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Abstract

Rationale: DSP (desmoplakin), the most abundant component
of desmosomes, which maintain the mechanical integrity of
epithelium, is a genome-wide association study–identified genetic
risk locus in human idiopathic pulmonary fibrosis (IPF). Subjects
with IPF express a significantly higher level of DSP than control
subjects.

Objectives: Determine potential mechanisms by which DSP is
regulated in lung fibrosis.

Methods: Matrigel-coated soft and stiff polyacrylamide gels
were made to simulate the stiffness of normal and fibrotic
lungs. Quantitative chromatin immunoprecipitation and
electrophoretic mobility shift assay were used to evaluate
transcription factor binding to the DSP promoter. Targeted DNA
methylation was achieved by CRISPR (clustered regularly
interspaced short palindromic repeats)/dCas9 (deactivated CRISPR-
associated protein-9 nuclease)–mediated Dnmt3A (DNA
methyltransferase 3A) expression under the guidance of sequence-
specific single guide RNAs.

Measurements and Main Results: Stiff matrix promotes DSP
gene expression in both human and rodent lung epithelial cells as
compared with soft matrix. A conserved region in the proximal DSP
promoter is hypermethylated under soft matrix conditions and
becomes hypomethylated/demethylated under stiff matrix
conditions. Demethylation of this conserved DSP promoter
region is associated with transactivation of transcription factor
EGR1 (early growth response protein 1), resulting in EGR1-
dependent DSP overexpression. Targeted DNA methylation by
CRISPR/dCas9/Dnmt3A–mediated epigenome editing blocks EGR1
binding to the DSP promoter and inhibits stiff matrix–induced DSP
overexpression.

Conclusions:DSP is a matrix stiffness–regulated mechanosensitive
gene. CRISPR/dCas9-Dnmt3A–mediated epigenome editing
reverses DSP overexpression by reestablishment of the epigenetic
control of DSP under the mechanically homeostatic environment. It
provides a useful tool for investigations of the functional role of DSP
in the pathogenesis of lung fibrosis.
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Idiopathic pulmonary fibrosis (IPF) is the
most common and severe idiopathic
interstitial pneumonia, with a median
survival of 2 to 3 years after diagnosis (1).
The precise etiology of IPF remains
elusive. Both genetic susceptibility and
environmental toxins are likely associated

with the risk of this disease (2, 3). Evidence
for the genetic etiology of IPF includes
identification of genetic risk loci and specific
risk alleles associated with the disease (4–7).

Genome-wide association studies
(GWASs) have identified the DSP
(desmoplakin) gene, located at

chromosome 6p24, as a significant locus
associated with IPF (5, 7–9). Protein
encoded by the DSP gene is the most
abundant component of desmosomes, a
type of intercellular junction responsible for
maintaining the structural integrity and
mechanical stability of the epithelium. DSP
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links desmosomal plaques to the intermediate
filament network at the intracellular side of
desmosomes. Patients with IPF express
significantly higher levels of DSP in lung
tissues than healthy human control subjects,
and expression of DSP differs most
significantly by genotype at rs2076295,
located in intron 5 of the gene (TT . GT .
GG) (5, 7). The mechanisms by which DSP is
upregulated in IPF are currently unknown.
Understanding the regulation of the DSP
gene in lung fibrosis will shed light on further
investigations of the functional role of DSP in
the pathogenesis of IPF.

Stiffening of the extracellular matrix
(ECM) is a prominent feature of human IPF
and experimental lung fibrosis in animals
(10, 11). Previous studies have shown
that stiff matrix promotes fibrogenic
phenotypes of lung fibroblasts, including
proliferation, myofibroblast differentiation,
resistance to apoptosis, and invasion into

the basement membrane (BM) (11–15).
Unlike fibroblasts, which sense interstitial
ECM stiffness through direct contacts, lung
epithelial cells are separated from the
interstitial ECM by an amorphous, sheet-
like, and thin BM that is compliant in
nature (16). Currently, there is no direct
evidence whether or not lung epithelial
cells are capable of sensing stiffened
interstitial lung ECM or whether the BM
itself stiffens in lung fibrosis. Transmission
electron microscopic studies have shown
that type II alveolar epithelial cells (AEC II)
develop the cytoplasmic processes that
penetrate the BM and extended into the
lung interstitium (17). AEC II may use their
foot processes to directly sense the stiffness
of interstitial lung ECM. It has been reported
that cells can sense a rigid base that is 10 to
20 mm beneath them (18, 19). The threshold
thickness for how deeply cells sense an
underlying “hidden” matrix has been
defined to be 3.4 mm (18). The alveolar BM
has an average thickness of less than 0.1 mm
(17), which is an order of magnitude thinner
than the threshold thickness that cells can
sense. This suggests that alveolar epithelial
cells are capable of sensing the rigidity of
stiffened fibrotic lung ECM despite the
presence of the alveolar BM.

CRISPR (clustered regularly
interspaced short palindromic
repeats)/Cas9 (CRISPR-associated protein-
9 nuclease) is a newly developed, state-of-
the-art gene-editing technology. The
genome-wide, site-specific gene editing is
achieved by single guide RNA (sgRNA)-
mediated DNA targeting followed by Cas9
endonuclease–mediated DNA cleavage
(20). CRISPR/Cas9 technology is highly
versatile and can be repurposed for
a variety of new applications. For example,
mutations made in the catalytic domain of
Cas9 create a deactivated version of Cas9
(dCas9), which preserves the ability of
Cas9 to bind DNA at the site defined by
sgRNA but no longer cut DNA. The
modified version of CRISPR/dCas9 can
be used as a DNA-binding platform for
generating various chimeric versions
of dCas9 fused with transcriptional
activators/repressors for targeted gene
activation/silencing or with epigenetic modifiers
for targeted epigenome editing (21–23).

In this study, we investigated the
potential effects of matrix stiffness on the
regulation of DSP expression in lung
epithelial cells. We developed CRISPR/
dCas9–mediated epigenome editing

to reverse stiff matrix–induced DSP
overexpression by epigenetic reprogramming
of DSP.

Some of the results of these studies have
been previously reported in the form of an
abstract (24).

Methods

Statistical Analysis
Statistical analysis was conducted using
GraphPad Prism 7.02 software. Values of
P ,0.05 were considered significant. More
detailed information is provided in the
online supplement.

Additional detail on the methods is
provided in the online supplement.

Results

Stiff Matrix Promotes DSP/Dsp mRNA
and Protein Expression in Human,
Mouse, and Rat Lung Epithelial Cells
To determine the potential effect of matrix
stiffness on DSP expression, we cultured
human alveolar epithelial adenocarcinoma
cells (A549), primary AEC II isolated from
wild-type C57BL6 mice, transformed mouse
lung epithelial cells, and transformed rat
AEC II on soft (1 kPa) and stiff (20 kPa)
polyacrylamide hydrogel matrix substrates,
the stiffness grades of which were within
the range of normal and fibrotic lungs,
respectively (10, 11). We observed that lung
epithelial cells cultured on stiff matrix
expressed significantly higher levels of
DSP/Dsp mRNA and protein than cells
cultured on soft matrix, regardless
of the origin (human vs. rodent) and
state (normal/primary vs. transformed/
cancerous) of the cells (Figures 1A and 1B).
Stiffness-regulated DSP expression was
confirmed in a newly developed, fibroblast-
derived ECM system (25) (see Figure E1
in the online supplement). These data
suggest that DSP, a GWAS-identified risk
allele of IPF, is a matrix stiffness–regulated
mechanosensitive gene. Our findings provide a
potential mechanism for DSP overexpression
in IPF through matrix stiffening.

Stiff Matrix Promotes DNA
Demethylation in a Conserved 59
Regulatory Region in Human and
Mouse DSP/Dsp Genes
Matrix stiffness regulates both human and
rodent DSP/Dsp expression (Figure 1),

At a Glance Commentary

Scientific Knowledge on the
Subject: DSP (desmoplakin) gene
variants have been associated with
idiopathic pulmonary fibrosis in
multiple genome-wide association
studies. The functional role of
DSP in lung fibrosis remains largely
unknown.

What This Study Adds to the
Field: We demonstrated that matrix
stiffness, a mechanical factor relevant
to lung fibrosis, regulates DSP gene
expression by an epigenetic mechanism
involving alteration of DNA methylation
in the DSP promoter. Targeted DNA
methylation by CRISPR (clustered
regularly interspaced short
palindromic repeats)/dCas9
(deactivated CRISPR-associated
protein-9 nuclease)–mediated
epigenome editing effectively reverses
stiff matrix–induced DSP
overexpression. Our work provides
novel mechanistic insights into the
regulation of DSP by mechanical
signals from the extracellular matrix
and demonstrates that CRISPR/
dCas9–mediated epigenome editing is
a useful tool for further investigations
of the functional role of DSP in lung
fibrogenesis.
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suggesting a common mechanism involved
in mechanoactivation of DSP/Dsp genes.
Analysis of DNA sequences revealed
a poor overall DNA homology (,3%) in
a 20-kb 59 regulatory region upstream of
the translation start site of human and
rodent DSP/Dsp genes. However, a high
level of DNA homology (78%) was found
in a 560-bp region immediately upstream
of the translation start site that includes
untranslated and a portion of translated
exon 1 region (Figure 2A). Furthermore,
this 560-bp conserved region is enriched
by methylation-prone CpG dinucleotides,
and it is the only CpG-rich fragment in
the region of the 20-kb 59 regulatory
sequences, exon 1 and intron 1 (except
that rat Dsp gene contains an additional
small CpG-rich sequence upstream of the
560-bp conserved region) (Figure 2B).
Sodium bisulfite sequencing demonstrated
that a group of CpG islands in the
conserved 560-bp region of human and
mouse DSP/Dsp were steadily methylated
under soft matrix conditions, but
hypomethylated/demethylated under stiff
matrix conditions (Figure 2C). The results
suggest that matrix stiffness regulates
DNA methylation status in the conserved
59 regulatory region of DSP/Dsp genes.
Analysis for the potential binding elements
of transcription factors revealed that
stiffness-sensitive CpG islands are

associated with the binding sites of
transcription factor EGR1 (early growth
response protein 1), C/EBPb (CCAAT/
enhancer-binding protein b), ETF (EGFR
[epidermal growth factor receptor]-
specific transcription factor), and AP-2
(activator protein-2) in the conserved
59 regulatory region (Figure 2C).

Inhibition of DNA Methyltransferase
Activity Promotes Human and Mouse
DSP/Dsp Expression on Soft Matrix
To assess whether matrix stiffness–
dependent DSP/Dsp expression is
regulated by DNA methylation, we
cultured human A549 and primary mouse
AEC II on soft and stiff matrix substrates in
the presence or absence of 5-aza-
29-deoxycytidine, a potent DNA
methyltransferase inhibitor. Inhibition of
DNA methyltransferase activity increased
levels of DSP/Dsp mRNA and protein in
human and mouse lung epithelial cells
cultured on soft matrix, whereas no
significant changes in DSP/Dsp expression
were observed in cells cultured on stiff
matrix (Figures 3A and 3B). Sodium
bisulfite sequencing confirmed DNA
demethylation in the conserved 560-bp
region after 5-aza-29-deoxycytidine
treatment in human and mouse lung
epithelial cells cultured on both soft and
stiff matrix substrates (Figures 3C and 3D).

Together, these data suggest that matrix
stiffness regulates DSP expression by a
mechanism involved in alterations of DNA
methylation.

Stiff Matrix–induced DSP
Overexpression Is Associated with
EGR1-mediated Transactivation of
the DSP Promoter
We cloned the 560-bp DNA fragment of the
conserved, CpG-rich regulatory region in
human DSP and made deletion mutations
to the binding sequences of both proximal
and distal EGR1, C/EBPb, and ETF.
Luciferase-based promoter reporter
assay demonstrated that this conserved
regulatory region had the promoter activity,
and the promoter activity was regulated
by matrix stiffness (Figure 4A). Deletions
of the proximal, the distal, or both
EGR1 binding elements inhibited stiff
matrix–induced promoter activation,
whereas deletions of the C/EBPb- and
the ETF-binding elements did not (Figure
4A). These findings suggest that stiff
matrix activates the DSP promoter and
that activation requires the binding of
transcription factor EGR1 to the DSP
promoter. Quantitative chromatin
immunoprecipitation assay showed that
nuclear EGR1 bindings to the proximal
and the distal EGR1 binding sites (EBSs)
were increased on stiff matrix as compared
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Figure 1. Stiff matrix upregulates DSP (desmoplakin) expression in lung epithelial cells. Human and rodent lung epithelial cells were cultured on soft and
stiff polyacrylamide gels for 48 hours. (A) Relative mRNA levels of DSP were determined by quantitative PCR (qPCR). (B) Protein levels of DSP were
determined by immunoblot. GAPDH was used as reference/loading control. Results are mean6 SD of five independent experiments, each qPCR reaction
performed in triplicate. *P, 0.05. A549 = human alveolar epithelial adenocarcinoma cells; mAECII = mouse type II alveolar epithelial cells; MLE =mouse
lung epithelial cells; RLE-6TN = transformed rat type II alveolar epithelial cells.
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with soft matrix (Figure 4B), suggesting
that transactivation of transcription
factor EGR1 may be involved in stiff
matrix–induced DSP promoter activation.

Next, we evaluated whether DNA
methylation regulates the binding of nuclear
EGR1 to the DSP promoter. Incubation
of nuclear extracts of A549 with biotin-

labeled, unmethylated DSP promoter
probes containing the proximal or distal
EBS showed DNA–protein complex
formation (Figure 4C, left panel), whereas
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Figure 2. Stiff matrix promotes DNA demethylation in a conserved 59 regulatory region in human and mouse DSP/Dsp (desmoplakin) genes. (A) Schematic
diagram of human, mouse, and rat DSP/Dsp genes. The conserved 560-bp DNA sequences (78% homology) are indicated by ovals. Columns represent
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incubation with biotin-labeled, methylated
probes did not (Figure 4C, right panel).
The formation of complexes was dose-
dependently inhibited by addition of
unlabeled (“cold”), unmethylated probes,
demonstrating that the DNA–protein
complexes were EGR1-binding sequence
specific. The presence of EGR1 in the
DNA–protein complexes was further
demonstrated by addition of EGR1-specific
antibody (IgG served as control), which
caused a supershift of DNA–protein
complexes, owing to the formation of
DNA–protein–antibody triple complexes
(Figure 4C, left panel). In contrast, addition
of competitive methylated DNA probes
did not inhibit the formation of DNA–
protein complexes (unmethylated DSP

probes and nuclear EGR1) (Figure 4C, right
panel). Together, these data suggest that
the state of DNA methylation at the EGR
binding sites regulates nuclear EGR1 binding
to the DSP promoter. Methylated EBSs
inhibit, whereas demethylated EBSs promote,
the EGR1 binding to the DSP promoter.

Additional studies showed that matrix
stiffness did not regulate EGR1 expression
or its cytoplasm/nuclear distribution
(Figure 4D). Knockdown of EGR1
expression inhibited stiff matrix–induced
DSP overexpression (Figure 4E).
Collectively, these data suggest that stiff
matrix–induced DSP overexpression
requires EGR1-dependent activation of the
DSP promoter, and that DNA methylation
state at the EGR1 binding sites regulates the

ability of EGR1 binding to and activation of
the DSP promoter.

CRISPR/dCas9-Dnmt3A–mediated
Targeted DNA Methylation at the
EGR1 Binding Sites Reverses Stiff
Matrix–induced DSP Expression
Next, we used state-of-the-art
CRISPR/dCas9 technology for targeted
DNA methylation at the EGR1 binding sites
to determine whether stiff matrix–induced
DSP overexpression occurs through an
alteration of DNA methylation state in the
DSP promoter. We coexpressed dCas9 and
the catalytic domain of Dnmt3A, a de novo
DNA methyltransferase (26, 27), as a fusion
protein and designed specific sgRNAs for
spatially controlled Dnmt3A expression at
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the EGR1 binding sites (Figure 5A). A pilot
study, which aimed to optimize sgRNAs for
targeted DNA methylation, indicated that
gRNA4-prox and gRNA3-dist guided
efficient DNA methylation at the proximal
and distal EBS, respectively (Figure E2). To
facilitate DNA transfection, we generated
lentiviral vectors that encoded dCas9-
BFP-Dnmt3A complementary DNA
(cDNA) (Figure E3), the control dCas9-
BFP-ΔDnmt3A (inactive Dnmt3A) cDNA
(Figure E4), mU6-sgRNA-mCherry
cDNA, and the control mU6-scrambled

sgRNA-mCherry cDNA. Lentivirus-
mediated expression of dCas9-BFP-
Dnmt3A/ΔDnmt3A fusion proteins
and sgRNA-mCherry in A549 cells was
confirmed by immunoblot (Figure 5B).
Confocal fluorescent microscopy showed
that most of infected A549 cells expressed
gRNAs, as indicated by mCherry-positive
signals, but to a lesser extent expressed
dCas9-BFP-Dnmt3A fusion protein (blue
signals) (Figure 5C). This indicates that
only a portion of infected cells had dual
expression of gRNAs-mCherry (red)

and dCas9-BFP-Dnmt3A (blue). To purify
the cells with dual expression at higher
levels, we performed fluorescence-activated
cell sorting and selected a group of cells
with top 45% red color and top 15% blue
color, which together represented top
10.8% of cells with dual expression of
gRNAs and dCas9-Dnmt3A at higher levels
(Figure 5D). We used a similar approach to
obtain the control cells that expressed
scrambled gRNAs and dCas9-ΔDnmt3A
(data not shown). Cells expressing both
dCas9-Dnmt3A and sgRNAs showed a
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significant increase in DNA methylation
at the proximal and distal EBS regions as
compared with cells expressing inactive
dCas9-ΔDnmt3A/sgRNAs (Figure 5E).
gRNA4-prox induced DNA methylation in
the proximal EBS region, which spanned
36 nucleotides (nt), with the methylation
efficiency in CpG islands ranging from
30.0 to 96.7%. gRNA3-dist induced DNA
methylation in the distal EBS region that
spanned 50 nt, with the methylation
efficiency ranging from 50.0% to 96.7%.
(Figures 5E and E2). No significant
increases in DNA methylation were
observed in the control cells expressing
dCas9-ΔDnmt3A/sgRNAs (Figure 5E),
dCas9-Dnmt3A/scrambled sgRNA, and
dCas9-ΔDnmt3A/scrambled sgRNAs
(data not shown). Together, these data
demonstrated that targeted DNA
methylation by sgRNA-mediated sequence-
specific binding and dCas9-Dnmt3A
methyltransferase activity induces highly
efficient DNA methylation at the EGR1
binding sites in the DSP promoter.

To determine the effects of targeted
DSP promoter methylation on matrix
stiffness–regulated DSP expression, we
cultured A549 cells expressing dCas9-
Dnmt3A/sgRNAs and the control cells
expressing dCas9-ΔDnmt3A/sgRNAs on
soft and stiff matrix. Stiff matrix–induced
DSP overexpression was blocked in cells

expressing Dnmt3A/sgRNAs and preserved
in the control cells expressing dCas9-
ΔDnmt3A/sgRNAs (Figures 5F and 5G).
Collectively, these findings demonstrated
that targeted DNA methylation by
CRISPR/dCas9-Dnmt3A–mediated
epigenome editing reverses mechanoinductive
DSP expression.

DSP Intron 5 Harbors an Enhancer
Element at the 39 End
The IPF-associated genetic variant
rs2076295 is located in intron 5 of the DSP
gene (Figure 6A) and is associated with
differential expression of DSP in human
lungs (5). We investigated the potential
mechanisms by which rs2076295 SNP
regulates DSP gene expression. Previous
studies demonstrated that a vast majority of
disease-associated DNA polymorphisms
are mapped within DNA enhancers (28).
Therefore, we first determined whether DSP
intron 5 has the enhancer activity. We
cloned a 955-bp full-length intron 5 of
human DSP gene. DNA sequencing
confirmed that the genotype of rs2076295
we cloned was guanine (G), which
represents the minor variant allele in
humans. Enhancer activity assays
demonstrated that human DSP intron
5 (955G) indeed contained enhancer
activity (Figure 6A). To determine the core
enhancer region in DSP intron 5, we

generated a series of deletion mutants and
found that the core enhancer element was
located in a 50-bp region at the 39 terminus
in intron 5 (Figure 6A). In addition, the
39 terminal 489-bp and 103-bp fragments
showed the enhancer activity, whereas the
389-bp, 289-bp, and 189-bp fragments did
not (Figure 6A). These findings suggest that
an enhancer suppressor may exist upstream
of the 103-bp fragment, likely located in
an 86-bp region at the 59 terminus of
the 189-bp fragment. Interestingly, the
489-bp fragment containing the presumed
suppressor displayed the enhancer activity,
although at a relatively lower level than the
more 39 terminal fragments (103-bp and
50-bp fragments). We speculate that there
might be additional regulatory elements
in the 59 terminus of the 489-bp fragment
(Figure 6A). To determine whether the
minor and major alleles of rs2076295 differ
in their enhancer activity, we substituted
guanine (G) (minor allele) to thymine (T)
(major allele) in intron 5. The enhancer
activity did not significantly differ in
between DSP intron 5 with the minor allele
and with the major allele (Figure 6B).
Furthermore, we did not find that matrix
stiffness regulates the enhancer activity of
the full-length intron 5 (either with the
major or the minor variant allele) or the
core enhancer (R50) region at the 39
terminus (Figure 6C). Collectively, we
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identified that human DSP intron 5 harbors
a DNA enhancer element at the 39 end.
Neither the genetic variants of rs2076295
nor matrix stiffness regulates the enhancer
activity of DSP intron 5.

Discussion

The major findings in this study are that
DSP, a GWAS-identified genetic risk locus
in human subjects with IPF, is a matrix
stiffness–regulated mechanosensitive gene.
This mechanoinductive DSP expression is
preserved in both human and rodent lung
epithelial cells. This is the first report
that links DSP overexpression to matrix
stiffness, a mechanical factor known to be
critical for the development/progression
of lung fibrosis. Wnt/beta-catenin signaling
is activated in epithelial cells in IPF and
is linked to epithelial cell injury and
hyperplasia (29). However, addition of
Wnt3a did not regulate DSP expression in
cultured human and rodent lung epithelial
cells (Figure E5). In an earlier study, it
was found that transforming growth
factor-b1 promotes a modest increase in
expression of DSP mRNA and protein in
cultured airway epithelial cells (30). The
mechanisms by which transforming growth
factor-b1 regulates DSP expression remain
unknown. In this study, we demonstrate
that stiff matrix promotes DSP expression
through induction of demethylation of a
conserved regulatory region in the DSP
promoter, which results in transactivation
of EGR1 and EGR1-dependent DSP
expression. Importantly, we used
CRISPR/dCas9–mediated epigenome
editing and showed that targeted DNA
methylation in the DSP promoter
reestablishes epigenetic control of DSP
and reverses stiff matrix–induced DSP
overexpression.

DNA methylation is known to
be essential for cellular adaptation to
environmental signals (31). Chemical
inhibitors have been used to remodel
aberrant epigenetic landscapes (32). Such
an approach exerts epigenetic inhibition
at the global genome level and is, thus,
nonselective. CRISPR/dCas9–mediated
epigenome editing uses coexpression of
epigenetic modifiers and sgRNA for
targeted epigenetic modifications at a
specific gene locus (21–23, 33). Because
demethylation of the EGR1 binding
sequences is critical for stiff matrix–induced

DSP overexpression, we reasoned that
targeted DNA methylation instructs
a repressive epigenetic state mimicking
the epigenetic control of DSP under the
mechanically homeostatic environment and
reverses matrix stiffness–induced DSP
overexpression. To optimize sgRNAs for
targeted DNA methylation, we designed
nine distinct sgRNAs with different
orientation and distance to the proximal
and distal EGR1 binding sequences. We
found that each of these sgRNAs induces
strong increases in CpG methylation. The
length of methylated DNA sequences
ranges from 20 to 62 nt region. The nearest
methylation site is 13 nt away from gRNA
(gRNA3-dist and gRNA4-prox), and the
farthest site is 99 nt away from gRNA
(gRNA3-prox). All methylation occurs at
the 39 terminus of the protospacer adjacent
motif sequence. Our findings demonstrate
that CRISPR/dCas9-Dnmt3A mediates
highly efficient DNA methylation. The
specificity of DNA methylation depends on
the design of sgRNAs. CRISPR/dCas9-
Dnmt3A/sgRNAs we developed offer a
useful tool for the investigation of the
functional role of DSP in lung fibrogenesis.
In addition, CRISPR-mediated gene editing
has been used to determine the potential
regulatory role of GWAS-identified genetic
variants in cancer-associated gene
expression and function (34).

Many disease-associated SNPs
are enriched in enhancers (28, 35). It is
believed that SNPs may regulate enhancer
activity by alteration of the binding of
transcription factors to enhancers, resulting
in differential gene expression. In this
study, we investigated whether the SNP
at rs2076295 locus may be involved in
enhancer activity and, as such, regulates
differential DSP expression. We discovered
that intron 5 of human DSP, in which the
SNP of rs2076295 resides, indeed contains
DNA enhancer activity. We identified that
the core enhancer element is located in a
50-bp region at the 39 terminus of DSP
intron 5. However, the SNP rs2076295 is
approximately 700 bp upstream of the core
enhancer region. Furthermore, we found
no significant difference in the enhancer
activity between intron 5 with the major
variant allele (T) and with the minor
variant allele (G) under both soft and stiff
matrix conditions. Thus, our data do not
support that the rs2076295 genetic variants
regulate DSP expression by alteration of the
enhancer activity of intron 5. A major

limitation of our enhancer studies was that
the findings were made from enhancer
reporter-based in vitro studies. Nonetheless,
data obtained in the current study could
provide useful information for future
functional characterization of the enhancer
in DSP intron 5 using transgenic strategies
(e.g., bacterial artificial chromosome and/or
animal transgenesis) in the endogenous
context. In addition, it is noteworthy that
rs2076295 contains a binding site for
transcription factor PU.1, which has been
found in many functional enhancers (36).
Previous studies also suggest that PU.1
plays an important role in asthmatic airway
remodeling, macrophage activation, and
alternative splicing of target genes (37, 38).
Whether PU.1 is involved in the regulation
of DSP remains to be determined.

IPF lungs have increased DSP
expression relative to the control lungs, and
expression of DSP decreases with age in the
control lungs but not in IPF lungs (5, 7).
Interestingly, the risk minor allele (G) of
rs2076295 is associated with decreased,
rather than increased, whole-lung
expression of DSP. The current study
provides a novel potential mechanism for
DSP overexpression in IPF, but it does not
explain an association of rs2076295 with
decreased DSP expression. Hypothetically,
if decreased DSP expression due to the risk
allele of rs2076295 is causatively linked to
the pathogenesis of IPF, increased DSP
expression might be a protective response
to IPF. Alternatively, both decreased and
increased DSP expression could be
detrimental. For instance, a lower-than-
baseline level of DSP might render type I
alveolar epithelial cells more vulnerable to
lung injury, whereas stiff matrix–induced
overexpression of DSP in the fibrotic phase
might impair the repair of injured lung
epithelium. The functional role of aberrant
DSP expression in IPF currently remains
unknown. It has been shown that ectopic
expression of DSP in non–small-cell lung
cancer cell line H157 cells inhibits cell
proliferation, anchorage-independent
growth, migration, and invasion (39).
Similarly, we observed that suppression of
DSP expression, either by CRISPR/dCas9-
Dnmt3A–mediated targeted DSP promoter
methylation or by siRNA-mediated gene
knockdown, significantly increased A549
cell proliferation (Figures E6B and E6C)
and migration (Figures E7A and E7B) on
stiff matrix. Furthermore, overexpression
of DSP significantly inhibited A549 cell
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proliferation on soft matrix (Figure E6E)
but had no effects on cell proliferation
(Figure E6D) and migration on stiff matrix
(Figure E7C), presumably because DSP
expression was already upregulated on stiff
matrix (plastic surfaces). Future studies will
test mechanoinductive DSP expression in
the regulation of primary lung epithelial
cell phenotype and function in the context
of lung fibrosis and will elucidate whether
DSP overexpression promotes or protects
against lung fibrosis.

Genome editing provides an
exciting opportunity for treatment of severe
forms of human disease (40, 41). The
efficient epigenome editing for reversing
mechanoinductive DSP expression holds
promise, both as a tool for the functional
study and as a potential novel approach for
fibrosis therapy. However, CRISPR/Cas9
gene editing can generate unwanted

off-target effects that may confound
research experiments and also have
potential implications for therapeutic uses.
Various strategies have been developed to
substantially reduce genome-wide off-target
effects of the commonly used Cas9 nuclease
(SpCas9). For example, hyper-accurate
Cas9 variant (HypaCas9) has demonstrated
high genome-wide specificity without
compromising on-target efficiency in
human cells (42). New CRISPR methods
and reagents along with whole-genome
sequencing will be considered in the
following functional studies.

In summary, DSP as a major
desmosomal protein plays a critical role
in the maintenance of epithelial barrier
function and the regulation of normal
wound healing (43, 44). DSP has been
shown to regulate proliferation, migration,
and differentiation of cancer cells (45–48).

We speculate that aberrant DSP expression
in IPF may not only represent a robust
and persistent epithelial response to
chronic/repetitive lung injury but also
actively participate in aberrant lung repair
and/or the restoration of lung epithelial
function. Our work provides novel
mechanistic insights into regulation of DSP
overproduction by mechanical signals from
the stiffened matrix. We have developed
CRISPR/dCas9–mediated epigenome
editing for efficient reversion of matrix
stiffness–dependent DSP expression.
Future studies will investigate functional
significance of DSP in the pathogenesis of
lung fibrosis and determine whether the
DSP risk allele alters disease progression
and survival in human IPF. n

Author disclosures are available with the text
of this article at www.atsjournals.org.
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