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ACE2 and pACE2: A Pair of Aces for Pulmonary Arterial
Hypertension Treatment?

Pulmonary arterial hypertension (PAH) is primarily a consequence
of pulmonary arterial remodeling and vasoconstriction. Limited
therapeutic successes coupled with complex disease etiology have
been major impediments to the successful control and treatment
of PAH. Therefore, this field needs innovative concepts and
approaches for PAH therapy. It is in this regard that the paper in this
issue of the Journal by Zhang and colleagues (pp. 509–520) on
ACE2 phosphorylation and stability is extremely relevant (1).

ACE2 (angiotensin-converting enzyme 2), a carboxymonopeptidase,
is a member of the vasoprotective axis of the renin–angiotensin
system (RAS). Although both ACE2 and its homolog, ACE, are
endothelial-bound enzymes and share 42% identity, ACE2 is
insensitive to classical ACE inhibitors, is localized on the X
chromosome, and acts essentially as an antagonist of vasoactive
angiotensin II by catalyzing its conversion to Ang-(1–7)
(angiotensin-[1–7]) (2). Therefore, ACE2/Ang-(1–7), along with
its widely accepted receptor, Mas, plays an important role in
maintaining normal cardiopulmonary homeostasis by balancing the
deleterious ACE/Ang II/Ang II type I receptor axis. Identification
of ACE2 as a functional receptor for coronavirus, implicating it
in severe acute respiratory syndrome (SARS) during the SARS
epidemic, was the first indication that ACE2 plays a role in lung
diseases (3). Since then, an abundance of evidence has supported
the fundamental concept that lung ACE2 is protective against
a variety of pulmonary diseases, including pulmonary fibrosis,
acute lung injury, acute respiratory distress syndrome, pulmonary
hypertension (PH), asthma, and chronic obstructive pulmonary
disease (4, 5).

Because ACE2 has been shown to be decreased in the plasma of
patients with PAH, several attempts have been made in animal
models to increase ACE2 to provide proof of concept and evidence
of translational value. Recombinant ACE2, pulmonary overexpression
of ACE2, and the use of small-molecule ACE2 activators all
attenuated PH pathophysiology (6). Furthermore, an innovative
approach of orally feeding ACE2 in transplastomic preparations
provided encouraging outcomes (7). However, all of these approaches
have the inherent problem of a lack of ACE2 stability in vivo.

Zhang and colleagues (1) have discovered a novel mechanism-
based concept to circumvent this problem. Their study showed that
phosphorylation of Ser-680, located in the extracellular domain, is
crucial to enhance ACE2 stability and hence expression of this
enzyme. They demonstrate that AMPK (AMP-activated protein
kinase) is the responsible enzyme in ACE2/Ser-680 phosphorylation
leading to increased production of Ang-(1–7) and eNOS (endothelial
nitric oxide synthase)-derived NO bioavailability. With the use of
genetically modified mice and a combination of in vitro and in vivo
experiments, they concluded that AMPK phosphorylation of
ACE2/Ser-680–mediated stability could be due to inhibition of
ubiquitin-related proteasomal degradation. The downstream
signaling mechanism for enhanced NO production is primarily
proposed to involve Ang-(1–7), Mas, and a cascade of traditional
genes relevant to endothelial function. Thus, they concluded
that activation of the AMPK/pACE2 axis counteracted the
vasodeleterious axis of the RAS to attenuate PH pathophysiology.
Finally, validation of the relevance of AMPK/pACE2 axis was
provided by their data demonstrating decreased levels of pAMPK,
pACE2, and ACE2 in lung biopsies from patients with idiopathic
PAH. Therefore, this study by Zhang and colleagues not only
reinforces the importance of AMPK and the ACE2/Ang-(1–7) axis
for PH therapy but also provides an innovative way to address it.
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This study also invites consideration of multiple issues related
to the mechanism by which ACE2 produces its beneficial effects.
PAH has traditionally been considered a disease of the pulmonary
vasculature, which may have impeded progress toward identifying
novel targets for drug development and therapy for this devastating
disease. Targeting ACE2 and fully understanding its actions on the
cardiopulmonary system are particularly relevant in this regard.
Addressing the following issues could be crucial for translating the
observations of Zhang and colleagues and other investigators
regarding ACE2 to therapies for PAH:

1. ACE2 is a multifunctional enzyme. Thus, are all actions of
ACE2 a result of its enzymatic activity to convert Ang II to Ang-
(1–7)? There is strong evidence in support of this; however, other
vasoactive targets for ACE2, such as des-Arg-bradykinin, which
is involved in lung inflammation, should be considered (8).
Furthermore, nonenzymatic actions of ACE2 directly or via
remote organs should be kept in mind in view of its significant
C-terminal homology with collectrin, which is involved in the
transport of neutral amino acids (9) (e.g., arginine, the
precursor of NO).

2. ACE2 is cleaved by ADAM17 and other sheddases in the lungs
and other tissues, and circulates as soluble ACE2 (sACE2), which
is enzymatically active (10). It remains to be seen whether sACE2
is phosphorylated or whether phosphorylation occurs in the
circulation after its cleavage from the membrane. This would have
important implications for its stability, half-life, and bioavailability.

3. Extrapulmonary expression of ACE2 (particularly in the gut)
and its indirect impact on the lungs should be considered. The
small intestine is the most abundant source of ACE2 and
has been linked with regulation of antimicrobial peptides
and microbiota (4, 11). Our studies have shown profound
differences in gut microbiota in ACE2 knockin mice (12).
Because the gut is the biggest immune organ and is highly
innervated, it is reasonable to infer that gut ACE2-mediated
effects on immune and neural systems might impact pulmonary
functions. Oral delivery of ACE2 bioencapsulated in plant cells
further suggests the role of a potential gut–lung communication (7).

4. Females have a three to four times higher risk of PAH, even
though ACE2 is an X-linked enzyme. This is particularly
intriguing in view of some evidence that estrogen positively
influences ACE2 (13). This paradox needs to be resolved.
Plasma levels of ACE2, pACE2, and sACE2 in pre- and
postmenopausal females may shed some light on this.

5. Lung-selective ACE2 delivery to increase local activity of the
vasoprotective axis of the RAS would be ideal to circumvent
unpredictable immunogenicity and functional modifications
in circulation. A chemically modified ACE2 mRNA delivered
via lipid nanoparticles offers such an alternative for future
consideration (14).

This study by Zhang and colleagues adds important new data to
support the overall concept that an increase in the vasoprotective
axis of the RAS is beneficial in PAH and indeed ACE2 stability. The
AMPK-pACE2 pathway could be the basis for moving forward.
Gaining a better understanding of the mechanism of ACE2, the role
of sACE2, and the gut–lung axis would certainly be an important

next step in developing novel therapeutic strategies involving this
molecule. n
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