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“Complete streets” policies require transportation engineers to make provisions for pedestrians, bicyclists, and
mass transit users. These policies maymake bicycling safer for individual cyclists while increasing the overall num-
ber of bicycle fatalities if more people cycle due to improved infrastructure. We merged county-level records of
complete streets policies with Fatality Analysis Reporting System counts of cyclist fatalities occurring between Jan-
uary 2000 and December 2015. Because comprehensive county-level estimates of numbers of cyclists were not
available, we used bicycle commuter estimates from the American Community Survey and the US Census as a
proxy for the cycling population and limited analysis to 183 counties (accounting for over half of the US population)
for which cycle commuting estimates were consistently nonzero. We used G-computation to estimate the effect of
complete streets policies on overall numbers of cyclist fatalities while also accounting for potential policy effects on
the size of the cycling population. Over a period of 16 years, 5,254 cyclists died in these counties, representing 34
fatalities per 100,000 cyclist-years. We estimated that complete streets policies made cycling safer, averting 0.6
fatalities per 100,000 cyclist-years (95% confidence interval:−1.0,−0.3) by encouraging a 2.4% increase in cycling
but producing only a 0.7% increase in cyclist fatalities. G-computation is a useful tool for understanding the impact
of policy on risk and exposure.

bicycling; built environment; complete streets; G-computation; injury; intervention; traffic fatalities; transportation
safety

Abbreviations: ACS, American Community Survey; CI, confidence interval; FARS, Fatality Analysis Reporting System; RD, rate
difference.

Bicycling is an economically efficient form of active trans-
portation that promotes physical and mental health (1, 2). How-
ever, many American adults choose not to ride bicycles, owing
to safety concerns (3, 4). Modifying the built environment
to promote safe cycling—for example, by creating bike lanes
(5, 6)—may encourage more cycling and prevent injury to cy-
clists. The dual health benefits of activity promotion and injury
reduction are a key premise underlying “complete streets”
initiatives (7). Complete streets initiatives are legislation, resolu-
tions, internal memos, or executive orders which direct trans-
portation planners to consider the safety of nonmotorized road
users, including bicyclists, when planning street layouts (8).
However, because improvements in bicycling safety may induce
more people to ride bicycles more often, such policies may

decrease the risk per cyclist while elevating the burden of cyclist
fatalities by increasing the size of the population at risk (2).

The fact that complete streets policies may affect both the
numerator and denominator of an injury rate poses a challenge
for evaluating the public health consequences of such policies.
Conventional policy evaluation techniques, such as difference-
in-differences analysis, can estimate the change in the expected
fatality count resulting from implementing a policy. However,
these estimates may incorrectly assume that the size of the pop-
ulation at risk was not affected by the policy (1). Difference-in-
differences analyses estimate the direct impact of policies on
the size of the population at risk but do not account for changes
in numbers of fatalities due to a change in the size of the popula-
tion within the same analysis.
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Epidemiologic methods developed to explicitly estimate out-
comes or time-varying covariates that would have been
observed had exposure been different may be helpful in this
context. In particular, methods that use substitution estimators
such as the G-computation algorithm (9) explicitly simulate the
values of time-varying variables, including the denominator
(e.g., size of the cycling population) and numerator (e.g., num-
ber of cyclist fatalities) that would be observed under counter-
factual policy regimes (e.g., how many residents would have
reported cycling in a county with a policy had that county actu-
ally not had a policy), thereby estimating the effect of both the
activity promotion and injury prevention policy simultaneously.
Such explicit counterfactual outcomes can make interpretation
of results more intuitive (10).

In this study, we estimated the simultaneous impact of complete
streets policies on the numbers of cyclists riding and the numbers
of cyclists killed in traffic collisions using G-computation. Our
work quantifies the substantive value of complete streets poli-
cies while providing a model for future use of G-computation
in investigations of policy impact.

METHODS

Overview

Figure 1 shows the theorized causal relationships between
complete streets policies in some geographic unit, the number
of bicyclists in that unit, and the number of bicyclist fatalities
occurring in that unit. The fatality rate is the number of fatali-
ties divided by the number of bicyclists over a set period of
time; thus, estimating complete streets policies’ impact on safety
requires estimating changes to both the numerator and the
denominator of the rate.

Data

We used cyclist fatality records from the Fatality Analysis
Reporting System (FARS) (11), a census of collisions occurring on
US public roadways resulting in 1 or more fatalities (12). FARS
data are collected for surveillance and research purposes and have
been used extensively for scholarly analyses of driver, vehicle, and
environmental influences on motor vehicle fatalities (13–16). Each
incident listed in FARS includes 1) the date on which the collision
occurred; 2) the location where the collision occurred, including a

code for the county; and 3) the number of fatally injured people,
categorized by type of road user (driver, passenger, cyclist,
pedestrian, etc.). Using FARS records, we identified the number
of cyclists killed in motor vehicle collisions in each county in
the United States during the years 2000–2015. Though FARS
includes records of incidents in which child cyclists were killed,
we focused on adult cyclists for this analysis because no esti-
mates of child cycling prevalence were available (see below for
details on cycling prevalence estimates). We were unable to
examine the impact of complete streets policies on injury
severity (including fatal vs. nonfatal injuries) using FARS
data, because FARS includes only incidents resulting in a
fatality. We did not limit our analysis to collisions occur-
ring on streets that had received improvements, because im-
provements encourage ridership (potentially resulting in
fatalities) on unimproved streets in order to access the improved
infrastructure (1).

We used records from Smart Growth America to identify the
year in which the first complete streets policy became active in
a state or county during the years 1971–2015 (17, 18). Smart
Growth America is a 501(c)(3) organization focused on mixed
residential and commercial development, sustainable trans-
portation options, and other development principles (19). These
records considered any legislation, executive order, resolution,
tax, or Department of Transportation policy statement requiring
planners to consider all street users to constitute a complete
streets policy. We conducted this analysis with counties as the
jurisdiction of interest; when state-level policies were implemen-
ted, we considered all counties in that state to have a policy. The
Smart Growth America database also has records of policies en-
acted at the city or regional level; as detailed in the Discussion
section, we did not consider the effects of these policies in this
analysis, because no consistently assessed data on the prevalence
of cyclingwere available for cities or regions.We did not analyze
updates to existing policies, because updates were rare; we con-
sider potential consequences of this decision in theDiscussion.

There is substantial spatiotemporal variation in the prevalence
of cycling in theUnited States (5). To estimate the effect of com-
plete streets policies on numbers of cyclists at risk of fatality, we
needed an estimate of the cycling population in each jurisdiction
of interest in each year. Unfortunately, there were no validated
estimates of the total number of cyclists in each county during
this time period. As proxy estimates of the cycling population in
each county, we used the 2000 US Census and 2007–2015
AmericanCommunity Survey (ACS) 1-year estimates of the num-
bers of bicycle commuters in each county. Both the USCensus
and the ACS ask respondents who indicate that they worked
for pay in the last week to specify the mode of travel used for the
longest commuting distance to work during that time period.We
selected 1-year ACS estimates rather than 5-year ACS estimates
to avoid oversmoothing variation in cycle commuter counts
between years. Because ACS 1-year estimates were not avail-
able for 2001–2006, we linearly interpolated estimated num-
bers of cycle commuters in each year from the 2000 estimate
and the 2007 estimate.

Because cycling was rare in many counties, we limited anal-
ysis to the 183 counties where the margin of error for the ACS
count of cycle commuters excluded the possibility of zero (no
cycle commuters) for all years from 2007 to 2015 (Table 1). As
of the 2000 US Census, 52% of the total US population lived in

Fatalitiest−1

Policyt−1 Bicyclistst−1 Policyt Bicyclistst
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Figure 1. Hypothesized causal relationships between “complete
streets” policies, numbers of bicyclists, and numbers of bicyclist fatali-
ties. The count of bicyclists and the presence of a complete streets pol-
icy in a county are independent predictors of the number of fatalities
among bicyclists in that county. The number of bicyclists predicts both
the presence of a policy and the number of bicyclists in the next year,
as does the presence of a complete streets policy. t, current year; t − 1,
prior year.
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these counties, which include the principal county in most of
the country’smost populousmetropolitan areas. Figure 2 shows
a 2010map of the United States; counties included in the analy-
sis are indicated in gray.

Because Pucher et al. (20) found that 53% of cycle trips in
urban areas are commuting trips and nearly all of the counties we
analyzed are substantially urbanized, we estimated the total num-
ber of cyclists in each county-year period to be double the num-
ber of cycle commuters. Web Figure 1 (available at https://
academic.oup.com/aje) shows estimated cycle counts for 5 ran-
domly selected counties over the 16-year period of interest.

Primary analysis

In order to assess the joint impact of complete streets poli-
cies on the size of the bicyclist population and the number of

bicyclist fatalities, we developed a model using the parametric
G-formula (9, 21). The parametric G-formula has been described
in detail elsewhere (22–24). Briefly, the approach consists
of estimating an intervention-specific mean by simulating from
parametric models for the final outcome of interest and any
time-varying covariates affected by prior treatment, poten-
tially including intervention status (see Web Appendix 1
(Web Tables 1 and 2) for details).

For this analysis, we used county and year fixed effects to
control for time-invariant confounding by county and for
county-invariant secular trends by year. We were concerned,
however, that the size of the cycling population would be a pre-
dictor of passing a policy andwould also be affected by the pres-
ence of a policy (25). We therefore treated the cyclist count as a
time-varying covariate affected by the presence of a complete
streets policy, taking advantage of G-computation’s ability to

Table 1. Characteristics of the 183 Counties for Which the Prevalence of Bicycle CommutingWas Definitively Greater Than Zero in All American
Community Survey 1-Year Estimates, United States, 2000–2015

Characteristic Year(s) Minimum Median (IQR) Maximum

Population, no. of persons 2000 91,861a 558,522 (349,048–880,921) 9,538,191b

Population growth, change in no. of persons 2000–2015 −292,451c 62,596 (34,845–119,596) 1,021,131d

Estimated no. of cyclists 2000 204e 1,758 (982–4,123) 48,030f

Increase in no. of cyclists 2000–2015 246e 2,031 (1,217–4,732) 58,395f

Abbreviation: IQR, interquartile range.
a CacheCounty, Utah.
b Los Angeles County, California.
c Wayne County, Michigan.
d Harris County, Texas.
e JohnsonCounty, Kansas.
f Stanislaus County, California.

0 500 1,000 km

N

Figure 2. Map of all counties in the continental United States in 2010, highlighting in gray all counties assumed to have bicycle commuters—that
is, those in which American Community Survey estimates with a margin of error excluded the possibility that there were no county residents who
commuted by bicycle. The highlighted counties were included in this analysis; all others were excluded.
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account for such effects (22). Specifically, we assumed that the
cycling population at time t was determined by county-level
fixed effects, policies in place at time t, a secular time trend, and
the number of cyclists at time t− 1:

= β + β + β
+ β + ε( − )

Cyclist Count County Policy Year

Cyclist Count .
ij i ij j

i j

0 2 3

4 1

Because complete streets policies target infrastructure changes
rather than behavior changes, we hypothesized that increases in
cycling and decreases in fatalities ultimately caused by the
policies would not occur immediately after a policy was im-
plemented. To account for this delay, our models assumed a
2-year implementation lag—we coded the policy variable as
true if a complete streets policy had been in place for at least
2 years. We based the 2-year lag time on prior evidence indi-
cating that a decrease in risk following allocation of funding for
Safe Routes to School programs began after 2 years (26); how-
ever, we also tested this assumption using sensitivity analyses
(detailed below).

Next, we fitted the following model to predict fatalities in each
county, assuming a Poisson distribution for the outcome error:

( ) = β + β ( )
+ β + β + ε

log Fatalities County log Cyclist Count

Policy Year ,
ij i ij

ij j

0 1

2 3

where Countyi is a dummy variable indicating the ith county,
Cyclist Countij represents the estimated cyclist count in county
i for year j, Policyij is a dummy variable indicating the presence
of a complete streets policy in county i for year j (lagged 2 years
to allow for infrastructure implementation of the policy change
as in the cyclist count model), and Yearj indicates the jth year.
Parameters are interpretable as follows: β0 represents a county-
level fixed effect accounting for all unmeasured time-fixed
county-level confounding. β1 represents the logarithm of the
multiplicative increase in fatality risk indicated by an additional
cyclist. We estimated β1 rather than assume it to be invariant
(i.e., an offset in the model) because of the “safety-in-numbers”
phenomenon suggesting that the per-cyclist risk decreases as the
number of cyclists increases (27–29). β2 represents the esti-
mated increase in the number of fatalities occurring per year
after the complete streets policy was passed as compared with
the prior period. β3 represents the cumulative change in fatality
risk from time-varying factors not related to complete streets
policies, such as changes in driver and cyclist education, change
in the prevalence of helmet-wearing, etc. We used conventional
regression diagnostics to validate the predictive accuracy of this
model. We tested a similar model including an interaction term
between the presence of a policy and change over time, but
model fit was not improved for this model (likelihood ratio test:
P> 0.05).Model selection formodel-based substitution estima-
tors, including G-computation, is an area of active research
(30–32).

Using these models, we simulated observations of cyclists and
cyclist fatalities under 3 scenarios: 1) always treated (in which
policy was always set to 1 for all counties), 2) never treated (in
which policy was always set to 0 for all counties), and 3) natural
course (in which the policy value was set at true if and only if it
was true in the observed data). All simulations were conducted

by sampling with replacement from the counties available for
analysis, and point estimates and 95% confidence intervals
were estimated from 5,000 simulations.

Secondary and sensitivity analyses

Though we believe that G-computation is a more appropri-
ate technique for a context where the population at risk may
be affected by treatment, we also conducted a conventional
difference-in-differences analysis of the same data for com-
parison. This analysis is presented in Web Appendix 2 (Web
Table 3); briefly, difference-in-differences analysis uses the
observed data in units that received treatment at different times
to estimate what would have been observed had those units
received alternate treatment patterns.

We conducted 2 sensitivity analyses. First, to test robustness
to the assumption of a 2-year lag, we reran the analyses after lag-
ging the policy value 0 years and 5 years. Second, to test robust-
ness to the county selection criteria, we reran the analyses with
more stringent selection criteria (limiting counties to the 89
counties reporting more than 1,000 cycle commuters in 2000) and
more lax selection criteria (analyzing the 242 counties reporting
more than zero cycle commuters for every year of follow-up).

Software

We used Stata 13MP (StataCorp LLC, College Station, Texas)
to compile the FARS data from 2000–2014 and to code the years
of implementation of complete streets policies from Smart Growth
America records. In all subsequent analyses, including incorpo-
ration of FARS data for 2015, all US Census and ACS data,
and the G-computation analysis, we used R forWindows, ver-
sion 3.3.1 (R Foundation for Statistical Computing, Vienna,
Austria).

RESULTS

Policies, cyclists, and fatalities

Only 26 (14%) of the 183 counties in this analysis had com-
plete streets policies in place in 1998. Over 16 years of observa-
tion, complete streets policies were implemented at the county
or state level for all but 22 counties, meaning that a first policy
was implemented in 74% of counties we observed (Web Fig-
ure 2). No policies were repealed or removed over this time
period.

Between 2000 and 2015, there were 5,235 collisions between
motor vehicles and cyclists that resulted in 5,254 adult cyclist
fatalities recorded in FARS in study counties, corresponding to
a rate of about 34 fatalities per 100,000 estimated adult cyclist-
years. Yearly fatality totals ranged from as low as 265 (in 2000)
to as high as 421 (in 2015) and showed a gradual rising trend
(Figure 3).

G-computation results

“Natural course” simulations, where counties were assigned
policies in the same year (subject to the 2-year lag) as that in
which the counties actually enacted policies in real life, replicated
observed data closely (Table 2). Cyclist counts on a per-year basis
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were replicated with high fidelity (r = 0.91; Figure 4), and the
observed fatality and cyclist totals consistently fell within the
95% confidence intervals for both total estimated number of
cyclists and number of cyclist fatalities.

Observed data and results from all 3 simulation scenarios are
presented in Table 2. Broadly, we estimated that the actual imple-
mentation of a complete streets policy resulted in a 2.4% increase
in the cycling population over what would have been seen had no
counties implemented such policies, and we estimated that there
would have been a 6% increase in cyclist-years overall had all
counties implemented complete streets policies for the full period
of follow-up. Similarly, we estimated that complete streets poli-
cies prevented 0.6 fatalities per 100,000 cyclist-years (95% con-
fidence interval (CI): −1.0, −0.3), or about a 2% decrease from
the fatality rate that would have been observed had there been
no complete streets policies. The potential causal effect estimate
(i.e., the always-treated estimate minus the never-treated esti-
mate) suggested that complete streets policies could have pre-
vented 2.8 fatalities per 100,000 cyclist-years (95% CI: 2.0,
3.7) had such policies been implemented in all counties for all
16 years.

The practical cumulative impact of the countervailing 2%
increase in cyclists and 0.6% reduction in risk of a fatal crash
per 100,000 cyclist-years was a net average increase of 2.3
cyclist deaths per year, or 35 cyclist deaths in total.

Difference-in-differences and sensitivity analyses

From the difference-in-differences analysis, we estimated that
on average complete streets policies could have prevented 1.2
cyclist fatalities per 100,000 cyclist-years (95% CI: −2.0, 4.5)
had they been applied in all counties in the study in 2000. This
analysis assumed that the size of the cycling population was a
time-dependent covariate that was not affected by the presence
of a complete streets policy. More details on the difference-in-
differences analysis are available inWebAppendix 2.

Analyses using no lag rather than a 2-year lag showed a
slightly stronger estimated protective effect of complete streets
policies (natural course vs. never treated: rate difference (RD) =
−2.8 fatalities per 100,000 cyclist-years (95% CI: −2.0, −3.6);
always treated vs. never treated: RD = −5.5 fatalities per 100,000
cyclist-years (95% CI: −4.1, −6.9); Web Table 1). Analyses
using a 5-year lag showed policies decreasing ridership while
substantially increasing fatalities, resulting in an overall elevation
of fatality risk (natural course vs. never treated: RD = 2.0 fatalities
per 100,000 cyclist-years (95% CI: 1.4, 2.7); always treated vs.
never treated: RD = 6.6 fatalities per 100,000 cyclist-years (95%
CI: 5.4, 7.9);Web Table 2).

Analyses limited to the 89 counties with more than 1,000
cycle commuters in 2000 showed slightly stronger protective
effect estimates than were found in the main analysis (natural
course vs. never treated: RD = −1.2 fatalities per 100,000
cyclist-years (95% CI: −0.6, −1.7); always treated vs. never
treated: RD = −2.9 fatalities per 100,000 cyclist-years (95%
CI:−1.8,−4.0)). Analyses limited to the 242 counties wherein
cycle commuter counts were present and greater than zero
throughout the period of follow-up showed slightly stron-
ger protective effect estimates than were found in the main
analysis (natural course vs. never treated: RD = −1.0 fatalities
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Figure 3. Observed yearly count of the total numbers of cyclists (in
thousands) and cyclist fatalities in 183 counties in the United States,
2000–2015.

Table 2. Estimates of the Effect of “Complete Streets” Policies on Numbers of Bicyclist Fatalities in 183 Counties,
United States, 2000–2015

Scenario
No. of
Cyclist-
Years

Difference
in No. of
Cyclistsa

No. of
Cyclist

Fatalities

Difference
in No. of
Fatalitiesa

No. of Cyclist
Fatalities per

100,000
Cyclist-Years

RDa 95%CI
for RDb

Observed data 15,494,330 5,254 33.9

Never treatedc 15,012,706 5,211 34.7

Natural coursed 15,379,640 366, 934 5,246 35 34.1 −0.6 −1.0,−0.3

Always treatede 16,172,431 1,159,725 5,164 −47 31.9 −2.8 −3.7,−2.0

Abbreviations: CI, confidence interval; RD, rate difference.
a Difference as compared with the never-treated scenario.
b Nonparametric bootstrap from 5,000 simulations of each scenario.
c No counties received complete streets policies.
d Counties received complete streets policies for each year if they had a policy in that year in real life.
e All counties received complete streets policies at the start of follow-up.

Am J Epidemiol. 2018;187(9):2038–2045

2042 Mooney et al.



per 100,000 cyclist-years (95% CI: −0.7, −1.3); always treated
vs. never treated: RD = −2.8 fatalities per 100,000 cyclist-years
(95%CI:−2.1,−3.5)).

DISCUSSION

In this study, we explored the impact of complete streets poli-
cies on fatal crash rates per 100,000 cyclist-years by estimating
policy effects on both bicycle ridership and fatalities using
G-computation. We found implementation of complete streets
policies to be associated with a substantial increase in the cycling
population and a smaller increase in the number of cyclist fatalities.
Over a period of 16 years, complete streets policies did not appear
to prevent cyclist fatalities at a population level but did appear to
decrease per-cyclist risk by about 2%, or 0.6 fatalities per 100,000
cyclist-years.

This 2% reduction in bicycle fatality risk was consistent with
the generally limited scope of infrastructure improvements ex-
pected under these policies. One prior analysis indicated that a
statewide complete streets policy reduced Florida’s pedestrian
fatality rate by about 0.5% (33) more than would have been ex-
pected by time trends alone. While prior research on cyclist
infrastructure has broadly shown that cyclist-friendly environ-
mental modifications substantially protect against cyclist injury
(1, 34, 35), many cyclist injuries continue to occur on streets
that have not received improvements (35). Our findings are also
consistent with the safety-in-numbers effect frequently described
in the transportation safety literature, wherein, within a given spa-
tial unit, there are fewer pedestrian or cyclist injuries on a per-
pedestrian or per-cyclist basis where there are more pedestrians
or cyclists (27, 36, 37). Future research should focus on the role

of microscale factors in cyclist injury (e.g., the safety impacts
of adding protected cycling lanes or the transient risk elevation
posed by road construction) after complete streets policy imple-
mentation to determine which improvements increase safety,
potentially leveraging archived street imagery to explore these
factors on a national scale (38).

Our analysis used G-computation to estimate the impact of
complete streets policies on both the numerator and denomi-
nator of the cyclist fatality rate (23, 39). G-computation is a
“substitution estimator” for the parametric G-formula, mean-
ing that the estimate for the final causal effect is determined by
simulating intermediate values and outcomes from fitted mod-
els (40, 41). To the best of our knowledge, our work illustrates
a novel use of G-computation for policy analyses in which the
policy might modify the per-unit risk as well as the size of the
population at risk. In future analyses, investigatorsmight explore
the use of targeted maximum likelihood estimation (32, 42), an
alternate substitution estimator which can support data-adaptive
procedures to simulate counterfactuals, which might allow them
to better account for potential time-varying determinants of the
size of the population at risk.

While the novel use of causal inference techniques, a reli-
able and well-validated outcome measure, and a relatively
long (16-year) period of follow-up constitute strengths of
this analysis, our results must be considered in light of sev-
eral important limitations. The primary limitation is that we
did not have access to detailed person-time cycling data (i.e.,
the true time at risk) in each county. The only nationally
available county-level cyclist data we had access to were
numbers of people who reported cycling to work. However,
since commuting accounts for only a portion of cycling time,
our use of a constant estimate that half of people’s cycling
time was spent commuting embedded the assumption that all
effects of policies and time trends on cycling to work were
proportionate to the true amount of person-time spent on bicycles
within the county’s public roadways. Some cross-sectional stud-
ies have suggested that bike commuting is more strongly associ-
ated with infrastructure than is recreational cycling (43). If this
cross-sectional association implies that improved infrastructure
consequent to enactment of complete streets policies dispropor-
tionally induced commuter cycling, then we probably overesti-
mated the impact of complete streets policies on increasing the
cyclist population. However, a detailed study of cycling motiva-
tion suggests that sensitivity to infrastructure is present across
patterns of cycling (e.g., utilitarian or recreational), which supports
our assumption that the commuter cyclist count is a proxy for the
total cycling population both before and after infrastructure im-
provements (44). Future studies should investigate the impact of
infrastructure changes on the purpose of cycling trips and the risk
profiles of cyclists who begin cycling in response to infrastructure
changes. Such studies should address both location-based
risk impacts (e.g., do new riders disproportionately use improved
facilities?) and behavioral impacts (e.g., do new riders dispro-
portionately wear helmets?).

Four other limitations of our work should be noted. First,
because we did not have access to consistent data on cyclist
injuries across the country over the 16-year study period, we
focused on fatalities as an outcome. However, cyclist injury
is much more common than cyclist fatality (45). Nationwide,
there are nearly 500 cyclist injury emergency department
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Figure 4. Estimated numbers of cyclists per year in 183 US counties,
2000–2015. Lines indicate estimates simulated using theG-computation
formula; dots indicate estimates calculated fromUSCensus data. “Never
treated” refers to the simulation in which no counties got “complete
streets” policies; “natural course” refers to the simulation in which
counties got complete streets policies in the simulation in the same
simulated year as the year in which those counties actually received
such policies in real life; and “always treated” refers to the simulation
in which all counties got complete streets policies at baseline and
kept them throughout the full simulation.
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visits for each cyclist fatality, and morbidity due to cycling
injury is a substantial public health burden (46). Future analyses
should focus on the impacts of complete streets policies on non-
fatal injury. Second, because our sole estimate of the cycling
population was limited to commuting-to-work data, we focused
on adult cyclists. However, complete streets policies may addi-
tionally prevent injury and fatality among younger cyclists.
Future research should focus on the effect complete streets poli-
cies may have on injuries among child and teenage cyclists.
Third, cycling is a seasonal activity, with fair weather and
daylight hours strongly affecting the number of riders in a
given location (47). Because the ACS is conducted throughout
the year and we used yearly fatality estimates, we do not expect
that estimates were biased by seasonal variation. Nonetheless,
because complete streets policies may inducemore “fair weather”
riders or offer better rider protection in inclement conditions, as-
sessing seasonal effects of complete streets policies is a promising
area for future work. Finally, for pragmatic reasons, our analysis
focused on the impact of the first policy taking effect within a
county; we did not consider city or regional policies, variations in
policy specifics, implementation, enforcement, or impacts of sub-
sequent complete streets policies. Future work should investigate
policy variations using location-specific denominator estimates
(e.g., as available from mobile cycling app providers like Strava
(Strava, Inc., San Francisco, California)) in order to provide
more precisely policy-relevant findings (48).

In conclusion, we estimated that complete streets policies
increased the prevalence of cycling while holding the cyclist
fatality count constant, resulting in a modest decrease in the
cyclist fatality rate. The G-computation analytical approach al-
lowed us to control for potential time-varying confounding by
number of cyclists while yielding simultaneous insight into
the potential impact of complete streets policies not only on
incidence of an outcome of interest (e.g., cyclist fatalities) but
also on the approximate size of the population at risk (e.g., cy-
clists). G-computation may be useful in other policy evalua-
tion settings.
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