Skip to main content
. 2018 Aug 27;12:555. doi: 10.3389/fnins.2018.00555

Algorithm 1.

Greedy Feature Selection

Input: Input Feature Matrix F containing N samples of feature vector {fi}i=1N
Output: Selected Feature List l
   1:  Step 0: Initialization
   2:  Put ith feature with the best accuracy into list l
   3:  l ← argmaxi P(fi)
   4:  Initialize the best accuracy B ← 0
   5:  Initialize local best accuracy LBP(fl)
   6:  Delete fi
   7:  
   8:  Step 1: Greedy Feature Selection
   9:  while LB > B do
   10:      BLB
   11:      l ← argmaxi P(< fi, fl >)
   12:      LBP(fl)
   13:      Delete fi
   14: return l