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Abstract

Purpose—To correlate semiquantitative parameters derived from dynamic contrast-enhanced 

MRI (DCE-MRI) and 18F-FDG-PET for non-small cell lung cancer (NSCLC).

Methods—Twenty-four NSCLC patients who underwent pretreatment 18F-FDG-PET and DCE-

MRI were analyzed. The maximum standardized uptake value (SUVmax) was measured from 18F-

FDG-PET. DCE-MRI was obtained on 3T MRI scanner using four-dimensional T1-weighted high-

resolution imaging with volume excitation sequence. DCE-MRI parameters consisting of mean, 

median, standard deviation (SD), and median absolute deviation (MAD) of peak enhancement, 

time-to-peak (TTP), time-to-half-peak (TTHP), wash-in slope (WIS), wash-out slope (WOS), 

initial gradient, wash-out gradient, signal enhancement ratio, and initial area under the relative 

signal enhancement curve taken up to 30, 60, 90, 120, 150, and 180 s, TTP, and TTHP (IAUCtthp) 

were calculated for each lesion. Univariate analysis (UVA) was performed using Spearman 

correlation. A linear regression model to predict SUVmax from DCE-MRI parameters was 

developed by multivariate analysis (MVA) using least absolute shrinkage selection operator in 

combination with leave-one-out cross-validation (LOOCV).

Results—In UVA, mean(WOS) (ρ = −0.456, p = 0.025), mean(IAUCtthp) (ρ = −0.439, p = 

0.032), median(IAUCtthp) (ρ = −0.543, p = 0.006), and MAD(IAUCtthp) (ρ = −0.557, p = 0.005) 

were statistically significant; all these parameters were negatively correlated with SUVmax. In 

MVA, a linear combination of SD(WIS), SD(TTP), MAD(TTHP), and MAD(IAUCtthp) was 

statistically significant for predicting SUVmax (LOOCV-based adjusted R2 = 0.298, p = 0.0006). 

A decrease in SD(WIS), MAD(TTHP), and MAD(IAUCtthp) and an increase in SD(TTP) were 

associated with a significant increase in SUVmax.
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Conclusion—Association was found between SUVmax, the SD, and MAD of DCE-MRI 

metrics derived during contrast uptake in NSCLC, reflecting that intratumoral heterogeneity in 

wash-in contrast kinetics is associated with tumor metabolism. Although MAD(IAUCtthp) was a 

significant feature in both UVA and MVA, the LASSO-based multivariate regression model 

yielded better predictability of SUVmax than a univariate regression model using 

MAD(IAUCtthp). This study will facilitate understanding of the complex relationship between 

tumor vascularization and metabolism, and eventually help in guiding targeted therapy.
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I. Introduction

Lung cancer is the leading cause of cancer-related mortality in the world in both men and 

women [1]. Non-small cell lung cancer (NSCLC) is the most common type, accounting for 

75–80% of lung cancer cases [2]. Thus, accurate diagnosis of these lesions is very crucial.
18F-FDG-PET is widely used in the disease management of patients with lung cancer. 18F-

FDG-PET exploits the fundamental differences in glucose metabolism between tumor and 

normal tissue and has been considered useful in distinguishing between benign and 

neoplastic processes. The most widely used metric of FDG uptake within tumor tissue is the 

standardized uptake value (SUV), which is the differential uptake ratio between the tumor 

tissue of interest relative to the uptake were the FDG to be uniformly distributed throughout 

the body. 18F-FDG-PET and the SUV unit have been proven to be of great value in the initial 

diagnosis [3], detection of recurrent disease [4], evaluation of response to therapy [5], and 

radiation treatment planning [6].

Tumor growth usually depends on angiogenesis, which plays a critical role in the 

progression [7], metastasis, and therapy response [8] for the majority of NSCLC. Dynamic 

contrast-enhanced MRI (DCE-MRI) is a noninvasive method for characterizing the 

vascularity of tumors [9]. DCE-MRI can be used to obtain a series of sequential T1-

weighted MR images before, during, and after a bolus injection of a paramagnetic 

gadolinium-based contrast agent (CA) with rapid acquisition methods. The acquisition 

process reflects the passage of CA through a particular tissue of interest and offers the 

possibility to estimate a number of various hemodynamic parameters directly related to 

angiogenesis [10]. DCE-MRI studies employing simple semiquantitative metrics have 

become essential clinical tools in oncologic applications because of the simplicity of the 

approach [11]. A large number of semiquantitative parameters can be extracted on a voxel-

by-voxel basis along the temporal dimension of DCE-MRI and used to characterize 

spatiotemporal heterogeneity within the tumor.

Because metabolism sufficient for tumor growth requires an adequate delivery of glucose 

and oxygen, a well-developed blood supply to the tumor is essential. However, tumor 

glucose metabolism is also stimulated by hypoxia in which tumor blood flow is insufficient. 

As a result, the relationship between vascular physiology and glucose metabolism is not 
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known for tumors, though it is tightly coupled in normal tissues [12]. Therefore, one of the 

rationales for this study was to investigate imaging metrics in an attempt to couple vascular-

metabolic events and tumor adaptation to the microenvironment [13].

The goal of this study was to investigate the relationship between tumor vascularity, 

measured by various semiquantitative DCE-MRI parameters, and glucose metabolism, 

measured by 18F-FDG-PET in NSCLC.

II. Materials and Methods

A. Patient Characteristics

Twenty-four patients with NSCLC (stage I or II, n = 8; stage III or IV, n = 16) undergoing 

definitive chemoradiation were included in this IRB-approved study. All patients underwent 

pretreatment 18F-FDG-PET/CT and DCE-MRI scans. There were 14 men and 10 women 

(mean age, 65.25 years [range, 40 to 89]; mean weight 77.33 kg [range, 47 to 113]). 

Histopathologic subtypes of the NSCLC patients were biopsy-confirmed and included 

adenocarcinoma (AC, n = 12), squamous cell carcinoma (SCC, n = 10), adenosquamous 

carcinoma (ASCC, n = 1) and NSCLC not otherwise specified (NOS, n = 1). Patient 

characteristics are summarized in Table 1.

B. 18F-FDG-PET/CT

For PET/CT, 12 mCi of 18F-FDG was injected into the patient in the fasted state (or after 6 

h) nominally 1h before the scan. 18F-FDG-PET scans were acquired as part of a standard 

clinical whole-body protocol on a GE Discovery ST PET/CT in 3D mode. The protocol 

consists of acquiring a low dose whole body CT (80 mA at 120 kVp) followed by the 18F-

FDG-PET scan using a dwell time of 3 m per bed and an 11-slice overlap (approximately 16 

cm per bed) from mid-skull to upper thighs. PET images were reconstructed using 2 × 20 

iterations and subsets, with axial 3-point smoothing (Heavy, [1 2 1]/4), and a transaxial 

Gaussian post-filter (6.0 mm full width at half maximum). Tracer uptake was represented by 

SUV normalized by body weight. Tumor regions of interest (ROIs) on PET were segmented 

in MIM™ VISTA using a gradient-based autosegmentation method, and SUVmax was 

extracted from each tumor ROI. The median SUVmax for the population was 17.90 (range, 

2.710 to 23.54).

C. DCE-MRI Protocol

MR image acquisition was performed on a 3T Philips Ingenia scanner. DCE-MRI was 

obtained using a coronal four-dimensional (4D) T1-weighted high-resolution imaging 

method with volume excitation (4D THRIVE) sequence during free breathing in order to 

achieve high temporal resolution. The 4D THRIVE is a modification of the standard three-

dimensional (3D) T1-weighted gradient echo sequence, which is currently used for DCE-

MRI acquisition. The 4D THRIVE sequence, along with parallel imaging, makes use of 

Contrast Enhanced Timing Robust Acquisition (CENTRA) and k-space order technique to 

achieve higher spatiotemporal resolution [14]. For DCE-MRI of the NSCLC patients, a total 

of 130 dynamic sequences were obtained with 30 coronal slices with 2.5 mm slice thickness, 

TR/TE of 4.2/1.9 ms, FA of 15°, in-plane acquisition resolution of 2.5 mm, and temporal 
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resolution of 2 s. The bolus injected was 0.2 mL/kg of gadolinium-

diethylenetriaminepentaacetic acid (Gd-DTPA, Magnevist) followed by saline flush.

D. Image Processing and Analysis

A groupwise image registration method was implemented for compensating potential 

misalignment in DCE-MRI based on principal component analysis, which makes use of the 

fact that intensity changes in DCE-MRI can be described by a low-dimensional signal model 

[15, 16]. In such an approach, all DCE-MRI time-points were simultaneously registered to a 

mean space. ROIs covering the entire tumor volume were drawn by an experienced radiation 

oncologist [A.R.]. Linearity between MR signal and CA concentration was assumed. A 

relative signal enhancement (RSE) curve was extracted from an ROI placed manually on the 

pulmonary artery for each patient. The first-pass bolus arrival time (BAT) in the arterial 

input function (AIF) was automatically identified by fitting the AIF model to the RSE curve 

in the pulmonary artery [17]. Then, delay correction of the contrast BAT was applied for 

each voxel within the tumor to shift its RSE curve forward in time by the BAT of the AIF. 

This allows for accurately estimating the RSE curve shapes from the onset time of CA 

enhancement, though transit time delay from the AIF to the tumor was not estimated for the 

sake of simplicity. The intratumoral RSE curves were smoothed temporally using a cubic 

smoothing spline for noise reduction. Sixteen semiquantitative parameters were calculated 

from each voxel-wise intratumoral RSE curve: peak enhancement (PE), wash-in-slope 

(WIS), wash-out-slope (WOS), time-to-peak (TTP), time-to-half-peak (TTHP), initial 

gradient (IG), wash-out gradient (WG), signal enhancement ratio (SER), and initial area 

under the curve (IAUC) taken up to 30 (IAUC30), 60 (IAUC60), 90 (IAUC90), 120 

(IAUC120), 150 (IAUC150), and 180 s (IAUC180), TTP (IAUCttp), and TTHP (IAUCtthp) 

[18–22]. The definitions and physical units of these semiquantitative DCE-MRI metrics are 

summarized in Table 2. In addition, a more detailed description of these semiquantitative 

parameters is provided as a supplementary document (supplementary document 1). To 

characterize the spatiotemporal heterogeneity of intratumoral RSE pattern, four spatial 

features consisting of mean, median, standard deviation (SD), and median absolute deviation 

(MAD) for the 16 semiquantitative parameter maps were extracted for each patient thus 

generating a total of 64 (= 4 × 16) spatiotemporal DCE-MRI features.

E. Statistical Analysis

Univariate analysis (UVA) was performed using Spearman correlation to investigate 

correlations between the DCE-MRI features and 18F-FDG-PET SUVmax. A p value less 

than 0.05 was considered statistically significant. Because no features were statistically 

significant after applying Bonferroni’s correction, the UVA was conducted without multiple 

testing corrections to evaluate as many potential features as possible with subsequent 

multivariate analysis (MVA). DCE-MRI features with p < 0.1 on the UVA were identified 

and returned into the MVA based on the least absolute shrinkage and selection operator 

(LASSO) [23]. This procedure was combined with leave-one-out cross-validation (LOOCV) 

to avoid overfitting in the selection of initial features. The DCE-MRI features, chosen at 

least once in the LOOCV procedure, were then used in the LASSO regression for building a 

final model, which included an additional feature selection stage combined with the 

LOOCV. Finally, a regression model forming a linear combination of a subset of relevant 
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DCE-MRI features was derived and used for the prediction of SUVmax. The accuracy of the 

LASSO regression model was evaluated by in-sample and out-of-sample (LOOCV) adjusted 

R2 to achieve an unbiased estimate of model performance. The SUVmax and LASSO-

selected parameters were compared between different histopathologies and between 

different tumor stage groups by using the Wilcoxon rank sum test. The best univariate linear 

regression model was also investigated with the 64 spatiotemporal DCE-MRI features, and 

its accuracy was compared with that of the LASSO regression model by the in-sample and 

out-of-sample adjusted R2. All analyses were performed using the statistical software R 

3.3.3.

III. Results

A. Univariate Correlation between DCE-MRI Features and SUVmax

Univariate Spearman rank correlation coefficients between the DCE-MRI features and 18F-

FDG-PET SUVmax are listed in Table 3. The SUVmax was significantly negatively 

correlated with four DCE-MRI features: mean(WOS) (ρ = −0.456, p = 0.025), 

mean(IAUCtthp) (ρ = −0.439, p = 0.032), median(IAUCtthp) (ρ = −0.543, p = 0.006), and 

MAD(IAUCtthp) (ρ = −0.557, p = 0.005).. Among all the kinetic parameters, IAUCtthp had 

the most significant correlations with SUVmax with MAD(IAUCtthp) showing the strongest 

correlation with SUVmax.

B. Multivariate Linear Regression of SUVmax from DCE-MRI Features

A total of 8 DCE-MRI features were initially chosen by UVA and MVA combined with 

LOOCV: MAD(IAUCtthp), mean(WOS), MAD(TTHP), mean(SER), SD(TTP), 

mean(IAUCtthp), median(IAUCtthp), and SD(WIS). These features were then used as input 

to the LASSO regressor to determine a regularized multivariate linear regression model for 

predicting SUVmax in combination with LOOCV. Out of the 8 DCE-MRI features, four 

features were finally selected with the LASSO: SD(WIS), SD(TTP), MAD(TTHP), and 

MAD(IAUCtthp). A linear combination of these 4 features constituted an in-sample 

multivariate linear regression model: SUVmax ≈ 16.84 + 3.531 × SD(TTP) – 0.031 × 

SD(WIS) – 19.37 × MAD(TTHP) – 13.06 × MAD(IAUCtthp). The in-sample adjusted R2 of 

this model was 0.538 (p < 0.0001), and its LOOCV-based adjusted R2 was 0.298 (p = 

0.0006). It should be noted that the LOOCV was not only combined to select a subset of 

relevant features in the LASSO regression, but also to evaluate the out-of-sample 

performance of the LASSO regression model. The mean and SD values for the SUVmax and 

LASSO-selected parameters for different histopathologies and tumor stages are summarized 

in Table 4. No features were statistically significantly different between AC and SCC as well 

as between lower (I or II) and higher (III or IV) tumor stage groups.

C. Comparison between Univariate and Multivariate Linear Regression Models

Of the 64 DCE-MRI features, MAD(IAUCtthp) yielded the best univariate linear regression 

model for predicting SUVmax, which was given by: SUVmax ≈ 20.66 – 54.26 × 

MAD(IAUCtthp). The in-sample adjusted R2 of this model was 0.368 (p = 0.001), and its 

LOOCV-based adjusted R2 was 0.261 (p = 0.006). Although MAD(IAUCtthp) was 

significant on both UVA and MVA, the LASSO-based multivariate regression model was 
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better in predicting SUVmax than the best univariate linear regression model using 

MAD(IAUCtthp). Figure 1 shows the scatter plots of the predicted versus the measured 

SUVmax, comparing in-sample and out-of-sample (LOOCV) performances between the 

best univariate and LASSO-based multivariate regression approaches. In the out-of-sample 

prediction of SUVmax, one of the SUVmax (= 5.840) was predicted to be negative (= 

−5.886) and is not displayed in Figure 1(d).

D. Case Studies

Figure 2(a) shows 18F-FDG-PET/CT image and LASSO-selected 4 semiquantitative kinetic 

parameter maps for 3 representative cases with NSCLC, where case 1 is a stage III SCC, 

case 2 is a stage I AC, and case 3 is a stage II SCC. SUVmax and LASSO-selected DCE-

MRI feature values (SD[TTP], MAD[TTHP], SD[WIS], and MAD[IAUCtthp]) of the 3 

cases are shown in Figure 2(b), along with the histograms of the corresponding 

semiquantitative parameter maps (TTP, TTHP, WIS, and IAUCtthp). Similar histogram bin 

size and parameter range was used to compare data distribution among these cases. For 

SUVmax, case 1 showed the highest value (= 23.54), case 2 the second highest value (= 

11.47), and case 3 the lowest value (= 11.39), though the SUVmax values for cases 2 and 3 

were similar. For each of the LASSO-selected DCE-MRI features, case 1 showed the highest 

SD(TTP) (= 1.434 min) and the lowest SD(WIS) (= 3.735 min−1) values, case 2 the highest 

SD(WIS) (= 154.3 min−1) and the lowest SD(TTP) (= 0.821 min) values, and case 3 the 

highest MAD(TTHP) (0.363 min) and MAD(IAUCtthp) (0.136) values among the 3 NSCLC 

cases. The predicted SUVmax for the 3 NSCLC cases between the best univariate and 

LASSO-based multivariate linear regression models was compared. In terms of in-sample 

fit, SUVmax values predicted by the univariate regression model were 18.00, 19.68, and 

13.28 whereas those by the LASSO regression model were 19.54, 14.06, and 11.58 for cases 

1 through 3, respectively. Therefore, the SUVmax values predicted by the LASSO 

regression model were closer to the measured SUVmax values than those predicted by the 

univariate regression model.

IV. Discussion

In this study, we investigated the correlation between tumor vascularity obtained using 

various semiquantitative DCE-MRI parameters and tumor metabolism obtained using 

SUVmax. We found that intratumoral heterogeneity in wash-in contrast kinetics was 

associated with tumor metabolism. This was confirmed by the fact that all the kinetic feature 

components (i.e., TTP, TTHP, WIS, and IAUCtthp) found in the proposed LASSO 

regression model were obtained during the contrast uptake phase in tumor, and the 

combination of their intratumoral spatial variations (i.e., SD[TTP], MAD[TTHP], SD[WIS], 

and MAD[IAUCtthp]) was associated with SUVmax.

LASSO-selected features contained only wash-in-phase semiquantitative parameters, i.e., 

TTP, TTHP, WIS, and IAUCtthp. Although semiquantitative approaches are difficult to 

directly relate these measures to underlying physiology because they are mixed measures, 

some broad correlations could exist between semiquantitative parameters and underlying 

physiology. For instance, the increased WIS and IAUC and the decreased TTP are likely 
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related to increased vascular density and/or permeability [24]. IAUC describes how fast and 

how much the CA is delivered to the tumor and thus it reflects blood flow, blood volume, 

vascular permeability, and fractional interstitial volume in a mixed fashion [20, 25]. This 

IAUC parameter is generally preferred for analyzing DCE-MRI data because it is more 

stable in the presence of noise and less dependent on the temporal resolution [26]. On the 

other hand, TTHP is a newly derived parameter in this study to describe the half-peak time 

that is dependent on the curvature of the contrast wash-in. Because TTHP is the early wash-

in time of CA, the contrast enhancement at this time may mainly reflect blood flow and 

blood volume [27]. In particular, IAUCtthp played an important role in predicting SUVmax 

as evidenced by the fact that MAD(IAUCtthp) offered the best univariate regression model. 

Considering that mean(IAUCtthp) and median(IAUCtthp) were also negatively correlated 

with SUVmax (see Table 3), one could hypothesize that lower blood flow and blood volume 

may reflect a higher rate of anaerobic metabolism of glucose associated with hypoxia in 

NSCLC.

Even though MAD(IAUCtthp) was the best single predictor of SUVmax, using a single 

predictor may be insufficient to model the SUVmax precisely. Our results showed that a 

linear combination of the LASSO-selected predictors provides a better in-sample and out-of-

sample predictive model of SUVmax than the best single predictor so that any observed 

change in SUVmax could result from a variety of spatiotemporal enhancement patterns of 

DCE-MRI in NSCLC. One criterion for evaluating the relative efficacies of univariate and 

multivariate regression approaches is how well their respective findings generalize beyond a 

particular data set to any other independently obtained data. Ideally, this type of analysis 

should be performed on the basis of independent training and testing data sets of large sizes. 

Because the small data sets were available in this study, LOOCV was a more accurate option 

than split-sample validation, which could overestimate prediction error for small sample 

sizes [28].

SUVmax is the most widely used parameter that reflects tumor glucose metabolism of the 

most aggressive cell component [29] and is an independent prognostic factor in NSCLC 

[30–34]. Uncoupling of blood flow and metabolism typically implies hypoxic stimulation of 

glucose metabolism and is frequently encountered in large aggressive tumors after treatment 

[13]. Although our results showed that SUVmax and LASSO-selected features were not 

significantly different between AC and SCC nor between lower (I or II) and higher (III or 

IV) tumor stage groups, our findings were helpful in finding the relationship between 

vascularity and metabolism in a pooled analysis of pretreatment NSCLC.

Only first-order statistics of the kinetic feature distributions calculated from the histogram of 

tumor voxel intensity values were calculated. We did not make any attempt to calculate 

higher order texture features. Because the statistical power of this study was limited by the 

small sample size, the high variability in higher order texture features could potentially make 

it harder to generalize variations in spatial patterns of the tumor. The tumor ROIs were 

drawn by a single physician. To investigate the effect of contouring variations on the model 

parameters, the ROIs were contracted by 1 mm for a subset of patient and parameter values 

recalculated. Our analysis suggested that contouring variations of 1 mm can show up to 5% 

variation in median kinetic parameter values.
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There are some limitations in this study. First, the number of patients was small (n = 24). 

Second, quantitative analysis of DCE-MRI data from this study was not performed, which 

typically involves the convolution of an AIF with a nonlinear pharmacokinetic model of the 

CA concentration. We believe that the results presented here demonstrate potential 

feasibility of semiquantitative DCE-MRI metrics that can be efficiently incorporated with 

routine clinical practice because of their independence from AIF selection, prior T1-

mapping, and optimal fitting of the kinetic model to the tissue under investigation. Third, a 

pixel-by-pixel correlation analysis between DCE-MRI and 18F-FDG-PET images was not 

performed. The patient orientations during the two imaging (MRI and PET) examinations 

were different. For a pixel-by-pixel comparison, the factors that affect patient positioning 

would need to match each other exactly for the MRI and 18F-FDG-PET examinations. 

Future work will focus on a pixel-by-pixel comparison between SUVmax and DCE-MRI 

parameters.

V. Conclusion

In this study, we demonstrated the relationship between tumor vascularity and metabolism 

based on semiquantitative DCE-MRI parameters and 18F-FDG-PET SUVmax in NSCLC 

patients. Intratumoral heterogeneity in wash-in contrast kinetics was associated with tumor 

metabolism. A linear combination of the LASSO-selected features (SD[TTP], MAD[TTHP], 

SD[WIS], and MAD[IAUCtthp]) yielded better predictability of SUVmax than the best 

single feature (MAD[IAUCtthp]). This study will facilitate understanding of the complex 

relationship between tumor vascularization and metabolism, and eventually help in guiding 

personalized targeted therapy.
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Summary

Balance between vascularity and glucose metabolism in tumor could prove to be an 

important indicator of its biological status and resistance to treatment. This study 

evaluates the use of semiquantitative dynamic contrast-enhanced MRI parameters for 

predicting the 18F-FDG-PET maximum standardized uptake value in non-small cell lung 

cancer (NSCLC). It was found that intratumoral heterogeneity in wash-in contrast 

kinetics is associated with tumor metabolism. Investigating vascular-metabolic 

relationship will help in guiding personalized targeted therapy in NSCLC.
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Figure 1. 
Scatter plots of the predicted (horizontal axis) versus measured SUVmax (vertical axis), 

comparing in-sample (a and b) and out-of-sample (LOOCV) goodness-of-fit (c and d) 

between the best univariate (a and c) and LASSO-based multivariate regression approaches 

(b and d). The MVA using the LASSO regression was better (i.e., higher adjusted R2) than 

the UVA using simple univariate linear regression.
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Figure 2. 
Three representative cases with NSCLC showing (a) 18F-FDG-PET/CT image and LASSO-

selected 4 semiquantitative DCE-MRI parameter maps (time-to-peak [TTP], time-to-half-

peak [TTHP], wash-in-slope [WIS], and initial area under the curve until TTHP [IAUCtthp]) 

as well as (b) measured and predicted SUVmax and spatiotemporal DCE-MRI features 

(SD[TTP], MAD[TTHP], SD[WIS], and MAD[IAUCtthp]), along with histograms of their 

corresponding semiquantitative kinetic parameters (TTP, TTHP, WIS, and IAUCtthp).
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Table 1

Patient characteristics

Parameter No. of Patients

Sex
M 14

F 10

Age
Mean 65.25 y

Range 40 – 89 y

Weight
Mean 77.33 kg

Range 47 – 113 kg

RT (Definitive or sequential CRT)

Definitive RT only 12

Sequential CRT 10

N/A 2

Tumor Volume (CC)
Mean 154.2 cc

Range 4.5 – 1130 cc

RT technique
Standard fraction 12

SBRT 12

Tumor stage
I or II 8

III or IV 16

Histopathology

AC 12

SCC 10

ASCC 1

NOS 1

M = male; F = female; AC = adenocarcinoma; SCC = squamous cell carcinoma; ASCC = adenosquamous cell carcinoma; NOS = not otherwise 
specified; RT = radiation therapy; CRT = Chemoradiation; SBRT = stereotactic body radiation therapy
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Table 2

Semiquantitative metrics of DCE-MRI

Parameter Definition Unit

Peak enhancement (PE)
Peak relative signal enhancement (RSE), i.e., maximum signal difference (MSD) divided by 
signal baseline (SB), where MSD is the difference between the signal intensity at its maximum 
and SB

Time-to-peak (TTP) Time at which PE occurs, minus bolus arrival time (BAT) in the feeding artery min

Time-to-half-peak (TTHP) Time at which half PE occurs before time at which PE occurs, mus BAT in the feeding artery min

Wash-in-slope (WIS) PE divided by TTP min−1

Wash-out-slope (WOS)
Difference between PE and RSE at the last time point (Tend), which is divided by difference 
between Tend and time at which PE occurs, if the PE does not occur at Tend; Otherwise zero min−1

Initial gradient (IG) Gradient calculated by linear regression of all the RSEs between 10% PE and 70% PE min−1

Washout gradient (WG) Gradient calculated by linear regression of all the RSEs taken between 1 and 2 min elapsed from 
BAT in the feeding artery min−1

Signal enhancement ratio (SER) RSE at 0.5 min divided by RSE at 2.5 min, elapsed from BAT in the feeding artery

Initial area under the curve (IAUC) Area under the RSE curve until a stipulated time point, elapsed from BAT in the feeding artery
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Table 3

Spearman rank correlation coefficients between DCE-MRI features and 18F-FDG-PET SUVmax

Spatial feature

Kinetic feature Mean Median SD MAD

PE −0.268 −0.137 −0.176 −0.347

TTP 0.152 0.139 0.230 0.184

TTHP −0.277 −0.351 −0.152 −0.367

WIS −0.291 −0.232 −0.284 −0.230

WOS −0.456* −0.171 −0.323 −0.207

IG 0.185 0.318 −0.067 0.177

WG −0.009 0.158 −0.179 −0.370

SER −0.381 −0.053 0.037 −0.286

IAUC30 −0.160 0.138 −0.137 −0.079

IAUC60 −0.095 0.148 −0.156 −0.071

IAUC90 −0.106 0.127 −0.160 −0.190

IAUC120 −0.111 0.120 −0.159 −0.243

IAUC150 −0.110 0.128 −0.153 −0.264

IAUC180 −0.056 0.182 −0.140 −0.311

IAUCttp 0.055 0.134 0.096 0.114

IAUCtthp −0.439* −0.543† −0.232 −0.557†

PE = peak enhancement; TTP = time-to-peak; TTHP = time-to-half-peak; WIS = wash-in-slope; WOS = wash-out-slope; IG = initial gradient; WG 
= washout gradient; SER = signal enhancement ratio; IAUC30, IAUC60, IAUC90, IAUC120, IAUC150, IAUC180, IAUCttp and IAUCtthp = initial 
area under the curve taken up to 30, 60, 90, 120, 150, 180 seconds, TTP and TTHP, respectively; SD = standard deviation; MAD = median absolute 
deviation.

*
p < 0.05.

†
p < 0.01.
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Table 4

Mean ± SD of the SUVmax and LASSO-selected DCE-MRI features in MVA grouped in terms of 

histopathology and tumor stage

Histopathology Tumor stage

Feature AC (n=12) SCC (n=10) I or II (n=8) III or IV (n=16)

SUVmax 15.15 ± 6.380 16.92 ± 5.210 13.97 ± 4.624 17.17 ± 5.924

SD(TTP) (min) 1.149 ± 0.295 1.112 ± 0.304 1.111 ± 0.313 1.150 ± 0.273

MAD(TTHP) (min) 0.130 ± 0.096 0.176 ± 0.190 0.207 ± 0.206 0.123 ± 0.083

SD(WIS) (min−1) 36.03 ± 53.52 12.15 ± 15.04 47.78 ± 62.97 11.46 ± 13.04

MAD(IAUCtthp) 0.076 ± 0.050 0.097 ± 0.087 0.124 ± 0.088 0.064 ± 0.041

TTP = time-to-peak; TTHP = time-to-half-peak; WIS = wash-in-slope; IAUCtthp = initial area under the curve taken up to TTHP; SD = standard 
deviation; MAD = median absolute deviation; AC = adenocarcinoma; SCC=squamous cell carcinoma
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