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The Sparseness of Mixed Selectivity Neurons Controls the
Generalization-Discrimination Trade-Off
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Intelligent behavior requires integrating several sources of information in a meaningful fashion— be it context with stimulus or shape
with color and size. This requires the underlying neural mechanism to respond in a different manner to similar inputs (discrimination),
while maintaining a consistent response for noisy variations of the same input (generalization). We show that neurons that mix infor-
mation sources via random connectivity can form an easy to read representation of input combinations. Using analytical and numerical
tools, we show that the coding level or sparseness of these neurons’ activity controls a trade-off between generalization and discrimina-
tion, with the optimal level depending on the task at hand. In all realistic situations that we analyzed, the optimal fraction of inputs to
which aneuronresponds s close to 0.1. Finally, we predict a relation between a measurable property of the neural representation and task

performance.

Introduction
How do we determine whether a neural representation is good
or bad? In general the answer depends on several factors,
which include the statistics of the quantity that is represented,
the task to be executed, and the neural readout that utilizes the
representation.

Previous work evaluated neural representations on the basis
of the information they encode (Atick and Redlich, 1992; Jazayeri
and Movshon, 2006). This is often the only viable approach when
it is not known how the representations are used or read out by
downstream structures (e.g., in the case of early sensory areas).

Here we evaluate a neural representation by the information
that is accessible to individual readout neurons, which we assume
simply compute a weighted sum of the inputs followed by a
thresholding operation. In general, this information is smaller
than the total information contained in the input, as it is con-
strained to be in a more “explicit” format (DiCarlo et al., 2012)
suitable for being processed by simple readouts.

Previous studies evaluated neural representations of natural
visual scenes by computing the reconstruction error of a popula-
tion of linear readout neurons (Olshausen and Field, 2004).
These elegant works showed that sparseness is an important fea-
ture of the neural representations, not only because it naturally
leads to the receptive fields observed in cortical recordings, but it
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also increases the dimensionality of the input, facilitates learning,
and reduces the effects of input noise.

We focus on the capacity of a readout neuron to produce a
large set of diverse responses to the same inputs (i.e., to imple-
ment a large number of input—output functions). This capacity
clearly depends on the input representation, and it is functionally
important as it can be harnessed to generate rich dynamics and
perform complex tasks (Hinton and Anderson, 1989; Rigotti et
al., 2010b). We consider a specific class of problems in which
readout neurons receive inputs from multiple sources (Fig. 1A).
This situation is encountered in many cases, which include inte-
gration of sensory modalities, combining an internally repre-
sented context with a sensory stimulus, or mixing the recurrent
and the external input of a neural circuit. These are typical situ-
ations in almost every brain area, especially in those integrating
inputs from multiple brain systems, such as the prefrontal cortex
(Miller and Cohen, 2001). As the readout is linear, in these situ-
ations there are some input—output functions that cannot be
implemented (Fig. 1B). For instance, the ability to differentiate
between external inputs that are received in different contexts is
known to potentially generate a large number of non-
implementable functions (McClelland and Rumelhart, 1985;
Rigotti et al., 2010b). The difficulty stems from the high correla-
tions between the input patterns that only differ by the state of
one segregated information source (e.g., the one encoding the
context).

Fortunately, there are transformations implemented by sim-
ple neuronal circuits that decorrelate the inputs by mixing differ-
ent sources of information in a nonlinear way. We will focus on
one such transformation that is implemented by introducing an
intermediate layer of randomly connected neurons (RCNs; Fig.
1C). Each RCN responds nonlinearly to the weighted sum of the
original inputs, and its weights are random and statistically inde-
pendent. These neurons typically respond to complex combina-
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We will show that RCNs can efficiently
RC N decorrelate the inputs without sacrificing
PY the ability to generalize. The discrimina-
o tion—generalization trade-off can be bi-
ased by varying the sparseness of the RCN
representations, and there is an optimal
sparseness that minimizes the classifica-

tion error.

Materials and Methods

Definition of the task. For simplicity we report
here the analysis of the case with two sources of
information. The case with more than two
sources is a straightforward extension and is
briefly discussed at the end of this section. We
consider two network architectures— one with
an RCN layer (Fig. 4A), and one without (Fig.
2A). The activity of all neurons is approxi-
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mated as binary.

In both cases, the first layer is an input com-
f; posed of two sources containing N neurons
each. The first source * € {+1}" can be in one
of m, states, x = 1, ..., m,;, and the second
o*e . source is denoted by ¢* € {1}V witha = 1,

Generalization

Discrimination

Figure 1.

The challenge of integrating sources of information in the presence of noise. 4, A single neuron (red) receiving input
from two sources (green and blue, representing for instance a sensory stimulus and the context in which it appears). B, Represen-
tations in the input space that are not linearly separable (typical situation when multiple sources of information are integrated).
The axes of the plane represent independent patterns of activity of the input neurons, for instance the firing rate of two different
neurons. Each point on the plane represents a different input activity pattern, and the symbols represent how patterns should be
classified. For example, crosses are inputs that should activate the readout neuron, and circles are inputs that should inactivate it.
The inputs to be dlassified are constructed as noisy variations of three prototypes (large symbols) that represent three different
classes. In this example, the correlations between the inputs constrain the large symbols to lie on a line, making the classification
problem linearly nonseparable (i.e., there is no single line separating the crosses from the circles). ¢, An intermediate layer of

.., M,. An input pattern & is composed of
one subpattern from each source & = (J*
¢™)7, where each pattern w can be denoted by
its constituent subpatterns u = (x, a). All sub-
patterns are random and uncorrelated with
equal probability for +1 or —1. There are p =
m,m, possible composite patterns composed
of all possible combinations of the subpatterns.

Each pattern is assigned a random desired
output n* €{*1}, and the task is to find a
linear readout defined by weights W such that
the sign of the projection of the activity of the
last layer (input or RCN, Fig. 1, A and B, re-
spectively) onto it will match the desired out-
put.

No RCNE . In this case the task can be written
in vector notation as:

randomly connected neurons, RCNs, solves the linear separability problem. D, Neural representations in the RCN space for three

different transformations performed by the RCNs on the input space. The axes now represent the activity of two RCNs. For all the
transformations, the dimensionality of the inputs increases (the prototypes spread out on a plane), aiding discrimination (distance
between large symbols). But too much decorrelation (right) can amplify noise and degrade the generalization ability (dispersion of
small symbols). The sparseness or the coding level of the RCNs mediates this generalization—discrimination tradeoff.

tions of the parameters characterizing the different sources of
information (mixed selectivity), such as a sensory stimulus only
when it appears in a specific context. Mixed selectivity neurons
have been widely observed in the cortex (Asaad et al., 1998;
Rigotti et al., 2010a, 2013; Warden and Miller, 2010), although
they are rarely studied, as their response properties are difficult to
interpret. Neural representations that contain RCNs allow a lin-
ear readout to implement a large number of input—output func-
tions (Marr, 1969; Hinton and Anderson, 1989; Maass et al.,
2002; Lukosevi¢ius and Jaeger, 2009; Rigotti et al., 2010b).

Any transformation that mixes multiple sources of infor-
mation, should reconcile the two opposing needs of the dis-
crimination—generalization trade-off (Fig. 1D). It should
decorrelate the representations sufficiently to increase classifica-
tion capacity, which is related to the ability to discriminate be-
tween similar inputs. Unfortunately, as we will demonstrate (Fig.
4B), transformations that decorrelate tend to destroy the infor-
mation about relative distances in the original space, making it
harder for the readout neurons to generalize (i.e., generate the
same output to unknown variations of the inputs).

sign(W'Q) = m, (1)

where Q;, = &'isa2N X p matrix that contains
all input patterns. Note that we assume a zero
threshold for the readout for simplicity. We show
below that this choice has no effect on the scaling
properties we are interested in.

Since we are using random outputs, the classification ability depends
only on the structure of the input. We first show that the matrix Q is low
dimensional. Consider a case of m, = 2 and m, = 3:

I A A VL Ve /o
Q = ( R T P SIS )}ZN. (2)
This matrix can be written as 6
AR A i s 0 0
Q‘(qb‘ 0 ¢ - ¢ ¢>3—¢1>
1 1 1 1 1 1
0O 0 0 1 1 1
“lo10010)p @
0O 0 1 0 0 1

showing that it is in fact only of rank 4. In general, the rank will be (m, —
1)+ (my,—1) + 1.
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The rank of this matrix determines the effective number of inputs to
the readout neuron (Barak and Rigotti, 2011), which in turn affects the
possible number of patterns that can be classified.

Once the number of patterns exceeds the capacity, which is two times
the number of independent inputs or rank, we expect classification to be
at chance level (Cover, 1965; Hertz et al., 1991; Barak and Rigotti,
2011). To verify this, we considered m, = m, = 5 and a subset of
p = 1,...,25 patterns. For each value of p we computed the rank of Q
and the fraction of patterns that were classified correctly (average from
500 random choices of 1). This was repeated for m, = m, = 10and m, =
m, = 15 (Fig. 2D, E).

The RCN layer. To solve the linear separability problem, we introduce
an intermediate layer of randomly connected neurons. The input pat-
terns are projected to Ny randomly connected neurons through
weights ]1-]- ~ N (0, N/2), where i = 1, ..., Ngycnpj = 1, ..., 2N and

1 (x—p)?
Niw,o?) = W e 2o, . A threshold 0 is applied to the RCNs,

defining a coding level f = erfc (6/\/5)/2, which is the fraction of all
possible input patterns that activate a given RCN. For a pattern &* =
(¥~ ¢")7, the activity of the ith RCN is given by

2N

S = sign EI,-JE}-X” -0

j=1

N 2N
= sign| X+ 2, ity — 6] (4)

i=1 j=N+1

The task can now be written as finding a W such that sign (W" S) = m,
where the Ny, X p matrix S is the activity of the RCNs due to all input
patterns. The different layers can be schematically described in the fol-
lowing diagram:

I Osign W, sign
n n n n in
fj_>gi > St—h > (5)

RCN classification without noise. As before, we consider the rank of the
matrix S. A single RCN can add at most 1 to the rank of the pattern
matrix, and Figure 3 shows that this is indeed the case for sufficiently
large p and sufficiently high f. We quantified this behavior by determin-
ing, for each value of p and each coding level f; the minimal number of RCNs
required to classify 95% of the patterns correctly. This value was 0.5p for the
high f (dense coding) case, as expected from Cover’s Theorem (Cover, 1965).
We determined the critical coding level at which this fraction increased to
0.75p and saw that it decreased approximately as p ~*%,

RCN classification with noise. We introduce noise by flipping the activ-
ity of a random fraction n of the 2 N elements of the input patterns £ and
propagating this noise to the RCN patterns S.

The heuristic calculations of generalization and discrimination in Fig-
ure 4 were done by choosing m, = m, = 2 and n = 0.1. Consistent RCNs
were defined as those that maintained the same activity level (sign of their
input) in response to two noisy versions of the same input pattern. Dis-
criminating RCNs were defined as those that had a different activity level
in response to two patterns differing by only one subpattern.

The test error of the readout from the RCNs depends on how the readout
weights are set. If we have p patterns in Ny, dimensions and the noise is
isotropic in this space, the readout that minimizes errors is the one that has
the maximal margin between the patterns and the separating hyperplane
defined by the weights W (Krauth et al., 1988). Because the noise originates
in the input layer, each RCN has a different probability to flip, and the
isotropic assumption is not true. Nevertheless, we use the mean patterns in
RCN space to derive the maximal margin hyperplane and use this weight
vector as a readout (for a possible alternative, Xue et al. (2011)). We also
trained a readout using online learning from noisy inputs, and while the
error decreased, the qualitative features we report did not differ.

Because we are interested in the shape of the error curve and not its
absolute values, we adjusted the number of RCNs to avoid floor and
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ceiling effects. Specifically, as we varied the noise we used Equation 20 to estimate
the number of RCNs that would produce a minimal error of 10%.

Approximation of the test error. While the paper presents extensive
numerical simulations of a wide range of parameters, we are also inter-
ested in analytical approximations that can provide better insight and
help understand various scaling properties of the system. Furthermore,
we would like to estimate the error from experimentally accessible quan-
tities, and our analytical approximations help us in this regard. Given
readout weights W, every pattern u has a distribution of projections onto
this readout due to the input noise. We approximate these as Gaussian,
defining " and 3 .38 the mean and variance, respectively:

WISk = .N‘(KM,Zi).

The test error (probability of misclassification) is then given by:

Ku

1
—erfc | —=]. (6)
2 ( vzzf)

We approximate the average test error by inserting the averages inside the
nonlinearity (which is somewhat reasonable given that we are interested
in errors far from saturation effects):

T
ClTiee =

(K def 1 . ( K ) o
=5 erfe | =5 |
NS

I

(errfy), = Eerfc

To approximate k, we note that the perceptron margin, min,, k,, can be
bounded by the minimal eigenvalue A of the matrix M = ™ S (Barak and

Rigotti, 2011):
min K, = 4/ (8)
I3 * \E

Because we are in the regime where there are many more RCNs than
patterns, and classification is hampered by noise, we expect the margin to
be a good approximation to k. We thus proceed to estimate A from the
matrix M.

The matrix M defined above is a random matrix (across realizations of &
which are assumed to be random). To obtain the distribution of its minimal
eigenvalue, we should first derive the eigenvalue and only then average over
realizations of the matrix. Nevertheless, as an approximation we consider the
minimal eigenvalue of the average matrix M = (M) . This provides an upper
bound on A, which in turn gives a lower bound on the margin.

As stated above, it is useful to expand the pattern indices into their
constituents: u = (x, a), v = ( y, b). Because we are analyzing the average
matrix, each element Z\_/I,“, only depends on the number of matching
subpatterns between w and v so we can decompose the matrix in the
following form:

an,yb = NRCN[ysxyBab + yl(axy + Sab) + 721]) (9)

where & is the Kroenecker delta and vy, vy,, and vy, are scalar coefficients to
be determined. This equation simply states that there are three possible
values for the entries of M u» corresponding to whether w and v share
zero, one, or two subpatterns. The right hand side of the equation is
composed of three matrices that commute with each other, and hence we
can study their eigenvalues separately. The matrices multiplied by v, and
7, are both low rank and thus do not contribute to the minimal eigen-
value. Thus, the minimal eigenvalue is determined by the first matrix
Ngen¥d,, 04> and using Equation 8, the value of k is given by

YNrgen
~ 10
K= 4 I (10)

Using Equation 9, we can express y in terms of the squared differences of
activity due to different patterns:
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1 N,
CIT ey =~ Eerfc< % ;CN>. (14)

Note that a somewhat similar analysis of signal
and noise using dimensionality of matrices was
performed by Biising et al. (2010).

A non-zero threshold of the readout does not
change the scaling properties. Our analysis and
simulations were performed assuming that the
threshold of the readout unit is at zero. We veri-
fied that our numerical results do not depend on
the choice of the threshold (data not shown). The
reason for this can be understood by considering
| what happens to the matrix elements of M when

an additional constant input implementing a
non-zero threshold is added. In this case the
modified matrix M becomes:

M,, = M, +1, (15)

thus adding a low rank matrix (all ones) that
does not contribute to the rank. Hence, y does
not change, and neither does the performance.

Generalizing to more than two sources. An
equivalent form to Equation 13 is

N

Yy = M, — 2M, + M,, (16)

where M, is the average of the diagonal ele-
ments of the matrix M (of the form Z\_/Im,m), M,
is the average of those elements of M of the
form M, ., and M, is the average of those
elements of M of the form Z\_/Im,yb. This form
readily generalizes for more than two sources

of information:

50
Z 40 3 09
2 S
§ 30 o 08
g 20 p= 25 S 07
2 ——p= 100 E
a 10 —p=225 =2 0.6
0 0.5
0 100 200 0 100 200
Num. inputs to be classified Num. inputs to be classified
Figure2.  Segregated representations are notlinearly separable. A, Two sources of N neurons each are each in one of two configurations

y = E( T )(—l)k“Mk, (17)
k=1

(A,B for the first source, C,D for the second one), and they are read out by a linear classifier. B, The four possible input patternsina 2V

dimensional space. C, Despite being 2 N dimensional, the four patterns are actually on a 2D plane due to their structure. Four points on a 2D
plane cannot be arbitrarily classified (e.g., AD and BC cannot be separated from ACand BD). The spatial arrangement of the four pointsis a
consequence of the correlations between all the patterns (e.g., AChas a large overlap or correlation with AD, as the first source s in the same
state). D, For more than four patters, the gap between the number of patterns and their corresponding dimension increases, impairing
linear separability. The three curves show the number of dimensions versus the number (Num.) of inputs to be classified for two input
sourceswith 5,10, or 15 states each (p = 25,100, or 225 possible patterns). E, Classification errors arise when there are more patterns than
dimensions, even when only a subset of possible patterns is used. The graph shows that the fraction of correctly classified patterns drops

rapidly once the number of patterns used exceeds the input dimensionality (compare to D).

1/ _ _ 1 _ _ _
E< (qu - Syb)z> = E < (Mxn,xa - Zan,yb + Myb,yh)z>

(11)

= 'Y(l - 8)()/8:1!1) + 71(2 - 89()/ - 8ab) (12)
1

y = () =50, (13)

where (A,)?and (A,) ? are the squared differences between RCN activity due to
two patterns differing by one and two subpatterns respectively (average across all
RCNs). Equation 13 provides a recipe for estimating y from experimental data.
To compare this estimate with the true value of k, we define

<p :
I = (Eq. 10 and Fig. 8C,D).

RCN
We now turn to the estimation of 3,2, Because W is normalized, 3.2 is

simply a weighted average of the trial-to-trial variability of the RCNs. We
approximate it by o', which is the unweighted average (Fig. 8 E,F). The
final estimate of the test error is:

where M, is the average value of all elements of
the matrix M corresponding to the activity the
RCNs when presented with two patterns differ-
ing by k subpatterns.

Simulations. All simulations were performed
in Matlab (MathWorks). N was always chosen to
be 500, and the rest of the parameters are noted in
the main text. The readout weights were derived
from the matrix S of average RCN activations.
The entries of this matrix can be calculated by
considering the mean and variance of the input g;
to an RCN due to a noisy pattern:

g = g(1—2n) (18)

Var (g) = 4n(1 —n), (19)
where g; is the noiseless input to that RCN. Approximating this input by
a Gaussian distribution, we can derive the probability for this RCN to be
activatedasg; = erfc <\§\)_/m‘%)’ anditsmeanstateasS; = 2g; — 1.Once
we have the p patterns S¥, we use quadratic programming to find the
weight vector W that gives the maximal margin (Wills and Ninness,
2010).

Quality of approximation from experimentally accessible data. Because y
and o are only approximations (Fig. 8), we checked the quality of pre-
dicting the relative benefit of sparseness from experimentally accessible
data. To this end, we measured for 20 realizations of 12 noise levels
between 3% and 20% the ratio between the error obtained with a dense
coding of f = 0.5 or an ultra-sparse coding of f = 0.001 to that obtained
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with a sparse coding of f = 0.1. We also estimated y and o2 from 30 trials
of each pattern using a subset of 100 RCNs (Fig. 7).

Results

The neural representation of information should be in a format
that is accessible to the elements of a neural circuit. We took the
point of view of an individual neuron reading out a population of
input neurons that encode multiple noisy sources of information.
In particular, we studied the number of input—output functions
that can be robustly implemented by such a neuron. We first
explain the problems arising when integrating multiple sources
of information. We then show that the classification performance
greatly increases when the input neurons mix the information
sources by integrating the activity of the source populations
through random connections (randomly connected neurons or
RCNs). We show that the threshold of the RCNs, which deter-
mines their coding level (i.e., the average fraction of stimuli to
which each individual neuron responds), biases a tradeoff be-
tween generalization and discrimination. Finally, we provide a
prescription for measuring the components of this tradeoff from
neural data.

The problem with segregated neural representations

Consider a single neuron receiving input from several sources.
For ease of presentation and visualization, we consider only two
sources. For example, one source may represent a sensory input
and the other the internally represented task to be executed. Each
source is segregated from the other and is represented by N neu-
rons (Fig. 2A), each of which can be inactive (—1) or active (1). A
state of one of the sources corresponds to a specific configuration
of all N of its neurons.

In general, the classification capacity of a linear readout is
determined by the structure (i.e., correlations) of the inputs and
by the desired output. The desired output depends on the type of
representations that will be needed by downstream processing
stages in the brain. To remain general, we estimated the classifi-
cation performance for all possible outputs. Specifically, we as-
sume that the output neurons can only be either active or inactive
in response to each input (two-way classification). If there are p
different inputs, then there are 2° input—output functions. The
classification performance can be estimated by going over all
these functions and counting how many can be implemented
(i.e., when there is a set of synaptic weights that allow the output
neuron to respond to all the inputs as specified by the function).
As it is impractical to consider such a large number of input—
output functions, we estimate the performance on randomly
chosen outputs, which is a good approximation of the average
performance over all possible outputs, provided the sample is
large enough.

Under the assumption that we consider all possible outputs,
the classification performance depends only on the properties of
the input. In particular, the performance depends on the input
correlations, which in our case are the correlations between the
vectors representing the input patterns of activity. These correla-
tions are due to the specific choice of the statistics of the inputs. A
useful way to represent the correlations that are relevant for the
performance is to consider the spatial arrangement of the points
that represent the inputs in an activity space. Each input can be
regarded as a point in an N, dimensional space, where N, is the
total number of input neurons (N, = 2 Nin the example of Fig. 2).
Our correlations are the consequence of a particular arrangement
of the points representing the inputs. Indeed, in our case the
points live in a low dimensional space (i.e., a space that has a
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dimensionality that is smaller than the minimum between N, and
p), and this can greatly limit the classification performance
(Hinton, 1981; Barak and Rigotti, 2011). Figure 2B shows a sim-
ple example that illustrates the problem. The four possible con-
figurations of the two populations of N input neurons are four
points in a 2 N dimensional space. Four points span at most a 3D
space (i.e., a solid) and, more in general, p points span at most p —
1 dimensions (less if N, < p). In our example, the four inputs are
all on a 2D plane because of their correlations (Fig. 2C). One
dimension is spanned by the line connecting the two patterns of
the first source, and the other dimension goes along the line
connecting the two patterns of the second source. The fact that
there are more inputs to be classified than dimensions can lead to
the existence of input—output functions that are not implement-
able by a linear readout. In other words, there will be sets of
desired outputs that cannot be realized by a readout neuron. In
these situations the inputs are said to be not linearly separable.
For instance, it is not possible to draw a plane that separates
patterns AD and BC from patterns BD and AC. This is equivalent
to saying that there is no linear readout with a set of synaptic
weights that implements an input—output function for which the
inputs AD and BC should produce an output that is different
from the one generated by inputs BD and AC (Hertz etal., 1991).

As the number of information sources and states within those
sources increases, so does the gap between the number of patterns
to be classified and the dimensionality of the space that they span,
leading to a vanishing probability that the classification problem
is linearly separable (see Materials and Methods) (Rigotti et al.,
2010b). In Figure 2, D and E show this scaling for two sources of
5, 10, and 15 states each (m = 5, 10, 15). The number of neurons
representing each source, N = 500, is significantly larger than the
number of states. The dimensionality is more formally defined as
the rank of the matrix that contains all the vectors that represent
the p = m? different inputs (see Materials and Methods). Full
rank (i.e., rank equal to the maximum, which in our case is p)
indicates that all the p vectors representing the input patterns are
linearly independent and hence span a p dimensional space. Be-
cause neurons within each source only encode that specific
source, the dimensionality is always smaller than p (see Materials
and Methods). Indeed, it scales as m, whereas p grows like m?.
This problem exists even when only a subset p < p of all the m>
combinations need to be correctly classified. This is shown in
Figure 2D, where the dimensionality increases linearly with the
number of inputs to be classified and then saturates. The upper
bound determined by the source segregation is already reached at
p ~ m, which is much smaller than the total number of m> com-
binations. Figure 2E shows that the probability for linear separa-
bility drops rapidly once the number of input patterns is higher
than the dimensionality of the inputs.

Randomly connected neurons solve the problem
To solve the linear separability problem generated by the segre-
gated representations, the information sources should be mixed
in a nonlinear way. This can be achieved by introducing an inter-
mediate layer of neurons that are randomly connected to the
segregated inputs. These neurons increase the dimensionality of
the neural representations (dimensional expansion), thereby in-
creasing the probability that the problem becomes linearly sepa-
rable for all possible outputs. Figures 3, A and B show that the
dimensionality increases as more RCNs are added until it reaches
the maximal dimensionality permitted by the number of inputs.
RCNs are surprisingly efficient at increasing the dimensional-
ity. In the dense case in which the RCNs are activated by half of all
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The output neuron (Figs. 1B and 2A)
can then be tested to determine how many

input—output functions it can implement
when the outputs are chosen randomly. In

—f=0.02 LR .
_ our situation it behaves like a perceptron
f=0.03 that classifies uncorrelated inputs, al-
—f=05 though it is important to note that the in-

puts are not uncorrelated. The number of
correctly classified inputs is approxi-

O
O

0
0 200 400 600 800

mately twice the number of RCNG. Figure
N 3C shows that this also holds for all but the
sparsest coding levels, with the reason for
failure being finite size effects of N . We
can quantify the breakdown for sparse
coding levels by defining a critical coding
level, f,;,, at which the number of RCNs
needed increases to 0.75 of the number of
inputs. Figure 3D shows the scaling of this
finite size effect; the coding level at which
classification performance deteriorates
scales as a power of the number of pat-
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o
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= 2 ——p=144 £
Lo — p =400 3
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Figure3. RCNsenablelinearseparability by increasing input dimensionality. 4, The dimensionality of the representationin RCN

space as a function of the number of RCNs for 64 patterns (two sources of eight states each). For dense representations, every RCN
increases the dimensionality by 1, while for sparse ones this slope is smaller. Correct classification requires a high enough dimen-
sionality, and the black markers denote the point where 95% of the patterns could be classified correctly. Sparseness is measured
by £, the fraction of patterns that activate a given RCN. B, Similar to A, but for 225 patterns. Note that the detrimental effect of
sparse coding is reduced. C, The ordinate denotes the minimum number of RCNs required to classify 80% of the patterns correctly
normalized by the number of patterns considered. Note that as the number of patterns (and thereby RCNs) increases, sparser
representations become more efficient. For each number of patterns there is a critical (Crit.) coding level ( f,;,) below which
performance deteriorates (green dotted line; see Materials and Methods). D, This coding level scales as a power law of the number

of patterns with an exponent of approximately —0.8.

possible inputs, if the number p of input patterns is sufficiently
large, every RCN adds, on average, one dimension to the repre-
sentations. This scaling is as good as the case in which the re-
sponse properties of the neurons in the intermediate layer are
carefully chosen using a learning algorithm. It is important to
note that for simplicity we analyzed the case in which all combi-
nations of input patterns are considered. In many realistic situa-
tions only a subset of those combinations may be needed to be
classified to perform a given task. Although it is not possible to
make statements about these general cases without further as-
sumptions, we can note that if the combinations are picked uni-
formly at random from all the possible ones, the scaling of the
number of dimensions versus the number of RCNs remains the
same. In other words, the number of RCNs grows linearly with
the number of inputs that have actually to be classified (Rigotti et
al., 2010b). For this reason, in what follows we will consider only
the case in which all the combinations have to be classified.

If one changes the threshold for activating the RCNs, and
hence modifies the coding level f (i.e., the average fraction of the
inputs that activate a RCN), the convergence to full dimension-
ality slows down. This is shown in Figure 3, where it is clear from
the slope of the curves that the dimensionality increase per RCN
is smaller for sparser neural representations. This is due to finite
size effects—there are simply not enough RCNs to sample the
entire input space. As the total number p of inputs increases and
the space spanned by the inputs grows, the RCNs become pro-
gressively more efficient at increasing the dimensionality because
they have more chances to be activated (Figure 3B).

. =08
terns: f.;, ~p .

RCN coding level biases the
discrimination—generalization
trade-off

In the previous section we analyzed the
ability of the output neuron to classify in-
puts that contain multiple sources of in-
formation when the inputs are first
transformed by RCNs. The next issue we
address is whether the encouraging results
on the scaling properties of the RCNss still
hold when the output neuron is required
to generalize. Generalization is the ability
to respond in the same way to familiar and unfamiliar members
of the same class of inputs. For example, in visual object recogni-
tion, the members of a class are the retinal images of all possible
variations of the same object (e.g., when it is rotated), including
those that have never been seen before. To study generalization it
is important to know how to generate all members of a class. To
make the analysis treatable, we studied a specific form of gener-
alization in which the members of a class are noisy variations of
the same pattern of activity. In our case, generalization is the ability
to respond in the same way to multiple noisy variations of the inputs.
Some of the noisy variations are used for training (training set), and
some others for testing the generalization ability (testing set). The
noise added to the patterns of activity is independent for each neu-
ron, as in studies on generalization in attractor neural networks and
pattern completion (see Discussion for more details).

We also make the further assumption that the number of
RCNss is sufficient to reach the maximal dimensionality in the
noiseless case, as we intend to focus on the generalization perfor-
mance. We basically assume that there enough RCNs is to classify
correctly the inputs in all possible ways (i.e., for all possible out-
puts) in the absence of noise.

Asillustrated in Figure 1D, the transformation of the inputs
performed by the RCN layer has to decorrelate them suffi-
ciently to ensure linear separability while maintaining the rep-
resentation of different versions of the same input similar
enough to allow for generalization. The decorrelation in-
creases the ability of the readout neurons to discriminate be-
tween similar inputs, but it is important to note that not all
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by the RCNs has the peculiarity that it Source 1 3
not only increases the dissimilarity be- A/B y) RCN B
tween inputs, but it also makes the neu- 4 \ 05
ral representations linearly separable. Noise X f11 Re%\ﬂgt’g 04 e
We now study the features of the trans- > ) f'11 ) 8 =05 7,

formation performed by the RCNs and S 5 :1 / -1 g o3 o
how the parameters of the transformation ource +1 2 02 7
bias the discrimination—generalization C/D 2 £ o o 201
tradeoff, with a particular emphasis on the @ @ :

00 0.2 0.4

RCN coding level f. fis the average frac-

tion of RCNs that are activated in re-
sponse to each input. f close to 0.5 means
dense representations, small f corre-
sponds to sparse representations. In our C
model, f is controlled by varying the
threshold for the activation of the RCNs.
Figure 4B shows how the relative Ham-
ming distances between inputs are trans-
formed by the randomly connected
neurons for two different coding levels.
These distances express the similarity be-
tween the neural representations (two
identical inputs are at zero distance if they
are identical). Note that the ranking of
distances is preserved—if point A is closer
to B than to C in the input space, the same
will hold in the RCN space. In other
words, if input A is more similar to B than
to C, this relation will be preserved in the
corresponding patterns of activity repre-
sented by the RCNGs.

To understand how sparseness affects
the classification performance, we first
need to discuss the effects on both the dis-
crimination and the generalization ability.
Figure 4, C-F illustrate an intuitive argu-
ment explaining how sparseness biases the
discrimination-generalization tradeoff
(see Materials and Methods for details).
We first consider generalization. Figure
4C shows the distribution of inputs to all
RCNs when a generic input made of two
sources of information is presented. For
dense coding, the threshold is set to zero
(blue line), and all the RCNs on the right
of the threshold (half of all RCNs) are ac-
tive. The noise in the input (n = 0.1 for
this example) can cause those RCNs that
receive near threshold input to flip their
activity, as denoted by the blue shading.
Similarly, for a sparse coding of f = 0.1, 10% of the RCNs are on
the right of the red line, and a smaller number of RCNs are
affected by noise. We estimate the generalization ability by mea-
suring the fraction of RCNs that preserve their activity for different
noisy versions of the same input pattern. This quantity increases as the
representations become sparser (Fig. 4D).

As for the discrimination ability, we consider again the input
currents to the RCNs. Figure 4E shows the two-dimensional in-
put distribution to all RCNs for two inputs that share the same value
for one of the two information sources (i.e., half of all input neurons are
the same). As above, the blue and red lines denote threshold for f= 0.5

Figure 4.
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RCN coding level shifts the balance between discrimination and generalization. A, Neural architecture, as in
Figure 1C. The crosses and circles represent the patterns to be classified, as in Figure 1D. The original segregated represen-
tations are nonlinearly separable for a classification problem analogous to the exclusive OR (opposite points should produce
the same output). The RCNs increase the dimensionality, making the problem linearly separable (now a plane can separate
crosses from circles). B, Transformation of Hamming distances in the RCN space for two coding levels (blue, 0.5; red, 0.1).
The distance in the RCN space is plotted versus the distance in the input space. Although distances are distorted, their
ranking is preserved (e.g., small distances map to small distances). (—F, How generalization and discrimination abilities
vary with the coding level of RCN representations. €, The generalization ability is estimated as the fraction of RCNs that
respond in a consistent manner to noisy realizations of the same input (n = 0.1). The shaded area represents the
distribution of input currents to different RCNs for a particular input pattern (A, C, for the two sources, respectively). For
dense representations (blue, threshold at zero) there is a larger fraction of RCNs that is around the activation threshold
compared to the sparse case. D, The fraction of consistent RCNs decreases with coding level. E, The discrimination ability is
estimated as the fraction of RCNs that respond differentially to a pair of patterns, differing only by the state of one source.
The gray area represents the distribution of the currents to the RCNs for ACand AD inputs (differing in the second source).
The area of colored shading represents the fraction of RCNs that respond differentially to the two combinations of inputs
(for one input the current is positive and for the other it is negative). F, Discrimination increases with coding level.

and f = 0.1, respectively. To enable discrimination, we need
RCNss that respond differentially to these two patterns—their
input is above threshold for one pattern and below threshold
for the other, as denoted by colored areas. For this measure the
fraction of RCNs with a differential response decreases as the
representations become sparser (Fig. 4F).

The optimal coding level is approximately 0.1

To check how these two opposing trends affect the final performance
of the classifier, we trained the output neuron to classify noisy versions of
the inputs (obtained by flipping a random subset of # percent of the
source neurons’ activities), and then measured the fraction of wrong
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The optimal coding level is ~10%. A, The dependence of classification error on RCN coding level for two different

noise levels: n = 0.05 (light) and n = 0.175 (dark). Two sources of eight states each were used. B, Extension of A for many noise
levels, showing the dependence of the optimal coding level (black curve) on the input noise. The sensitivity of the error to coding
level is indicated by shading those coding levels that result in an error up to 20% worse than the optimal one. The colored lines
denote the values used in A. €, The number of RCNs required to maintain the minimal error at roughly 0.1 (i.e., 10% of the patterns
misclassified). D—F, Similar to the panelsin the top row, but varying the number of patterns. Patterns were generated by two input
sources with identical numbers of states. The two parameter values shown are p = 81 (light) and p = 441 (dark).
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Measuring the discrimination (-y) and generalization (1/0°%) factors from neural data (simulated data). The rasters

show the spikes of a single hypothetical neuron in response to several presentations of four combinations of stimuli (A/B) and
contexts (C/D). The mean firing rates for each combination of input sources are calculated (bars below the rasters). The squared

differences of firing rates are averaged for two cases: inputs differing by either stimulus or context, but not both (left cluster of

arrows that point to the two dashed lines that correspond to these pairs, A,), and inputs differing in both stimulus and context
(right cluster, A,). The green error bars denote the trial to trial variability used to compute o2 Inset, -y is a measure of the

nonlinearity in the transformation to RCN space. In the input space, the difference between pairs of inputs belonging to A, is half

the difference between pairs belonging to A,. The factor y measures the deviation from this relation in RCN space.

responses to new noisy realizations. Figure 5A shows numerical results
of the fraction of errors made by a linear readout from a population of

RCNs when the activity of a random 5% (light) or 17.5% (dark) of the

source neurons is randomly flipped in each presentation. The abscissa
shows f, the RCNs’ coding level, which is varied by changing the activa-

tion threshold of the RCNs. The figure reveals that there is an optimal
coding level of about 0.1 that decreases the error rate more than twofold
compared to the maximally dense coding of 0.5. The advantage of
sparser coding is more substantial as the input noise increases. Because
we are interested in the shape of this curve, we increased the number of

errlest =~
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RCNs to avoid floor and ceiling effects as the
noise increases (from 336 for 5% to 2824 for
17.5%). Otherwise, for small noise, the gener-
alization error could be zero for all values of f,
or it could be maximal and again constant for
large noise.

Figure 5B shows the optimal coding
level (black) for increasing levels of noise.
The shaded area around the black curves
is delimited by the coding levels at which
the performance decreases by 20% com-
pared to the black curve. The optimal cod-
ing level hardly shifts, but the relative
advantage of being at the minimum in-
creases when noise increases. The number
of RCNs necessary to compensate for the
increased noise is shown in Figure 5C.

In the noiseless case (Fig. 3) we saw
that the sparse coding levels are adversely
affected by finite size effects. To ascertain
whether this is the cause for the increase in
error as the coding level decreases below
f = 0.1, we increased the number of pat-
terns and RCNs. Figure 5D shows that a
fivefold increase in the number of pat-
terns only slightly moves the optimal cod-
ing level. Indeed, Figure 5E shows that the
optimal level does decrease with in-
creasing system size, but at a very slow
rate that is probably not relevant for re-
alistic connectivities. Indeed, even for
20,000 RCNss (Fig. 5F) the optimal cod-
ing level is still above 5%. Note that
when we vary the number of patterns,
the required number of RCNs grows lin-
early (Fig. 5F).

Components of the discrimination—
generalization tradeoff

The numerical results reveal several phe-
nomena. First, the required number of
RCNss grows linearly with the number of
input patterns. Second, a coding level of
approximately f = 0.1 is better than dense
coding ( f= 0.5) for correct classification.
Third, an ultra sparse coding level of f =
0.01-0.03 is significantly worse than in-
termediate values. We derived an approx-
imate analytical expression of the test
error that allows us to understand the
scaling properties of the RCN transforma-
tion and relies on experimentally accessi-
ble factors (see Materials and Methods):

! f
5 erfe

(6, n) NRCN)’ (20)

(6, n,p) p

where vy is the discrimination factor that depends on the thresh-
old 6 for activating the RCNs (and hence on the coding level of
the RCN representations) and on the noise 7 in the inputs. 1/ is
the generalization factor, which depends on 6, n, and the total
number p of classes of inputs. The inverse of the generalization
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factor, 0%, is simply defined as the average A B

intertrial variability of RCN responses Ratio of dense to sparse errors Ratio of ultra-sparse to sparse errors Noise

(Fig. 6, green error bars). 3 4 0.2
The discrimination factor 7y is related

to the similarities between the RCN repre- 25 3 3 015

sentations induced by similar inputs. Fig- & , '

ure 6 defines y more precisely and shows g 2 2

how to measure it from neural data. Con- % 0.1

sider, for example, the case in which one Y 15 1

source of information represents a sen- ' 0.05

sory stimulus and the other represents the 1 0

temporal context in which the stimulus 0 2 4 0 5 10

appears (as in Fig. 1). We assume that the
recorded neurons contain a representa-
tive subpopulation of the RCNs, which
presumably are the majority of neurons.
We also assume that the recorded RCNs
receive an equal contribution from the in-
puts representing the two sources. For
each neuron we consider the mean firing
rate for every combination of the inputs. For simplicity, we as-
sume that there are two possible stimuli and two contexts for a
total of four cases. The four bars corresponding to the four rasters
in Figure 6 represent the mean firing rates in these cases. We now
focus on pairs of inputs that differ only by the state of one source
(e.g., as in the pair of cases in which the same sensory stimulus
appears in two different contexts). For each such pair, we com-
pute the squared difference in the firing rate of the neuron. This
quantity should be averaged across all conditions that contain
analogous pairs of inputs. We name this average (A,) 2. In a sim-
ilar manner, (A,)? is the average squared difference between the
firing rates corresponding to the cases in which both sources are
different (e.g., different sensory stimuli appearing in different
contexts, right cluster of arrows). The discrimination factor vy is
then given by the average across neurons of:

Figure 7.

¥ = (A~ 58 e

This quantity can be computed from the recorded activity under
the assumption that the two sources of information have an equal
weight in driving the RCNs. This is a reasonable assumption
every time the two sources of information can be considered
similar enough for symmetry reasons (e.g., when they represent
two visual stimuli that in general have the same statistics). In the
other cases it is possible to derive an expression for -y that takes
into account the different weights of the two sources. However,
the relative weights should be estimated from the data in an in-
dependent way (e.g., by recording in the areas that provide the
RCNs with the input).

To help understand the meaning of vy in the case that we
analyzed (i.e., when the two sources have the same weight), we
show in the inset of Figure 6 how 1 is related to the shape of the
curve that represents the squared distance in the RCN space as a
function of the squared distance in the input space. In particular,
v expresses the deviation from a linear transformation. Notice
that in contrast to Figure 4B, on the y-axis we now represent the
expected squared distance in RCN space between pairs of noisy
patterns. The distances in RCN space are contracted by the presence of
noise in the inputs (see Materials and Methods, Eq. 18).

The deviation from a linear function is intuitively related to
the ability to discriminate between patterns that are not linearly
separable. Indeed, for a linear transformation (y = 0) the dimen-

Actual

Actual

Estimating error from experimentally accessible factors versus the actual error. The figure shows the ratio between
the error obtained using either dense (4, f = 0.5) or ultra-sparse (B, f = 0.01) to that obtained using sparse ( f = 0.1) coding.
Ratios are shown for various levels of the input noise. The x-axis shows the ratio derived from the full simulation, while the y-axis
is computed using the formula and calculating y and o~ from 30 trials of 100 RCNs. The color bar shows the noise level (same
values as in Fig. 54—C, using 64 patterns).

sionality of the original input space does not increase, and the
neural representations would remain nonlinearly separable.

While the exact values of the error are not captured by the
experimentally accessible factors, the general trends are. To illus-
trate this point, we computed the expected error from a subset of
100 RCNs simulated during 30 trials of 64 patterns. Figure 7A
shows the ratio of the test error for dense (0.5) and sparse (0.1)
coding as derived from this estimation versus the actual one ob-
tained from the full simulation. Note that the correlation is very
good (correlation coefficient, 0.7), even though for the high noise
levels the network contains >4000 RCNs. This result is especially
important in cases where Ny and p are unknown but fixed—
for instance, when a neuromodulator changes the activity level of
the network. In such cases, estimating y and o> from neural
recordings can provide a useful measure of the effect on network
performance. The case of ultra-sparse coding is not captured as
well by the approximation (Fig. 7B; correlation coefficient,
—0.1), and the reason for this is explained below.

Equation 20 already confirms the first phenomenon men-
tioned above—Ilinear scaling of RCN number with the number of
input patterns. If we ignore the weak p dependence of o and
rearrange the terms of the equation, we can see this linear scaling.
As indicated by Figure 5F, the dependence of o on p is small and
does not affect the scaling. We also verified that, similarly to the
noiseless case (Fig. 2D, E), using a fraction of possible input com-
binations does not alter this scaling (data not shown).

To understand the remaining phenomena—namely why a
coding level of ~0.1 is optimal—we consider the interplay be-
tween the discrimination and generalization factors. Figure 8, A
and B show the dependence of test error as a function of the
coding level of the RCN representation for two different noise
levels. We computed these quantities either using the full numer-
ical simulation (solid line) or the approximation of Equation 20
(dashed line). While the approximation captures the general
trend of the error, it underestimates the error for low coding
levels. This is more evident in the low noise case, which also
requires fewer RCNGs.

The reason for the failure of the formula in the ultra sparse
case is that y and o? are actually approximations of I' and
3,2— quantities that are not directly accessible experimentally
(see Materials and Methods). Briefly, I" is a measure of the
average distance from a pattern to the decision hyperplane in
RCN space. 37 is the average noise of the patterns in the
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Noise 0.2 become sparser, decreasing the ability to
discriminate between similar inputs. This
performance degradation, however, is
overcompensated by the increased ro-
bustness to noise (generalization), with
the net effect that the generalization er-

Numerical ror decreases for sparser representa-
tions. This trend does not hold for too

= = = Formula

sparse representations (f < 0.1), be-

0.2 0.4 cause finite size effects start playing the
dominant role, and the generalization
ability does not improve fast enough to
compensate for the degradation in the
discrimination ability. In this regime

- - r any increase in global inhibition leads to
Dl [ y a degradation in the performance.
~— . .
S < _ Discussion

Most cognitive functions require the inte-
gration of multiple sources of informa-
tion. These sources may be within or

0.2 0.4 across sensory modalities (e.g., distinct
features of a visual stimulus are different
sources of information), and they may in-
clude information that is internally repre-

sented by the brain (e.g., the current goal,
the rule in effect or the context in which a
task is performed). In all these situations,

what are the most efficient neural repre-
sentations of the sources of information?
The answer depends on the readout. We
focused on a simple linear readout, which
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0.2 0.4 is what presumably can be implemented
by individual neurons. We showed that
the sources must be mixed in a nonlinear

Figure8. Components of generalization discrimination tradeoff. 4, B, Comparing the actual test error with the one predictedby ~ Way tO implement a large number of in-
Equation 20. Note the discrepancy in sparse coding levels, which is caused mainly by the small denominator of Equation 20. ¢, 5, ~ put—output functions. Segregated repre-
Discrimination factor, exact I" and approximate %, as a function of coding level. E, F, Generalization factor, exact /%% and ~ sentations composed of highly specialized
approximate 1/2, asa function of coding level. All values were derived using 64 input patterns and 424 (4227) RONs for 0.06(0.2)  neurons that encode the different sources

noise.

direction perpendicular to the decision hyperplane. Using these
quantities in the formula produces a curve that is almost indistin-
guishable from the one obtained with the full simulation (data not
shown). We thuslook at the deviations of the factors from their exact
counterparts.

Figure 8, C and D, show that the discrimination factor in
general increases with coding level, but for high levels of noise it
shows a nonmonotonic behavior. The generalization factor
shown in Figure 8, E and F, increases with coding level, giving rise
to the discrimination generalization trade-off. Note that both of
these estimates follow the general trend of their more exact counter-
parts—I" and 3, *—but have some systematic deviations. Specifically,
o underestimates the noise for sparse coding levels, leading to the dis-
crepancy in Figures 8, A and B, and 7B.

To summarize the reason for optimality of 0.1 coding—it is
better than 0.5 because dense coding amplifies noise more than it
aids discrimination. This is more evident in the cases with high
input noise. A coding level lower than 0.05 is suboptimal due to
finite size effects, which are probably inevitable for biologically
plausible parameter values. These trends are summarized in Fig-
ure 9. Increasing inhibition or changing the balance between ex-
citation and inhibition will cause the neural representations to

of information independently are highly

inefficient, because the points represent-

ing the possible inputs span a low dimen-
sional space due to their correlation structure (as in the case of
semantic memories; Hinton, 1981).

Segregated representations can be transformed into efficient
representations with a single layer of randomly connected neu-
rons. This transformation can efficiently increase the dimension-
ality of the neural representations without compromising the
ability to generalize. The best performance (minimal classifica-
tion error) is achieved for a coding level f ~ 0.1, as the result of a
particular balance between discrimination and generalization.

Why a linear readout?

Our results hinge on the choice of a linear readout that limits
classification ability. We proposed RCNss as a possible solution,
which is compatible with the observation that neurons with non-
linear mixed selectivity are widely observed in the brain (Asaad et
al., 1998; Rigotti et al., 2010a; Warden and Miller, 2010). One
may legitimately wonder whether there are other biologically
plausible solutions involving different forms of nonlinearities.
For example, it is possible that neurons harness the nonlinear
dendritic integration of synaptic inputs so that a full or a partial
network of RCNs is implemented in an individual dendritic tree.
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Figure 9.  Summarizing our understanding of the generalization discrimination trade-off.
Dense coding is optimal for discriminating between similar inputs but has a detrimental effect
on the ability to generalize. Decreasing coding level shifts this balance and improves the overall
classification ability, but for very sparse coding levels ( f << 0.1) finite size effects limit the
generalization ability, and thus the classification error increases. In the limit of very large neural
systems (red lines), the classification error would keep increasing as the representations be-
come sparser, and this would compensate for the decrease in the ability to discriminate.

In this scenario, some of the “units” with nonlinear mixed selec-
tivity, analogous to our RCNs, are implemented by a specific
branch or set of dendritic branches, and hence they would not be
visible to extracellular recordings. Some others must be imple-
mented at the level of the soma and expressed by the recordable
firing rates, as mixed selectivity is observed in extracellular re-
cordings. Our results about the statistical properties of the RCNs
apply to both hidden and visible units if they implement similar
nonlinearities. As a consequence, our predictions about the ac-
tivity of the RCNs are likely to remain unchanged in the presence
of dendritic nonlinearities. However, future studies may reveal
that the dendritic nonlinearities play an important role in
strongly reducing the number of RCNGs.

Our choice of a linear readout is also motivated by recent
studies on a wide class of neural network dynamical models.
Inspired by the results on the effects of the dimensional expan-
sion performed in support vector machines (Cortes and Vapnik,
1995), many researchers realized that recurrent networks with
randomly connected neurons can generate surprisingly rich dy-
namics and perform complex tasks even when the readout is just
linear (Jaeger, 2001; Maass et al., 2002; Buonomano and Maass,
2009; Sussillo and Abbott, 2009; Rigotti et al., 2010b). Studying
RCNs in a feedforward setting has enabled us to derive analytical
expressions for the scaling properties of the circuit. Our results
probably have important implications for the dynamics of mod-
els that rely on RCNs to expand the dimensionality of the input,
even outside the feedforward realm. In particular, our analysis
can already predict the relevant dynamical properties of a recur-
rent network model implementing rule-based behavior (Rigotti
etal., 2010b).

Why randomly connected neurons?

RCNs solve efficiently the problem of low dimensionality of the
input by mixing nonlinearly multiple sources of information.
Intermediate layers of mixed selectivity neurons can be obtained
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in many other ways (Rumelhart et al., 1986). However, RCNs
offer an alternative that is appealing for several reasons. First,
there is accumulating experimental evidence that for some neural
systems random connectivity is an important representational
and computational substrate (Stettler and Axel, 2009). Second,
the number of needed RCNs (that are not trained) scales linearly
with the number of inputs that should be classified. This is the
same scaling as in the case in which the synaptic weights are
carefully chosen with an efficient algorithm (Rigotti et al.,
2010b). Third, many of the algorithms for determining the
weights of hidden neurons require random initial conditions.
The importance of this component of the algorithms is often
underestimated (Schmidhuber and Hochreiter, 1996). Indeed,
there are many situations in which learning improves the signal-
to-noise ratio but does not change the statistics of the response
properties that the neurons had before learning, which are prob-
ably due to the initial random connectivity. This consideration
does not decrease the importance of learning, as it is clear that in
many situations it is important to increase the signal-to-noise
ratio (see e.g., the spiking networks with plastic inhibitory-to-
excitatory connections analyzed by Bourjaily and Miller, 2011).
However, it indicates that our study could be relevant also in the
case in which the neurons of the hidden layer are highly plastic.

In all the above mentioned cases learning can improve the
performance. There are situations, as those studied in recurrent
networks (Bourjaily and Miller, 2011), in which different forms
of synaptic plasticity can lead either to beneficial or disruptive
effects. Synaptic plasticity between inhibitory and excitatory neu-
rons increases the signal-to-noise ratio, as mentioned above, but
STDP (spike timing-dependent plasticity) between excitatory
neurons actually disrupts the diversity of the neural responses,
requiring a larger number of RCNs. These forms of learning,
which are disruptive for the heterogeneity, are probably present
in the brain to solve other problems in which it is important to
link together neurons that fire together. Classical examples are
the formation of invariant representations of visual objects
(DiCarlo et al., 2012) or learning of temporal context (Rigotti et
al., 2010a).

How general are our results?

When multiple sources of information are represented in segre-
gated neuronal populations, the correlations in the inputs can
limit the number of input—output functions that are implement-
able by a linear readout. We showed that RCNs can mix these
sources of information efficiently and solve the nonseparability
problems related to this type of correlations. The correlations
that we considered are presumably widespread in the brain, as
they are likely to emerge every time a neuron integrates two or
more sources of information, as in the case in which it receives
external and recurrent inputs. For example, neurons in layer 2/3
of the cortex receive a sensory input from layer 4 and a recurrent
input from other neurons in the same layer (Feldmeyer, 2012). It
is important in any case to notice that the correlations and the
noise that we studied are specific and that there are important
computational problems which involve different types of corre-
lations and more complex forms of generalization. For example,
the classification of visual objects is a different difficult problem
because the retinal representations of the variations of the same
object can be more different than the representations of different
objects. The manifolds (sets of points in the high dimensional
space of neural activities) representing the variations of specific
objects are highly curvilinear (with many twists and turns) and
“tangled,” requiring the neural classifiers to implement a large
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number of variations (Bengio and LeCun, 2007; DiCarlo et al.,
2012). The shallow neural architecture that we considered (only
one intermediate layer) can deal only with “smooth” classes (i.e.,
a small variation of the input should not require a change in the
response of the output neuron that classifies the inputs). Indeed
for non-smooth classes, a prohibitive number of RCNs and a
huge training set would be required. To classify visual objects
efficiently, one would require a sophisticated preprocessing stage
that extracts the relevant features from the retinal input so that
the neural representations of the visual object become “smooth.”
Deep networks (Bengio and Le Cun, 2007) that contain multiple
layers of processing can be efficiently trained to solve these
problems.

It is difficult to say whether our results about the efficiency of
RCNs and optimal sparseness apply also to problems like vision,
and further studies will be required to make more general state-
ments. We speculate that our results probably apply to the late
stages of visual processing and to some of the components of the
early stages (e.g., when multiple features should be combined
together). Interestingly, some of the procedures used to extract
features in deep networks can generate neural architectures that
are similar to those obtained with random connectivity. Net-
works with random weights and no learning can already repre-
sent features well suited to object recognition tasks when the
neurons are wired to preserve the topology of the inputs (i.e.,
neurons with limited receptive fields) (Saxe et al., 2011). These
semi-structured patterns of connectivity could also be an impor-
tant substrate for learning the features used in deep networks.

Why sparse representations?

One of our main results is that there is an optimal sparseness
for the neural representations. The coding level that mini-
mizes the generalization error is, for most realistic situations,
close to f= 0.1.

Besides our results and the obvious and important argument
related to metabolic costs, there are other computational reasons
for preferring a high degree of sparseness. These reasons lead to
different estimates of the optimal f; typically to lower values than
what we determined.

The first reason is related to memory capacity: sparse neural
representations can strongly reduce the interference between
stored memories (Willshaw et al., 1969; Tsodyks and Feigel'man,
1988; Amit and Fusi, 1994). The number of retrievable memories
can be as large as > when the proper learning rule is chosen.
When fgoes to zero, the capacity can become arbitrarily large, but
the amount of information stored per memory decreases. If one
imposes that the amount of information per memory remains
finite in the limit N — o, where N is the number of neurons in a
fully connected recurrent network, then the number of random
and uncorrelated patterns that can be stored scales as N*/(log N)*
when f = log N/N. f is significantly smaller than our estimate
when one replaces N with the number of connections per neuron
(in the cortex N ~ 10 would lead to f~ 10 ~?). The discrepancy
becomes larger when one considers wider brain areas (Ben Dayan
Rubin and Fusi, 2007).

A second reason mentioned in the Introduction is the ability
of sparse over-complete representations to increase input dimen-
sionality, facilitate learning, and reduce noise (Olshausen and
Field, 2004).

All of these computational reasons lead to different estimates
of the optimal £, as they deal with different problems. The brain is
probably dealing with all these problems, and for this reason it
may use different and sometimes adaptive coding levels in differ-
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ent areas, but also within the same area (indeed, there is a lot of
variability in facross different neurons).

Estimates of the sparseness of neural representations recorded
in the brain vary over a wide range, depending on the method for
defining the coding level, the sensory stimuli used, and the brain
area considered. Many estimates are close to our optimal value of
0.1, especially in some cortical areas (e.g., in V4 and IT it ranges
between 0.1 and 0.3) (Sato et al., 2004; Rolls and Tovee, 1995;7. 7.
DiCarlo and N. Rust, unpublished observations).

The hippocampus exhibits significantly lower coding level
(0.01-0.04) (Barnes et al., 1990; Jung and McNaughton, 1993;
Quiroga et al., 2005). These estimates are lower bounds for f, as
the authors used very strict criteria to define a cell as responsive to
a stimulus. For example, in Quiroga et al. (2005) a cell was con-
sidered to be selective to a particular stimulus if the response was
at least five standard deviations above the baseline. On the other
hand, many of these estimates are probably biased by the tech-
nique used to record neural activity (extracellular recording).
Active cells tend to be selected for recording more often than
quiet cells, shifting the estimate of f toward higher values
(Shoham et al., 2006). Recent experiments (Rust and DiCarlo,
2012), designed to accurately estimate f, indicate that for V4
and IT f~ 0.1.

Biasing the generalization—discrimination tradeoff
The generalization—discrimination tradeoff resulted in an opti-
mal coding level of 0.1 under general assumptions about the sta-
tistics of the inputs and the outputs of individual neurons.
Specific behavioral tasks may impose additional constraints on
these statistics, resulting in different optimal coding levels. This is
probably why the brain is endowed with several mechanisms for
rapidly and reversibly modifying the sparseness of the neural
representations (e.g., by means of neuromodulation; Disney et al.
(2007); Hasselmo and McGaughy (2004)). In other situations,
neural systems that become dysfunctional (due e.g., to stress,
aging or sensory deprivation) may cause a long term disruptive
imbalance in the discrimination—generalization trade-off.
These types of shifts have been studied systematically in ex-
periments aimed at understanding the role of the dentate gyrus
(DG) and CA3 in pattern separation and pattern completion
(Sahay et al., 2011). The DG has been proposed to be involved in
pattern separation, which is defined as the process by which sim-
ilar inputs are transformed into more separable (dissimilar) in-
puts. It is analogous to our definition of pattern discrimination,
suggesting that the neurons in the DG may have similar proper-
ties as our RCNs. CA3 seems to play an important role in pattern
completion, which is the reconstruction of complete stored rep-
resentations from partial inputs. Neurons in CA3 would be rep-
resented by the output neurons of our theoretical framework,
and pattern completion is related to the generalization ability.
Neurogenesis, which is observed in the DG, may alter in many
ways (e.g., by changing the global level of inhibition in the DG)
the balance between pattern separation and pattern completion
(Sahay et al., 2011). In the future, it will be interesting to analyze
specific tasks and determine to what extent our simple model can
explain the observed consequences of the shifts in the balance
between pattern separation and pattern completion.
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