which could explain the
observed reduction in extracellular DA under glutamate
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stimulated conditions. In addition, DAT1 is important for
basal extracellular levels of DA [22] and the dramatic
change observed in DAT1 could have caused the cause
of the greater difference in DA under basal conditions
compared to glutamate stimulated conditions.

DS is caused by an extra copy of chromosome 21 and
overexpression of the DYRKIa and DSCRI genes encoded
by chromosome 21 are considered to have particularly im-
portant roles in the manifestation of DS symptoms [23, 24].
Overexpression of DYRKIa and DSCRI in mouse brains is
reported to delay differentiation of neuronal precursor cells,
causing reduced neuronal development [25]. In our study,

neurite length and branching as well as development were
reduced in DN derived from DS-SHED. We anticipate that
DYRKIa and DSCRI are involved in this reduced DN
development. Further investigation into the expression of
these genes and the effects of inhibitors [26, 27] and siRNA
in SHED and DN from DS patients are required.

This study used SHED to investigate DS. The stem cell
potential of mesenchymal stem cells is reported to change
with repeated passages [28]. The present study used SHED
of no more than 10 passages. There was no significant dif-
ference in cell proliferation and nestin expression between
SHED of fewer passages (6 passages) and 10 passages
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(Additional file 1: Figure S1 and Additional file 2: Figure S2);
for this reason, passage-related differences were consid-
ered to have a minimal effect on our data. Nevertheless,
to increase the utility of the SHED disease model, it will
be necessary to determine how many passages of SHED
can be used by performing repeated passages and obtain-
ing an accurate understanding of its effect on stem cell
marker expression and cell proliferation capacity.

In the present study, we differentiated SHED into DN
using a 2-step process based on the method by Fujii et
al. [16]; they added brain-derived neurotrophic factor
(BDNF) to differentiation media in the second step, but
we omitted this addition. Aberrant expression of BDNF is
reported in DS patients and mouse models of DS [29-31],
suggesting a relationship between neuronal development
and BDNF in DS. BDNF is secreted extracellularly and me-
diates neuronal development and survival. BDNF serves
autocrine and paracrine functions [32, 33]. If BDNF ex-
hibits abnormal autocrine function in DS, adding BDNF to
the media would conceal DS-SHED pathology. For this rea-
son, BDNF was not added to the media in the present
study. It will be necessary to examine BDNF and BDNF
receptor expression in future studies to elucidate the in-
volvement of BDNF in DN development of DS.

Fujii et al. reported that Ngn2 and Mashl expression
are important as they are activated in the first step of
the process that involves differentiation of SHED into
early stage DN [16]. In the second step, Fujii et al. specu-
lated that BDNF promotes maturation of early stage DN
to DN. When the authors differentiated SHED into DN
and performed immunostaining with MAP2 and Tau anti-
bodies, both Ctrl-DN and DS-DN expressed both proteins
in whole-cells (Additional file 3: Figure S3). Previous im-
munostaining studies utilizing mature neuronal cells re-
vealed that the MAP2 antibody stains dendrites, while the
Tau antibody stains axons [34, 35]. This suggests that the
DN in this study are still developing and have thus not
fully matured. This is a limitation of our study. Further
studies involving the addition of BDNF are needed to
examine synapse formation and other phenomena in ma-
ture DN.

Conclusion

SHED were prepared from a patient with DS and differ-
entiated into DN, revealing abnormal DN development
and function. We predict that this DS patient has abnor-
mal DA signaling, but further investigations, such as ana-
lyzing cognitive function and DA levels in this DS patient,
are necessary. In the future, it will also be necessary to in-
crease the number of patients for analysis to clarify the
disturbance in dopaminergic neurodevelopment impli-
cated in the pathophysiology of DS. SHED, which can be
prepared noninvasively, offers an effective disease model
for this research.
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Additional files

Additional file 1: Figure S1. Cell proliferation of SHED in different
passage. Ctrl- and DS-SHED were cultured for 24 h and 48 h. The number
of cells were counted, and the means + SEMs from three experiments
are shown in the graph. P6; passage 6. P10; passage 10. n.s, not significant.
(PDF 10 kb)

Additional file 2: Figure S2. Nestin expression in different passages of
SHED. Nestin expression in Ctrl- and DS-SHED cells was analyzed with flow
cytometry at different passages. P6; passage 6. P10; passage 10. (PDF 186 kb)

Additional file 3: Figure S3. Distribution of Tau and MAP2 in DN
derived from SHED in this study. Ctrl- and DS-DN were stained with anti-Tau
(1:100; Wako) and anti-MAP2 (1:100; Sigma-Aldrich) antibodies. The cells
were counterstained with DAPI. The distribution of Tau and MAP2 was
observed with Zeiss Axio Imager M2 microscope (Zeiss) equipped with
ApoTome?2 (Zeiss). Scale bar =25 um. (PDF 7737 kb)

Additional file 4: Supplemental methods. Methods for Figure S1 and S2.
(DOCX 30 kb)
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DA: Dopamine; DN: dopaminergic neurons; DS: Down Syndrome;

NMDART1: N-methyl-D-aspartate receptor subunit NR1; SHED: stem cells from
human exfoliated deciduous teeth; TH: tyrosine hydroxylase
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