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Genomes of phages, mitochondria, and chloroplasts are
transcribed by a diverse group of transcriptional machineries
with structurally related single-subunit RNA polymerases (RNAPs).
Our understanding of transcription mechanisms of these
enzymes is predominantly based on biochemical and structural
studies of three most-studied members, transcription factor–
independent phage T7 RNAP, transcription factor– dependent
phage N4 virion-encapsidated RNAP, and transcription factor–
dependent mitochondrial RNAPs (mtRNAP). Although these
RNAPs employ completely different mechanisms for promoter
recognition and transcription termination, these enzymes are
relatively large and formed by single polypeptides. Historically
being a model enzyme for studying the mechanisms of tran-
scription by T7-like RNAPs, however, T7 RNAP represents only
a small group of RNAPs in this family. The vast majority of
T7-like RNAPs are transcription factor– dependent, and several
of them are heterodimeric enzymes. Here, we report X-ray crys-
tal structures of transcription complexes of the smallest and het-
erodimeric form of T7-like RNAP, bacteriophage N4 RNAPII,
providing insights into the structural organization of a mini-
mum RNAP in this family. We analyze structural and functional
aspects of heterodimeric architecture of N4 RNAPII concerning
the mechanisms of transcription initiation and transition to pro-
cessive RNA elongation. Interestingly, N4 RNAPII maintains
the same conformation in promoter-bound and elongation
transcription complexes, revealing a novel transcription mech-
anism for single-subunit RNAPs. This work establishes a struc-
tural basis for studying mechanistic aspects of transcription by
factor-dependent minimum RNAP.

DNA-dependent RNA polymerases (RNAPs)3 that belong to
the T7-like family are found in phages, mitochondria, and chlo-
roplasts (1). The family is named after the first isolated (2) and

the most extensively studied member, bacteriophage T7 RNAP,
formed by a 98 kDa single polypeptide (3). Understanding of
structural organizations of T7-like RNAPs had been established
by a series of studies that captured the multiple functional
states of the enzyme, including the apo-form (4), promoter
DNA– bound (5), initiation (6), early elongation (7), and elon-
gation (8, 9) complexes, as well as a complex with transcription
inhibitor lysozyme (10). It was later significantly expanded by
determining structures of other members such as N4 virion-
encapsidated RNAP (vRNAP) (11–13) and human mitochon-
drial RNAP (hmtRNAP) (14 –17). All T7-like RNAPs, whose
crystal structures have been determined so far, consist of the
amino (N)-terminal and the polymerase domains. The polymer-
ase domain contains highly conserved elements and motifs that
participate in the basic function of RNA synthesis such as NTP
binding and selection as well as catalysis of nucleotidyl transfer
reaction. However, the N-terminal domains and inserts found
in T7-like RNAPs show surprising diversity, resulting in wide
range of molecular masses (70 –110 kDa) (18, 19). Because syn-
thesis of a faithful RNA copy of DNA remains the priority func-
tion for all T7-like RNAPs, their size differences may stem from
the optimization of gene expression in their working envi-
ronments. For this reason, structural studies of distantly
related members of this family are important for under-
standing the link between architecture of RNAPs and their
functional fitness. A comparative structure–function analy-
sis of the family members requires a suitable reference, a
minimum functional RNAP that possesses only a basic set of
functional elements.

Studies of several members of T7-like RNAPs have shown
that, indeed, aside from the catalysis of RNA synthesis, their
capabilities in RNA transcription-related functions during the
initiation, elongation, and termination vary dramatically. The
most drastic variations occur during the transcription initiation
step. Based on the abilities to recognize promoter and unwind
double-strand DNA, members of T7-like family can be grouped
into either the transcription factor–independent or – depen-
dent RNAPs (20). RNAPs of T7 and other closely related phages
are transcription factor–independent and capable of recogniz-
ing, binding, and unwinding promoter DNA to initiate RNA
synthesis on their own (21). The other members of the family
from phages, eukaryotic organelles mitochondria, and chloro-
plasts are transcription factor– dependent and are unable to
start RNA synthesis from promoters without their specific
transcription initiation factors (20, 22).
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Coliphage N4 genome encodes two members of T7-like
enzymes including the vRNAP and the RNAPII for expression
of the early and middle genes of N4 phage genome, respectively
(23, 24). The N4 RNAPII has a heterodimeric architecture com-
prising the gp15 and gp16 subunits and represents a small
group of heterodimeric enzymes within the family of T7-like
RNAPs (20). Several features distinguish RNAPII from other
members, making it an interesting subject for structure–
function studies. First, the molecular mass of N4 RNAPII
(70 kDa) is one of the smallest in the T7-like enzymes; accord-
ingly, studying its structure could reveal minimum structural
requirements for performing basic RNAP functions such as
DNA binding, catalysis of RNA synthesis, and transcript elon-
gation. Second, RNAPII is a heterodimeric enzyme containing
gp15 and gp16 subunits. Studying structure and function of the
naturally heterodimeric RNAPII addresses the long-standing
question of the way of splitting a single-subunit RNAP to func-
tional modules, i.e. separating parts of the enzyme required for
catalysis and formation of promoter-bound initiation complex.
Third, promoter-specific transcription of N4 RNAPII requires
transcription factors gp1 and gp2 for unwinding promoter
DNA and recruiting RNAPII to single-stranded DNA, respec-
tively (20). These factors are not related to any transcription
factors in the mtRNAP transcription system (TFA and TFB2 in
human and Mtf1 in yeast) (25). In this study, we report the
X-ray crystal structures of N4 RNAPII in complex with pro-
moter DNA (PDB ID: 6DT7) and engaged in the transcript
elongation (PDB IDs: 6DT8 and 6DTA) for expanding our
understanding of the evolution of the T7-like RNAPs.

Results

N4 RNAPII binds to a single-stranded promoter DNA to form a
functional initiation complex

We initially attempted to crystallize the apo-form N4 RNA-
PII but could not find conditions that produce crystals. We
therefore aimed to crystallize RNAPII in complex with pro-
moter DNA. RNAPII cannot bind and initiate transcription
from double-stranded promoter DNA without transcription
factors gp1 and gp2. However, RNAPII can bind and initiate
transcription without these factors from single-stranded DNA
(25). We designed and tested a consensus N4 middle promoter
DNA template (“Experimental Procedures”) that lacks a frag-
ment of the nontemplate strand to mimic a melted DNA bubble
around the transcription start site (Fig. 1A) (26). Specific bind-
ing of RNAPII to this DNA was confirmed by a native gel mobil-
ity shift assay (Fig. S1A). In vitro transcription assay shows that
the RNAPII initiates transcription with this template from two
separated locations: at the major and the minor sites, the latter
is 3 bp upstream from the major site (5�-GTCCACCC-3�,
where start sites are underlined) (Fig. S1B). Transcription from
the major site resulted in synthesis of 3-mer GGG and longer
poly-G transcripts, produced by transcription slippage as dom-
inant RNA products from this template even in the presence of
both GTP and UTP (Fig. S1B, lanes 1 and 2). The minor site
produces RNA transcripts containing UMP residues at their
third positions (GGU, GGUG, or GGUGG) and, thereby, hav-
ing different mobility as compared with the transcripts initiated

from the major site (Fig. S1B, lane 1). In the structure of N4
RNAPII and DNA complex described later, a DNA base
responsible for the transcription initiation at the major site
positions at the i site of RNAP active site. Hereafter, DNA bases
located downstream and upstream from the major transcrip-
tion start site DNA base are counted as �1, �2, etc., and �1,
�2, etc., respectively.

Overall crystal structure of N4 RNAPII and DNA complex

We crystallized the RNAPII–DNA binary complex and
determined its structure at 2.35 Å resolution (Table S1). The
high-quality electron density map completely covers both sub-
units of RNAPII and the segment of DNA located in the DNA-
binding channel of RNAPII. The structure of N4 RNAPII
resembles a “right hand” in a grasping conformation that
accommodates the single-stranded region of DNA. Approxi-
mate dimensions of the RNAPII–DNA complex are 80 Å � 71
Å � 65 Å. Although RNAPII is composed of two subunits, its
overall shape is similar to that of T7 RNAP (Fig. 1B).

The structural alignment between the N4 RNAPII and the T7
RNAP (PDB ID: 1CEZ) (6) allowed for clear identification of the
N-terminal domain (NTD) and the polymerase domain, includ-
ing the Thumb, Palm and Finger subdomains (Fig. 1, C and D,
and Fig. S2). We also identified the structural elements of RNA-
PII such as the specificity loop in the Fingers as well as the
AT-rich DNA sequence recognition motif and the intercalating
�-hairpin in the NTD based on their structural homologies
with those elements in the T7 RNAP (Fig. 1, C and D, and Fig.
S2).

In the crystal structure, almost all traceable residues of DNA
(�8 to �2) locate inserted into the catalytic cleft of the enzyme
(Fig. 2, A and B). The upstream duplex and the 5� terminal
residue are disordered. The orientation of DNA in the complex
suggests that the upstream duplex may not interact with the
specificity loop or AT-rich recognition motif of RNAPII (Fig.
1C and Fig. S2). The majority of RNAPII-DNA interactions are
not DNA sequence specific.

Dimerization of N4 RNAPII subunits

The T7 RNAP can be physically split at the junction between
the NTD (residues 1–179) and the polymerase domains (resi-
dues 180 – 880), and the functional recombinant T7 RNAP can
be assembled in vivo and in vitro by mixing these two recombi-
nant polypeptides (27). Unlike the synthetic split version of
T7 RNAP, the naturally split N4 RNAPII uses an alternative
approach to form a functional RNAP with two polypeptides.
Thus, gp15 subunit comprises the NTD together with the
Thumb and a short segment of the Palm, whereas gp16 contains
the rest of subdomains including the Palm and Fingers (Fig. 1, B
and C, and Fig. S2). We also note that the binding interface
between gp15 and gp16 is represented mostly by charged
patches (Fig. S3A), which is, likely, important for enabling sol-
ubility of the subunits before dimerization. Splitting T7 RNAP
in a manner of RNAPII results in exposing hydrophobic patches
on their dimerization surfaces, making such synthetic subunits
prone to aggregation (Fig. S3B).

Dimerization of subunits gp15 and gp16 involves two bind-
ing interfaces. The main dimerization surface is formed by
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a bundle of structural elements, including �-helices, short
�-strands, and segments of unstructured loops (Fig. 2A), mak-
ing nine pairs of polar contacts (Asp162–Arg257, Arg166–Asp260,

Asp177–Tyr53, Arg238–His245, Gly239–Arg253, Arg240–Asp248,
Gln251–Thr339, Glu264–His336, and Glu266–Ile68, between gp15
and gp16 residues, correspondingly). Other residues on the

Palm

FingersN-terminal 
domain

AT-rich 
mo�f

Specificity loop

Intercala�ng 
β-hairpin

Thumb
TS DNA

C

RNA exit pore

Palm inser�on

N-terminal 
domain

AT-rich 
mo�f

TS DNA

180°

Fingers

Specificity loop

Thumb3’
3’

MSTIEHQMHLEKLYNKNQLLPRMRQEFEENSGIDFKAFFAHIGIDYKFGIDAMVQMALHKRADLPTLVGTLRHHCKSAQEVADNLFKMASEDCFNFDPTI

DKFIVIYTISDDVQHELDSFQYPLPMVVRPKLLTKNYGTGYFTCNKSVILKKNHTDDDICLDHLNRMNKIPLSINWDVAHMVKNEWANLDKPKEGETRQE

FEKRVRAFQKYDRTAHEVMGLLTQEGNKFYLTHRPDKRGRTYSQGYHVNYQGTSWNKAVLEFAEKEVIDMQTFTAREYLKIDIANNYGLDKEDWDDRIAW

FDKNENNLLNLVREAEEPALFYAGVKAWMDVKEGKPIGYPVALDATSSGLQILACLTGDRRAAELCNVVNYRDESGKVKRRDAYTVIYNKMLNTLGKGAR

IKRNDCKQAIMTALYGSEAKPKEVFGEGIMLNVFESTMNVEAPAVWELNKFWLQCGNPEAFVYHWVMPDGFNVYIKVMVNEVETVHFLDKPYDCVRKVQG

TEEKTRMLSANTTHSIDGLVVRELVRRCDYDKNQIEYIKALCNGEAEYKASEKNYGKAMELWGYYEKTGFLTARIFDYLDSETIKLVNTQDILDLIESMP

KKPFHVLTVHDCFRCLPNYGNDIRRQYNNLLATIAKGDLLSFIMSQVIGQEVTIGKLDPTLWEDVLETEYALS

1 (D) 3 (E) 5 (G)

7 (J)

12 (D) 6 (I)

8

4 (F)

9

2

43 10

1

101

201

301

401

501

601

23 24

15 16

21

10

29 30 31

6

26

14

19

25

12

13

5

8

9

11 13 14

20 22

27 28

17 18

7

10 12

14

11

AT-rich like mo�f

hairpin

β-intercala�ng

gp16 N-terminus

DxxGR mo�f

mo�f A

mo�f B (O-helix)          Y helix specificity loop

N4 RNAP2-specific Palm inser�on

mo�f C

D

N4 middle promoter template DNA

Transcrip�on start sites

17 bp 9 bp

A

TS
NT

Minor Major

B
gp16

gp15
TS DNA

3’
N4 RNAPII T7 RNAP

DNA

Figure 1. The overall crystal structure of N4 RNAPII–promoter DNA complex. A, schematic representation of the N4 consensus middle promoter DNA
template used for crystallization of the complex. The hairpin-like template lacks the nontemplate region from �3 to � 6. The region of the TS DNA solved in
the crystal structure is shown by a bracket. The arrows indicate the identified transcription start sites. B, the overall view of the N4 RNAPII-promoter DNA
structure compared with the T7 RNAP–promoter DNA structure. The protein structures are shown as surface models with DNAs shown as ribbon models. N4
RNAPII subunits gp15 and gp16 are shown in light blue and light green, correspondingly; DNA is shown in magenta. C, domain organization of N4 RNAPII. Two
views of the complex are represented as ribbon models overlaid on surface models with subdomains and structural motifs labeled by different colors. The NTD,
Thumb, Palm, Fingers, and Palm insertion subdomains are shown in gray, green, red, marine, and wheat, correspondingly; DNA is shown in magenta. Structural
homologs of RNAPII promoter recognition elements, the specificity loop, intercalating �-hairpin, AT-rich recognition motif are shown in light blue, yellow, and
blue, correspondingly. Structural analog of the RNA exit pore is shown in the right panel. D, schematic secondary structure map of N4 RNAPII. �-helices and
�-strands are depicted as rectangles and arrows, correspondingly, colored according to their subdomain localization as in panel C. The structural motifs
conserved in T7-like RNAPs are underlined and signed.

Crystal structures of N4 RNA polymerase II

13618 J. Biol. Chem. (2018) 293(35) 13616 –13625



dimerization interfaces also engage in a number of hydrophobic
and van der Waals interactions. The orientation of constituent
elements of the gp15 dimerization surface relative to those in
the corresponding dimerization surface of gp16 is close to per-
pendicular. The second smaller dimerization site lies on the
interface between the NTD and the specificity loop. This inter-
action includes four polar contacts (Arg72–Glu214, Gln79–
His217, Asp101–Lys221, and Asp101–Tyr223, in gp15 and gp16,
correspondingly) and a hydrophobic interaction between the
side chains of Phe96 and Phe103 in the NTD and Phe218 in the
specificity loop.

The determinants for promoter recognition and melting are
functionally disabled

The specificity loops of T7 RNAP and N4 vRNAP are posi-
tively charged and insert into the major groove of DNA to rec-
ognize DNA sequences during the RNAP–promoter DNA
complex formation (Fig. 2B) (5, 11). DNA recognition requires
substantial flexibility of the specificity loop and in part depends
on its length. Accordingly, the specificity loops of the T7 RNAP

and N4 vRNAP are long and flexible, suitable for establishing
the DNA base-specific interaction. In contrast, the specificity
loop of the N4 RNAPII is mostly negatively charged (Fig. 2B)
and rigid because of interaction with the NTD (Fig. 2A), arguing
against its role in DNA sequence recognition during the pro-
moter DNA complex formation.

The NTDs of T7 RNAP and N4 vRNAP function as platforms
for promoter DNA recognition and unwinding (5, 13, 14).
Shapes and electrostatic potentials of the NTD provide comple-
mentary surfaces for specific binding of the double-stranded
and hairpin forms of promoter DNA in T7 RNAP and N4
vRNAP, respectively. Particularly, the AT-rich recognition
motif and the intercalating �-hairpin of these RNAPs are
separated by a significant distance for recognizing promoter
sequence and DNA unwinding. In contrast, the NTD of N4
RNAPII (gp15 residues 1–168) is substantially smaller in size
and the AT-rich recognition motif and the intercalating �-hair-
pin locate closer to each other, indicating that these elements
are not suitable for the promoter DNA binding or unwinding
(Fig. 2C and Fig. S2).

Polymerase domain and RNA exit pore

The polymerase domain of RNAPII harbors a deep cleft for
template DNA binding; the bottom of the cleft possesses con-
served motifs (A, B, and DXXGR motifs), including two con-
served Asp residues of the Palm (gp15 residues 226 –269; gp16
residues 1–90 and 245– 404) for coordinating catalytic Mg ions
(Fig. 3A). The Palm has a 71-residue insertion (Palm insertion)
located in the back of the active site (Fig. 1, C and D), but its
function is unknown.

The N-terminal part of the Fingers subdomain contains
seven �-helices and four �-strands (Fig. 1D), including the
motif B (RX3KX7YG) for binding NTP during the RNA synthe-
sis. A structural analysis of T7-like RNAPs revealed that the
enzymes fall into two classes based on their sizes of O/Y-helices
in the Fingers. T7 RNAP and N4 vRNAP contain long O/Y-heli-
ces touching Thumbs, whereas N4 RNAPII and mtRNAP have
short O/Y-helices unable to interact with Thumbs. In case of
hmtRNAP, transcription factor TFB2M binds in between the
Fingers and Thumb, trapping the nontemplate DNA in the ini-
tiation complex (17). Because the N4 transcription factor gp2
plays a similar role in the open complex formation of the N4
RNAPII transcription, it may also locate in between the Fingers
and Thumb of the N4 RNAPII.

The C-terminal part of the Fingers contains the specificity
loop, which contacts the NTD to form a circle of about 20 Å in
diameter. The opening is positively charged, and it locates suit-
able for passing single-stranded RNA, suggesting its function as
the RNA exit pore (Fig. 3B, right).

N4 RNAPII–DNA contacts in the promoter binary complex

The template-strand (TS) DNA enters the catalytic cleft
through a narrow passage formed by the NTD and the Thumb
(Fig. 1C). The RNAPII surfaces around the passage and along
the entire length of TS DNA inside the catalytic cleft are posi-
tively charged (Fig. 3B, left). The catalytic cleft fits eight DNA
bases (�6 to �2) (Fig. 1C). The �6C base at the 3� end of TS
DNA forms a stacking interaction with His59 residue of the
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NTD (Fig. 3, A and B) and following bases until �3 position
faces toward the RNA exit pore. There is a sharp turn between
bases �3 and �2, which sets the base stacking profile further
downstream to the residue �2 (Fig. 3A). There are extensive
interactions between RNAP and DNA from �2 to �2 positions
(Fig. 3C) that place DNA bases toward the NTP-binding sites (i
and i�1 sites) at the active site of RNAP. Particularly, DNA
bases from �1 to �2 adopt an A-form helical conformation
ready for base pairing with incoming nucleotides (Fig. 3A).

Organization of N4 RNAPII elongation complexes

We reconstituted functional elongation complexes of RNA-
PII by binding DNA:RNA scaffolds that mimic natural nucleic
acid components of an elongation complex to the enzyme (scaf-
folds 1 and 2, “Experimental Procedures”). Initially, we tested
the assembly of an elongation complex using the DNA:RNA
scaffold made of the N4 promoter template (Fig. 1A) and an
8-mer RNA primer annealed to the single-stranded region of
the TS DNA. However, the resulting elongation complex failed
to produce crystals. To overcome this problem, we first crystal-
lized binary complexes of RNAPII with DNA templates from

scaffolds 1 and 2, and then soaked corresponding RNA primers
into preformed crystals. Binding of RNA primers to DNA tem-
plates in crystals was confirmed by 5� end labeling of nucleic
acids in washed crystals with 32P (not shown). To explore the
mechanism of RNA extension in RNAPII elongation complex,
crystals containing the scaffold 2 were additionally soaked in
a solution supplemented with Mg2� and the next incoming
nucleotide GTP.

The overall geometry and conformation of RNAPII in the
elongation complexes remains essentially unchanged as com-
pared with the binary complex (Fig. 4A) except for disordering
of the Thumb’s tip (Fig. 4B). The catalytic cleft of RNAPII is
occupied by the DNA:RNA hybrid with the 5� end of RNA
located near the proposed RNA exit pore (Figs. 4C and 5, A and
C) and the 3� end of RNA located at the i site of the active site,
indicating that the elongation complexes are in the posttrans-
located state. (Fig. 5, A and C). The reconstituted RNAPII elon-
gation complexes contained DNA:RNA hybrids of different
traceable lengths (Fig. 5). In the elongation complex assembled
with the scaffold 1 and 12-mer RNA (EC1), the electron density
is traceable for 6 bp of the DNA:RNA hybrid (Fig. 5, A and B,
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and Fig. S4). In the elongation complex assembled with the
scaffold 2 and 8-mer RNA plus GTP, the DNA:RNA hybrid is
traceable for 7 bp (Fig. 5, C and D, and Fig. S4). The electron
density map also shows a GTP bound at the i�1 site base paired
with the TS DNA base (Fig. 5, C and D, and Fig. S4). GTP is not
incorporated into the RNA as indicated by the presence of the
triphosphate group in GTP and a 4.8 Å distance from its �
phosphate to the 3� OH group of RNA not optimal for catalysis
(Fig. 5, C and D). Apparently, despite the correct binding of
GTP at the i�1 site, RNAPII-binding restraints disable catalysis
in crystallo. In both elongation complexes RNA primers were
designed to anneal to the same DNA segment forming DNA:
RNA hybrids of the same length. The observed difference in the
traceable lengths of the DNA:RNA hybrids may be attributed to
topological restraints of accommodation of the longer 5� end of
12-mer RNA in the crystalline RNAPII transcription complex.
We speculate that the 5� end of 12-mer RNA is unable to effi-
ciently thread through the RNA exit pore and becomes disor-
dered in the complex.

Discussion

The X-ray crystal structure of the DNA-bound N4 RNAPII
reveals details of the architecture of a minimum RNAP of
T7-like family of enzymes. The overall structure of RNAPII,
particularly that of the polymerase domain, is similar to other
RNAPs. The major structural difference in RNAPII concerns a
substantial reduction in size of the NTD. Being significantly
smaller than its counterparts in other T7-like enzymes, the

NTD of N4 RNAPII, nevertheless, contains the structural ana-
logs of the conserved promoter DNA recognition motifs such as
the AT-rich recognition motif and the �-intercalating hairpin.
In factor-independent T7 RNAP, mobility of the NTD enables
conformational transitions from the promoter-bound nonpro-
cessive initiation complex (where the AT-rich recognition
motif and the �-intercalating hairpin are engaged in specific
DNA contacts and DNA duplex melting) to the processive
sequence–independent elongation complex (in which these
structural elements locate far from DNA). Thus, the NTD of T7
RNAP is the major determinant of specific transcription initia-
tion at early stages of transcription and a key contributor to the
enzyme processivity during later stage of transcription. In
factor-dependent RNAPs the role of NTD appears to be differ-
ent. In hmtRNAP, the NTD is not capable of refolding. Instead,
it serves primarily as a binding platform for transcription fac-
tors, TFAM and TFB2M for the transcription initiation and
TEFM for the transcription elongation (16, 17). Only in com-
plex with transcription factors TFAM and TFB2M, the AT-rich
recognition motif and the �-intercalating hairpin of the
hmtRNAP NTD participate in promoter DNA binding for posi-
tioning the transcription start site of DNA at the active site. In
N4 RNAPII, the role of the NTD in promoter binding and melt-
ing appears to reduce even further; the AT-rich recognition
motif and the �-intercalating hairpin locate at a short distance,
unable to establish specific interactions with DNA (Fig. 2C).
This finding suggests that the NTD of RNAPII serves merely as
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Figure 4. The crystal structure of N4 RNAPII elongation complex. A, overall view of the RNAPII elongation complex assembled on scaffold 1. The orientation
of the complex is the same as of the binary complex in Fig. 1C. N4 RNAPII subunits are shown as semi-transparent surface models colored as in Fig. 1B. DNA and
RNA are shown as stick models in magenta and red, correspondingly. The location of the RNA exit pore is indicated. B, the Thumb subdomain is disordered in
the RNAPII elongation complex. C, organization of the DNA:RNA hybrid in the elongation complex and location of the RNA exit pore. RNAPII is shown as a
surface model of light blue (gp15) and light green (gp16) colors; some regions of the enzyme in frontal projection were removed to show the catalytic cleft. DNA
(magenta) and RNA (red) are shown as stick models overlaid on electron density maps.
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a platform for assembly with transcription factors that recruit
the enzyme to premelted promoter DNA. Other evidence sug-
gesting that RNAPII lacks capability for promoter recognition
by itself is provided by its specificity loop. Although it maintains
the same architecture as the one found in T7 RNAP, it lacks
positively charged residues at the tip (Fig. 2B) and packs against
the NTD (Fig. 1C), limiting its flexibility.

Presently, understanding of mechanisms of transcription by
T7-like RNAPs is biased by availability of crystal structures
obtained for enzymes with cores formed by single polypeptide
chains. The overall geometry of heterodimeric N4 RNAPII
shows good correlation with other members of the family (Fig.
1B). However, a heterodimeric nature of RNAPII appears to
provide additional capabilities to the enzyme. First, the hinge-
like organization of the dimerization site between gp15 and
gp16 subunits (Fig. 4A) may be important for fast loading of TS
DNA to the active site. Second, RNAPII dimerization is associ-
ated with the increased capacity of the catalytic cleft of the
polymerase domain, which can accommodate a longer, up to
8 bp, DNA:RNA hybrid without structural constraints or rear-

rangements. Unconstrained accommodation of a growing
DNA:RNA hybrid may represent an efficient mechanism opti-
mized for rapid transition from initiation to elongation. As it
has been shown for T7 RNAP, this enzyme remains bound to
the promoter and translocates the active center along the tem-
plate by the mechanism of DNA scrunching during early tran-
scription initiation (5). Gradual accumulation of topological
stress within the T7 RNAP initiation complex triggered by the
growing DNA:RNA hybrid induces refolding of the enzyme
to the elongation conformation. Transition from initiation
to elongation has been shown to be a major barrier for many
polymerases; this process constitutes a significant fraction of
time required for transcription of an average gene and
results in nonproductive reiterative cycles of RNA synthesis
and abortion (28). Although additional crystallographic
studies are required to address the architecture of the com-
plete RNAPII initiation complex, heterodimeric organiza-
tion of N4 RNAPII may represent the mechanism of adapta-
tion for minimizing an energetic barrier on the way to
processive transcription.
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One of the evidences indicating that RNAPII evolved toward
facilitated transition from transcription initiation to elongation
is the finding of a preformed RNA exit pore in the promoter-
bound enzyme not engaged in transcription. In both the T7-like
single-subunit RNAPs and cellular multisubunit RNAPs, the
RNA exit pore is formed in the course of extension of nascent
transcript (15, 16, 22, 29). Funneling the 5� end of transcript to
the RNA exit pore after its separation from TS DNA greatly
stabilizes the transcription complex and contributes to pro-
cessive RNA synthesis. The presence of the RNA exit pore in
the RNAPII prior to RNA synthesis suggests that the enzyme
bypasses the need for structural rearrangements from tran-
scription initiation to elongation stages.

We, however, note that there is one fundamental structural
difference between RNAPII and hmtRNAP. Transition from
initiation to elongation in hmtRNAP is accompanied by the
formation of the RNA exit channel underneath the intercalat-
ing hairpin separating RNA from DNA at the upstream bound-
ary of the DNA:RNA hybrid (15). An important role in main-
taining the processivity of the hmtRNAP elongation complex
plays the transcription factor TEFM that binds to the enzyme to
cover the RNA exit channel turning it into a wide pore (16). In
RNAPII the RNA exit pore exists prior to synthesis of an RNA
transcript, and its parameters resemble that in T7 RNAP elon-
gation complex rather than in hmtRNAP. The RNA exit pore in
RNAPII supports the hypothesis that the enzyme performs all
stages of transcription without undergoing major structural
changes.

The structures of RNAPII also provide a clue about the most
functional arrangement of domains in naturally split T7-like
enzymes. There have been a number of studies reporting func-
tional activities of T7 RNAP split into two to four fragments
(splitting occurring in the NTD (residues 67 and 179) or the
Fingers (residue 601)) as shown recently (27, 30). Surprisingly,
such variants of T7 RNAP remained functional but showed
decreased activities compared with the WT enzyme. A struc-
tural analysis shows that the observed reduced activities of split
versions of T7 RNAP may be caused by their lower stabilities
because of relatively small binding surfaces of the interacting
polypeptides. In this regard, N4 RNAPII shows an example of a
split T7-like RNAP with a flexible but stable subunit arrange-
ment. If RNAPII were split into the NTD and the polymerase
domain as in the split versions of T7 RNAP, the resulting het-
erodimer would be significantly less stable and, likely, prone to
dissociation during transcription (Fig. S3B). The structures of
RNAPII suggest that a compromise between maximum stabil-
ity of the heterodimer and maintaining flexibility of the cata-
lytic cleft may be achieved by splitting enzyme single polypep-
tide at the Palm subdomain.

Experimental procedures

Protein expression and purification

N4 RNAPII was prepared by co-expressing gp15 and N-ter-
minal hexahistidine-tagged gp16 subunits in Escherichia coli
strain BL21 transformed with plasmid pAD1 (25). RNAPII was
purified by Ni2�-affinity chromatography and heparin column
chromatography as described (18). Se-Met derivative of N4

RNAPII was expressed under the condition of suppressed
methionine biosynthesis (31). The proteins were exchanged
into the storage buffer (40 mM Tris-HCl, pH 8.0, 200 mM NaCl,
5 mM �-mercaptoethanol, and 0.1% Tween 20) by dialysis, con-
centrated to 20 mg/ml by centrifugation (Vivaspin 20 concen-
trator, Sartorius AG), flash-frozen in liquid nitrogen, and stored
at �80 °C.

Crystallizations of the RNAPII–promoter DNA complex and
elongation complex and determination of their structures by
X-ray crystallography

For crystallization of the RNAPII–DNA complex, we used
DNA oligonucleotide designed to self-anneal with the forma-
tion of a partially single-stranded hairpin-like template con-
taining the consensus sequence of N4 middle promoter (Fig.
1A) (5�-CCCACCTGCAAAACGGTCTGCGAATCTCTCT-
GATTCGCAGACCGTTTT-3�). The RNAPII–DNA complex
was formed by mixing equimolar amounts of N4 RNAPII (20
mg/ml) and DNA followed by incubation for 10 min at 22 °C.
The crystals were obtained by hanging-drop vapor diffusion
method at 22 °C with the crystallization solution containing
0.17 M sodium acetate, 0.085 M sodium cacodylate, pH 6.5, 15%
PEG8000, 15% glycerol, and 5 �M spermine. Hexagonal crystals
appeared overnight and reached their maximum dimensions of
0.2 � 0.2 � 0.1 mm in 3– 4 days. Crystals were harvested from
crystallization drops and directly frozen in liquid nitrogen.

Crystals of the N4 RNAPII elongation complexes were pre-
pared by soaking RNA into the RNAPII–DNA complex crystals
prepared as described above. DNA sequences used for crystal-
lizations were 5�-AACCCACCAAAAAACGGTCTGCGAAT-
CTCTCTGATTCGCAGACCGTTTT-3� (EC scaffold 1) and
5�-CCCACCAAAAAAACGGTCTGCGAATCTCTCTGAT-
TCGCAGACCGTTTT-3� (EC scaffold 2) (Fig. 5, B and D).
Crystals of RNAPII–DNA complexes were soaked in the crys-
tallization solution supplemented by 0.5 mM RNA (RNA12,
5�-AAAAUUUGGUGG-3� for EC1 and RNA8, 5�-UUUG-
GUGG-3� for EC2) and incubated overnight at 4 °C. Crystals of
RNAPII elongation complex containing the scaffold 2 were
additionally soaked overnight in the crystallization solution
supplemented with 1 mM GTP and 20 mM MgCl2. After soak-
ing, crystals were harvested and directly frozen in liquid
nitrogen.

The diffraction datasets for Se-Met crystals were collected at
the X29 beamline of the National Synchrotron Light Source
(Brookhaven National Laboratory, Upton, NY), and datasets for
native crystals were collected at the F1 beamline of the Cornell
High Energy Synchrotron Source (Cornell University, Ithaca,
NY). The crystallographic datasets were processed using
HKL2000 (32). The crystal structure of RNAPII–DNA complex
was determined by selenium single-wavelength anomalous dif-
fraction (SAD) method using the suite of programs PHENIX
(33). The crystals containing Se-Met–labeled RNAPII belong to
C2 space group with two RNAPII–DNA complexes per asym-
metric unit, whereas the crystals containing native RNAPII
belong to I4 space group with one RNAPII–DNA complex per
asymmetric unit.

With the anomalous signal from Se-Met, 42 of a possible 44
selenium sites in the asymmetric unit were located and the
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experimental phase (figure of merit: 0.287) was calculated by
using Automated Structure Solution (AutoSol) in PHENIX.
Density modification by Automated Model Building (Auto-
Build) in PHENIX yielded an excellent map and �86% of the
model was built automatically. Manual model building of pro-
tein and DNA were done by Coot. The structures of binary and
elongation complexes containing native RNAP were deter-
mined by the molecular replacement using Automated Molec-
ular Replacement (Phaser-MR) in PHENIX. Final coordinates
and structure factors have been deposited to the Protein Data
Bank (PDB) with the accession codes listed in the Table S1.

In vitro transcription assay

N4 RNAPII and promoter DNA (same as used for crystalli-
zation of the binary complex) complex was assembled by incu-
bating 5 �M DNA and 5 �M RNAPII in the transcription buffer
(40 mM Tris-HCl, pH 7.9, 15 mM MgCl2, 5 mM �-mercaptoeth-
anol) for 10 min at 22 °C. RNA transcriptions were initiated by
adding 400 �M GTP or GTP and UTP along with 0.1 �Ci of
[�-32P]GTP. The reactions were stopped after 10 min by adding
an equal volume of the stop solution (90% formamide, 50 mM

EDTA). The 32P-labeled RNAs were resolved by denaturing gel
(20% acrylamide, 7 M urea) electrophoresis, visualized by Phos-
phor Imager Typhoon 9410 (GE Healthcare) and analyzed
using the software Image Quant 5.1 (GE Healthcare).

Gel mobility shift assay

N4 middle promoter template (5�-CCCACCTGCAAAAC-
GGTCTGCGAATCT CTCTGATTCGCAGACCGTTTT-3�)
was labeled with 32P at the 5� end using T4 polynucleotide
kinase (New England Biolabs). 5 �M template was mixed with
different amounts of N4 RNAPII in the transcription buffer (40
mM Tris-HCl, pH 7.9, 15 mM MgCl2, 5 mM �-mercaptoethanol),
incubated for 10 min at 22 °C, and loaded to a nondenaturing
7% acrylamide gel. DNAs were visualized by Phosphor Imager
Typhoon 9410 (GE Healthcare) and analyzed using the soft-
ware Image Quant 5.1 (GE Healthcare).
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