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Multiple DNA damage response (DDR) pathways have
evolved to sense the presence of damage and recruit the proper
repair factors. We recently reported a signaling pathway
induced upon alkylation damage to recruit the AlkB homolog 3,
�-ketoglutarate–dependent dioxygenase (ALKBH3)–activating
signal cointegrator 1 complex subunit 3 (ASCC3) dealkylase–
helicase repair complex. As in other DDR pathways, the recruit-
ment of these repair factors is mediated through a ubiquitin-de-
pendent mechanism. However, the machinery that coordinates
the proper assembly of this repair complex and controls its
recruitment is still poorly defined. Here, we demonstrate that
the ASCC1 accessory subunit is important for the regulation of
ASCC complex function. ASCC1 interacts with the ASCC com-
plex through the ASCC3 helicase subunit. We find that ASCC1
is present at nuclear speckle foci prior to damage, but leaves the
foci in response to alkylation. Strikingly, ASCC1 loss signifi-
cantly increases ASCC3 foci formation during alkylation dam-
age, yet most of these foci lack ASCC2. These results suggest
that ASCC1 coordinates the proper recruitment of the ASCC
complex during alkylation, a function that appears to depend on
a putative RNA-binding motif near the ASCC1 C terminus. Con-
sistent with its role in alkylation damage signaling and repair,
ASCC1 knockout through a CRISPR/Cas9 approach results in
alkylation damage sensitivity in a manner epistatic with ASCC3.
Together, our results identify a critical regulator of the
ALKBH3–ASCC alkylation damage signaling pathway and sug-
gest a potential role for RNA-interacting domains in the alkyla-
tion damage response.

Endogenous DNA alkylation damage is caused by numerous
agents that are present in the environment, as well as by cellular
metabolism (1–3). Exogenous alkylation damage may be
induced by a number of cancer chemotherapeutics. If left unre-
paired, alkylated adducts can stall replication, cause mutations,
and potentially lead to cell death. Because of the diverse chem-
ical nature of alkylation damage, multiple pathways have
evolved to protect the genome from alkylation damage.
These include base-excision repair (BER),4 direct reversal by
O6-methylguanine methyltransferase (MGMT), and the AlkB
family of demethylases/dealkylases (1, 2, 4).

Although BER excises alkylated bases, it is also responsible
for the removal of many other forms of DNA damage, including
oxidized bases, uracil, and other deaminated bases (5). Con-
versely, MGMT and the AlkB proteins appear to be dedicated
solely to the direct reversal of alkylation damage (1, 2, 4).
MGMT repairs O-linked adducts by the direct transfer of an
alkyl group to a cysteine in the active site via a nonenzymatic
mechanism that inactivates MGMT (6, 7). AlkB proteins, how-
ever, are bona fide demethylases/dealkylases that directly
reverse N-linked adducts such as 1-methyladenine (1meA) and
3-methylcytosine (3meC) in an Fe(II) and 2-oxoglutarate– de-
pendent reaction (8, 9). 1meA and 3meC are particularly cyto-
toxic as both disrupt canonical base pairing, hence blocking
replicative DNA polymerases (2). In humans, there are nine
AlkB homologs (10 –12), but only two of these proteins,
ALKBH2 and ALKBH3, have been shown to repair 1meA and
3meC in DNA (13).

It is important for the cell to coordinate the various alkyla-
tion repair pathways, as there is some redundancy in the sub-
strate binding of the numerous repair factors. This overlap in
substrate preference may lead to a potential conflict during ini-
tial lesion recognition and reduce the efficiency of repair. For
example, alkyl-adenine glycosylase (AAG and N-methylpurine
DNA glycosylase), which is involved in initiating BER, binds to
the 3,N4-ethenocytosine (�C) lesion but cannot excise the base
(14, 15). Interestingly, ALKBH2 is capable of repairing �C but is
inhibited by the presence of AAG (16). Because of such compe-
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tition, it is important for the cell to have a tightly controlled
damage response to ensure that repair occurs in an efficient
manner, while simultaneously preventing recruitment of inap-
propriate repair factors. To understand the interplay between
these different repair mechanisms, it is first necessary to deter-
mine the regulation of the individual alkylation damage repair
pathways. However, for alkylation damage repair, little is
known about the regulation of repair factor recruitment in vivo.

We and others previously found that the ALKBH3 demeth-
ylase associates with the Activation Signal Cointegrator Com-
plex (ASCC, also known as ASC-1) (17, 18), which plays a key
role in repairing alkylated DNA in cell lines overexpressing
ALKBH3, such as prostate and non-small cell lung tumor cells
(18 –20). ASCC is composed of three proteins: ASCC1, ASCC2,
and ASCC3 (also known as p50, p100, and p200, respectively)
(17). Biochemical characterization of this complex revealed
that ASCC3 is a DNA helicase, whose unwinding activity is
crucial for dealkylation by the ALKBH3 repair enzyme in vitro
(18). It is thought that ASCC3 and ALKBH3 work in concert
such that ASCC3 generates the single-stranded substrate
needed for ALKBH3-mediated repair. Recently, we found that
ASCC2 is important for the recruitment of the ALKBH3–
ASCC3 complex to nuclear speckle foci specifically during alky-
lation damage (21). This recruitment depends upon nonprotea-
somal Lys-63–linked ubiquitination by the E3 ligase RNF113A
(21). The ubiquitination is recognized by the ASCC2 subunit,
which is responsible for the recruitment of both ASCC3 and
ALKBH3 to sites of damage. Loss of ASCC2 results in
increased sensitivity to alkylating agents, strongly suggesting
that ASCC2-mediated recruitment is critical for efficient
repair (21).

Here, we characterize ASCC1, the smallest subunit of the
ASCC complex. We find that ASCC1, unlike ASCC2 or ASCC3,
is constitutively present at nuclear speckle foci, yet it is removed
from these nuclear regions upon alkylation damage. As a result,
ASCC1 is capable of modulating ASCC3 recruitment during
alkylation damage. This behavior of ASCC1 depends upon its
C-terminal RNA ligase-like domain. Together, our data suggest
a novel regulatory mechanism for the ALKBH3–ASCC repair
pathway wherein ASCC1 modulates the localization and func-
tion of the complex components.

Results

ASCC1 interacts directly with ASCC3 but is present at nuclear
speckle foci in the absence of damage

We wished to determine what factors associated with the
ASCC complex are involved in regulating its function in
response to alkylation damage. To this end, we focused on
ASCC1, a protein previously shown to copurify with ASCC2
and ASCC3 (17, 18). To determine how the individual complex
components associate with one another, we performed immu-
noprecipitation of HA-ASCC1 and HA-ASCC2 (Fig. 1A). Both
of these factors coimmunoprecipitated ASCC3 from 293T
cells. Consistent with this, immunoprecipitation of endoge-
nous ASCC3 from 293T cell extracts yielded ASCC1, suggest-
ing that this physical interaction is present at the endogenous
level (Fig. 1B). To test whether ASCC1 and ASCC3 interact

directly, we purified all three components of the complex as
recombinant proteins. His-tagged ASCC3 bound to immobi-
lized GST-tagged ASCC1, as well as GST-ASCC2, but not
GST alone (Fig. 1C). An N-terminal truncation of ASCC3
(N�-ASCC3; residues 401–2202) abrogated the interaction
with ASCC2 but did not affect ASCC1 binding (Fig. 1C). Thus,
both ASCC1 and ASCC2 can bind directly to ASCC3, but likely
through distinct regions within ASCC3. Recombinant ASCC1
and ASCC2 did not interact with each other in pulldown assays
(Fig. S1A), suggesting that ASCC3 serves as a scaffold between
ASCC1 and ASCC2. To test this, we knocked out ASCC3 in
PC-3 cells using CRISPR/Cas9 (Fig. S1B). Immunoprecipita-
tion of HA-ASCC1 from parental PC-3 cells yielded the other
two components of the complex, but ASCC2 was not coimmu-
noprecipitated in the absence of ASCC3 (Fig. 1D). Thus,
ASCC3 is required to bridge the interaction between ASCC1
and ASCC2 in vivo.

As both ASCC2 and ASCC3 form nuclear foci specifically
upon alkylation damage (21), and in light of the physical inter-
actions between the complex components, we reasoned that
ASCC1 may also form alkylation-induced foci (Fig. S1, C and
D). However, HA-tagged ASCC1 formed foci that colocalized
with the nuclear speckle component PRP8 in the absence of any
damage (Fig. 1, E and F, and Fig. S1E). Surprisingly, treatment of
the cells with the alkylating agent methyl methanesulfonate
(MMS) significantly reduced ASCC1 colocalization with these
nuclear domains in a time-dependent manner. This was not
due to a reduction in the expression level of the tagged ASCC1
during MMS treatment (Fig. S1F). Taken together, these results
suggest that ASCC1 is part of the ASCC complex but may per-
form a distinct function in response to alkylation damage.

ASCC1 modulates alkylation-induced ASCC3 foci formation

We next wished to determine the role of ASCC1 in ASCC3
foci formation. To this end, we knocked out ASCC1 in U2OS
cells using CRISPR/Cas9 (Fig. S2, A and B). Interestingly, loss of
ASCC1 significantly increased MMS-induced ASCC3 foci for-
mation (Fig. 2, A and B). This increase was apparent with two
different knockout clones, making it unlikely that the induction
of foci was due to an off-target effect of CRISPR/Cas9. These
results were not attributable to an increase of ASCC3 foci at
baseline (i.e. without MMS) in the ASCC1 KO cells (Fig. S2C).
In time-course experiments, ASCC3 foci were still resolved in
the absence of ASCC1 upon removal of MMS (Fig. S2C). These
results suggested that ASCC1 modulates ASCC3 foci formation
during alkylation damage.

We next asked whether ASCC1 affects the colocalization of
other components of the ASCC complex. Upon MMS treat-
ment, nearly 75% of WT cells had colocalizing ASCC3 and HA-
ASCC2 foci (Fig. 2, C and D). Under the same conditions,
ASCC1 KOs had significantly fewer cells with colocalizing HA-
ASCC2 and ASCC3 foci (42%). This was not due to a difference
in the expression level of HA-ASCC2 in parental versus ASCC1
KO cells (Fig. S2D). This suggested that ASCC1 may function to
promote colocalization of the other two components during
alkylation damage. To test this biochemically, we immunopre-
cipitated endogenous ASCC2 in WT versus ASCC1 knockout
PC-3 cells (Fig. S2E). Consistent with the diminished interac-
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tion observed by microscopy, less ASCC3 was coimmunopre-
cipitated with ASCC2 in ASCC1 knockout cells than in WT
cells upon alkylation damage (Fig. 2E). Thus, ASCC1 appears to
coordinate the proper recruitment of the complex components
during alkylation.

Deletion analysis of ASCC1 reveals modular functional
domains

We reasoned that distinct domains within ASCC1 may be
responsible for the interaction with ASCC3 and its removal
from the nuclear speckle domains during damage. ASCC1 con-
tains a KH domain adjacent to an unstructured region at its N
terminus, as well as an RNA ligase-like C terminus, which has
been postulated to be an RNA-binding domain (22–24). We
created deletion mutants of ASCC1 and tested their ability to
associate with ASCC3 (Fig. 3A). Deletion of the N terminus of
ASCC1 (ASCC1-N�; residues 54 –357) abolished its binding to
ASCC3, whereas deletion of the C terminus (ASCC1-C�; resi-
dues 1–243) had no effect on this interaction (Fig. 3, A and B).
We then expressed the ASCC1-N� and ASCC1-C� constructs

in ASCC1 knockout cells (Fig. S2, A and B) to prevent interfer-
ence from any endogenous ASCC1. We analyzed their ability to
retain localization within nuclear speckles upon MMS treat-
ment. Strikingly, HA-ASCC1-C� maintained foci formation,
whereas HA-ASCC1-N� behaved like WT ASCC1 (Fig. 3, C
and D). This was not because ASCC1-C� was expressed at a
higher level than WT ASCC1 or ASCC1-N� (Fig. S3A). Thus,
modular domains within ASCC1 have distinct functions during
the alkylation damage response.

Putative RNA-binding domain in ASCC1 regulates ASCC
function

In analyzing the C-terminal RNA ligase-like domain of
ASCC1, we noticed that it contains two conserved His-Xaa-Thr
motifs, shown to be important for RNA or nucleotide binding in
various proteins (25). Examples of other proteins containing
this motif in their nucleotide-binding pocket include the 2�–5�
RNA ligases from Thermus thermophilus and Pyrococcus
horikoshii, as well as the AMP-binding protein AKAP18 (Fig.
4A and Fig. S3B) (25, 26). Previous structural studies suggest

Figure 1. ASCC1 binds directly to ASCC3 but is removed from nuclear speckles upon alkylation damage. A, HA-tagged vector, ASCC1, or ASCC2 were
expressed in 293T cells and immunoprecipitated using anti-HA resin. Immunoprecipitated (HA-IP) and input samples (1.5%) were analyzed using the indicated
antibodies. The amount of ASCC3 immunoprecipitated by HA-ASCC1 was found to be 3.5% of the input, whereas HA-ASCC2 immunoprecipitated 8.4% of the
input. Positions of molecular weight markers are shown on the left. WB, Western blot. B, 293T whole-cell lysate was immunoprecipitated (IP) using anti-ASCC3
or IgG control antibodies and then Western blotted as shown. Input represents 2.5% of the IP samples. C, GST, GST-ASCC1, or GST-ASCC2 were immobilized
onto GSH-Sepharose and incubated with full-length (FL) His-tagged ASCC3 or an N-terminal deletion (N�-ASCC3). After washing, the bound material was
analyzed by SDS-PAGE and Western blotting using anti-His antibody or by Coomassie Blue staining. D, HA-tagged ASCC1 was expressed in PC-3 WT or ASCC3
KO cells and immunoprecipitated using anti-HA resin. HA-IP and input samples were analyzed using the indicated antibodies. E, U2OS cells expressing
HA-tagged ASCC1 were untreated or treated with MMS (0.5 mM) for 1, 2, or 6 h as shown. Cells were processed for immunofluorescence using anti-HA and
anti-PRP8 antibodies, with Hoechst used as the nuclear counterstain. Scale bar, 10 �m. F, quantitation of E. n � 3 biological replicates of 100 cells for each
replicate, and error bars indicate � S.D. of the mean.
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that these HXT motifs line the substrate-binding pocket and
interact with the nucleotide through a pseudo 2-fold symmetry
(27). We modeled this domain within ASCC1 using the Phyre2
server (28, 29). The resulting structural analysis suggested that
it forms a similar overall structure to other members of the 2H
phosphoesterase family (Fig. 4B) (30). Furthermore, the pre-
dicted structure suggests that the conserved HXT motifs of
ASCC1 are positioned such that they also line a putative nucle-
otide- or RNA-binding pocket similar to the aforementioned
RNA ligases and AKAP18. Notably, the ASCC1 domain lacks
residues critical for ligase activity (Fig. S3C) (31). We then
mutated both of the HXT motifs of ASCC1 to AXA (ASCC1-
AXA: 179HLT3 179ALA and 277HAT3 277AAA) and analyzed
its localization during MMS damage. As with ASCC1-C�,
ASCC1-AXA retained foci under these conditions (Fig. 4, C and
D, Fig. S3, D–F). This indicates that the HXT motifs of ASCC1
play a role in its localization during alkylation damage.

Because the C terminus of ASCC1 appeared to be critical for
regulating its ability to form foci, we asked whether the RNA
ligase-like domain played a role in foci formation of other com-

plex components during alkylation damage. To address this
question, we rescued ASCC1 knockout cells by expressing
exogenous ASCC1 WT, ASCC1-C�, or ASCC1-AXA (Fig.
S3G). Although the WT ASCC1 partially rescued HA-ASCC2/
ASCC3 foci colocalization, neither ASCC1-C� nor ASCC1-
AXA was able to rescue this phenotype (Fig. 4, E and F). Thus,
this putative RNA ligase-like domain of ASCC1 plays an impor-
tant role in the regulation of the ASCC complex localization
upon alkylation damage.

Role of ASCC1 in alkylation damage resistance

The previous results suggested that ASCC1 may play a key
role in modulating ASCC recruitment during alkylation dam-
age. We then tested whether ASCC1 was functionally impor-
tant for alkylation damage resistance in PC-3 prostate cancer
cells. ASCC1 was knocked out in these cells using CRISPR/Cas9
(Fig. S2E). Loss of ASCC1 resulted in an increase in sensitivity
to MMS in these cells (Fig. 5A). Again, the increase in sensitivity
was observed with two distinct ASCC1 knockout clones. To
determine whether this decrease in cell survival in response to

Figure 2. ASCC1 modulates alkylation-induced ASCC3 foci formation. A, U2OS WT and ASCC1 KO cells were treated with MMS (0.5 mM) for 6 h and
processed for immunofluorescence using anti-ASCC3 and anti-pH2A.X antibodies, with Hoechst as the nuclear counterstain. B, quantification of A. n � 3
biological replicates of 100 cells per replicate, and error bars indicate � S.D. of the mean. * � p � 0.01. C, U2OS WT and ASCC1 KO cells expressing HA-tagged
ASCC2 were treated with MMS (0.5 mM) for 6 h. Cells were processed for immunofluorescence using anti-ASCC3 and anti-HA antibodies, with Hoechst as the
nuclear counterstain. Scale bars, 10 �m. D, quantification of C. Only cells with �5 ASCC3 foci were scored. n � 3 biological replicates of 100 cells per replicate,
and error bars indicate � S.D. of the mean. * � p � 0.01. E, PC-3 WT and ASCC1 KO cells were treated with MMS (0.5 mM) for 6 h. Whole-cell lysate was
immunoprecipitated (IP) using anti-ASCC2 or IgG control antibodies and then Western blotted (WB) as shown. Inputs represent 2.5% of the immunoprecipi-
tated samples.
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MMS was due to the function of ASCC1 within the ASCC com-
plex, or whether this was due to its function in another pathway,
we created ASCC1–ASCC3 double knockout cells (ASCC1/3
DKO). We sequentially knocked out ASCC3 in PC-3 cells and
then knocked out ASCC1 using CRISPR/Cas9 (Figs. S1B and
S4, A and B). MMS sensitivity of all four resulting genotypes was
then tested. Consistent with our previous work, loss of ASCC3
increased sensitivity to MMS (18). However, the ASCC1/3
DKO cells did not have an increase in MMS sensitivity com-
pared with either the ASCC1 KO or the ASCC3 KO cells (Fig.
5B). These results support the notion that ASCC1 has an epi-
static relationship with ASCC3 in alkylation damage resistance.
Taken together, our data support a role for ASCC1 in control-
ling the ASCC complex recruitment and function during the
cellular response to alkylation damage.

Discussion

We recently described a signaling pathway that is activated
by alkylation damage to recruit the ALKBH3–ASCC complex
to nuclear foci (21). This pathway depends upon the RNF113A
E3 ligase, which induces Lys-63–linked ubiquitination that is
then recognized by the ASCC2 subunit (21). Here, we present
evidence for additional regulation of this pathway by ASCC1.
Our work suggests that ASCC1 is constitutively present at
nuclear speckle foci prior to damage, but leaves these foci upon
MMS treatment. In addition, ASCC1 can interact directly with
ASCC3 and thus can modulate its localization during alkylation
damage. Consistent with a role in this pathway, knockout of

ASCC1 sensitizes cells to alkylation damage. Loss of ASCC1
does not further increase the sensitivity of cells that lack
ASCC3, suggesting that the role of ASCC1 in the alkylation
damage response is primarily through the ASCC complex.

Surprisingly, unlike ASCC2 or ASCC3, ASCC1 is already
present at nuclear foci in the absence of any damage. Upon
alkylation damage, ASCC1 is removed from these foci (Fig. 1, E
and F). This phenomenon depends on the C-terminal domain
of ASCC1 and, more specifically, its HXT motifs (Figs. 3 and 4).
At the same time, ASCC1 can bind directly to ASCC3 via its N
terminus (Fig. 1, A–C). This physical interaction and the
dynamic localization of ASCC1 during alkylation set up our
preferred model to explain the resulting phenotypes from
ASCC1-deficient cells (Fig. 5C). We hypothesize that ASCC1 is
acting as a specificity determinant for ASCC3 localization at
these foci. In WT cells, we observe that the vast majority of the
ASCC3 foci are positive for ASCC2 (Fig. 2, C and D). In the
ASCC1 knockout cells, ASCC3 foci are significantly increased,
yet the majority of these lack ASCC2. Thus, there are likely two
subsets of ASCC3 foci: those that are positive for ASCC2 and
those that are negative for ASCC2. In WT cells, the fraction
of ASCC3 present at foci without ASCC2 is likely removed in
a manner dependent on ASCC1. This is consistent with why
we observe more ASCC3 foci in ASCC1 knockout cells. The
failure of ASCC3 to be removed from these ASCC2-negative
foci by ASCC1 would explain why we observe more ASCC3
foci that lack ASCC2 in the ASCC1 knockout cells. Our

Figure 3. Deletion analysis of ASCC1 reveals modular functional domains. A, schematic of human ASCC1 domain structure and mutants (to scale). B,
HA-tagged ASCC1 FL or indicated ASCC1 deletions were expressed in 293T cells and immunoprecipitated using anti-HA resin. Immunoprecipitated (IP) HA-IP
and input samples were analyzed using the indicated antibodies. C, U2OS ASCC1 KO cells expressing HA-tagged ASCC1 or indicated ASCC deletions were
treated with MMS (0.5 mM) for 6 h. Cells were processed for immunofluorescence using anti-HA and anti-PRP8 antibodies, with Hoechst used as the nuclear
counter stain. Scale bars, 10 �m. D, quantification of C. n � 3 biological replicates of 100 cells per replicate, and error bars indicate � S.D. of the mean.
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immunoprecipitation results further confirm this notion
(Fig. 2E).

Why does an increase in ASCC3 foci formation lead to
increased alkylation damage sensitivity? This phenotype is
potentially due to the necessary regulation of ASCC3 recruit-
ment by ASCC1. In double-stranded break repair, the loss of
the repair protein 53BP1 increases BRCA1 recruitment, but
this leads to increased sensitivity to �-irradiation, at least partly
due to the recruitment of BRCA1 in the G1 phase of the cell
cycle (32). This inappropriate recruitment and attempt at ho-
mologous recombination in G1 is thought to be deleterious in
double-strand break repair. In a like manner, in the absence of
ASCC1, inappropriate ASCC3 recruitment may cause alkyla-
tion damage sensitivity because other repair factors are dis-
placed, or a portion of ASCC3 needs to be removed for repair to

be promptly completed. It is also possible that in the absence of
ASCC1, the complex cannot function properly, and alkylation
damage sensitivity is increased despite an increase in ASCC3
recruitment.

The C-terminal RNA ligase-like domain of ASCC1, which
appears to be critical for the function described here, is part of a
larger 2H phosphoesterase family of enzymes that have been
shown to harbor diverse activities, including bona fide tRNA
ligases, phosphodiesterases, and putative RNA-binding factors
(26, 30). Structural studies on the phosphoesterase domain of
AKAP18 initially suggested a proclivity for binding to AMP and
CMP in a manner that depends upon its HXT motifs (27). It is
intriguing that AKAP18 binds to the same nucleotides that are
the major reaction products for the ALKBH3 dealkylase activ-
ity, which primarily targets 1-methyladenine and 3-methylcy-

Figure 4. Putative RNA-binding domain in ASCC1 regulates ASCC function. A, schematic of the human ASCC1 protein is shown on top, with the positions
of the HXT motifs (to scale). Sequence alignment with human AKAP18 is shown on bottom. The dual HXT motifs are highlighted in green, and neighboring
conserved residues are highlighted in blue. B, predicted structure of ASCC1 (residues 132–355). The HXT motifs are indicated by arrows. This domain was
modeled using the Phyre2 server. C, U2OS WT and ASCC1 KO cells expressing HA-tagged ASCC1 or indicated ASCC deletions were treated with MMS (0.5 mM)
for 6 h. Cells were processed for immunofluorescence using anti-HA and anti-PRP8 antibodies, with Hoechst used as the nuclear counterstain. D, quantification
of C. Only cells with �5 ASCC3 foci were scored. n � 3 biological replicates of 100 cells, and error bars indicate � S.D. of the mean. E, U2OS WT and ASCC1 KO
cells expressing HA-tagged ASCC2 and untagged ASCC1 WT or indicated mutations were treated with MMS (0.5 mM) for 6 h. Cells were processed for
immunofluorescence using anti-HA and anti-ASCC3 antibodies, with Hoechst used as the nuclear counterstain. Scale bars, 10 �m. F, quantification of E. n � 6
biological replicates of 100 cells, and error bars indicate � S.D. of the mean. * � p � 0.001; # � p � 0.05; n.s., not significant.
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Figure 5. ASCC1 KO cells are sensitive to alkylation damage. A, PC-3 ASCC1 KO cells were assessed for sensitivity to MMS relative to WT PC-3 cells. Cell
survival was measured by MTS assay. n � 5, and error bars indicate � S.D. of the mean. B, PC-3 ASCC1 KO, ASCC3 KO, and ASCC1/3 DKO cells were assessed for
sensitivity to MMS relative to WT PC-3 cells. Cell survival was measured by MTS assay. n � 5, and error bars indicate � S.D. of the mean. C, proposed model for
ASCC complex localization during alkylation damage. In WT cells (36), RNF113a-mediated ubiquitination is recognized by ASCC2 and recruits ASCC3 to nuclear
speckle foci. Simultaneously, a fraction of ASCC3 is recruited to ASCC2-negative foci, but these are removed by ASCC1. This activity of ASCC1 depends upon the
C-terminal RNA ligase-like domain via the engagement of an unknown ligand (X). In ASCC1 KO/C-terminal mutant cells (bottom), the fraction of ASCC3 foci that
are independent of ASCC2 is significantly increased. See text for details.
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tosine for demethylation. We currently do not have any direct
evidence for the binding of ASCC1 to AMP or CMP. However,
the importance of this domain in ASCC1 foci formation
strongly implies that substrate binding through this domain,
whatever its biochemical identity, plays a role in ASCC complex
recruitment and function.

Experimental procedures

Plasmids

Human ASCC1 cDNA was isolated by RT-PCR from total
human RNA, cloned into pENTR-3C (Invitrogen), and sub-
cloned into pMSCV-FLAG, pMSCV-FLAG-HA, or pHAGE-
CMV-HA3 by Gateway recombination (33). ASCC1 deletions
and point mutations were created by PCR and cloned as
above. ASCC2, ASCC3, and ALKBH3 vectors were previ-
ously described (21). For recombinant protein expression,
WT ASCC1, ASCC1 mutants, and ASCC2 were subcloned
into pGEX-4T1 or pET28a-FLAG. For expressing the His6-
tagged full-length ASCC3 and N�-�SCC3 (401–2202), the
pENTR-3C vectors containing these cDNAs were subcloned
into pDEST10 (Invitrogen). All constructs produced by PCR
were verified by Sanger sequencing.

CRISPR/Cas9-mediated knockouts

U2OS and PC-3 KO cells were created using CRISPR/Cas9
genome editing at the Genome Engineering and iPSC Center
(GEiC) at Washington University School of Medicine (St.
Louis). The U2OS ASCC3 KO cells were previously described
(21). The gRNA sequences used to generate the ASCC1 KO cell
lines were 5�-AAGGATTCCGGTCTACTTTGNGG-3� and
5�-AAGTAGACCGGAATCCTTGTNGG-3�. The gRNA se-
quence used to generate the PC-3 ASCC3 KO cell line was
5�-GACATTTGAAAAGGAACGCANGG-3�. All knockout
clones were verified by deep sequencing or by Western blot
analysis.

Cell culture, viral transduction, and cell survival assays

U2OS, PC-3, 293T, and Sf9 cells were cultured and main-
tained as described previously (34). Preparation of viruses,
transfection, and viral transduction were also performed as
described previously (34). For knockout cell foci rescue exper-
iments, U2OS cells were transduced with WT ASCC1 or
ASCC1 mutants using the pMSCV retroviral vector and
pHAGE-CMV-HA3-ASCC2. For DNA damaging agent sur-
vival assays using PC-3 cells, 4000 –15,000 cells/well were cul-
tured overnight in 96-well plates in 100 �l of media. Cells
were then exposed to medium containing the indicated con-
centration of MMS (Sigma) for 24 h at 37 °C. The media were
then replaced with normal media, and cell viability was
assessed 72 h after initial exposure to MMS via the MTS
assay (Promega). All MTS-based survival experiments were
carried out in quintuplicate.

Recombinant protein purification

For purification of the His6-tagged ASCC3 and N�-ASCC3,
the baculovirus vector was produced using the Bac-to-Bac
expression system (ThermoFisher Scientific). Amplified bacu-

lovirus was used to infect Sf9 cells and harvested after 72 h. The
cells were resuspended in Buffer L (20 mM Tris, pH 7.3, 150 mM

NaCl, 8% glycerol, 0.2% Nonidet P-40, 0.1% Triton X-100, 20
mM imidazole) plus protease inhibitors and frozen �80 °C.
Cells were lysed by sonication and rotated for 30 min at 4 °C.
The cell extracts were then centrifuged at 10,000 rpm for 10
min. The supernatant was incubated with nickel-nitrilotri-
acetic acid beads and eluted with Buffer L containing 400 mM

imidazole. His-ASCC1 and GST-tagged recombinant proteins
were purified from E. coli as described (34). All proteins were
dialyzed into TAP buffer (50 mM Tris, pH 7.9, 100 mM KCl, 5
mM MgCl2, 0.2 mM EDTA, 0.1% Nonidet P-40, 10% glycerol, 2
mM 2-mercaptoethanol, 0.2 mM phenylmethylsulfonyl fluoride)
after purification.

Protein binding assays

All in vitro GST–protein binding assays were performed as
described previously (35) with minor modifications. Briefly, 5
�g of GST-tagged bait protein was incubated with 10 �l of
GSH-Sepharose beads and 250 ng of His6 ASCC3 FL or
N�-ASCC3, 1 �g of His6 ASCC1, or 500 ng of Lys-63–Ub(3–7)
in TAP buffer containing 1% BSA in a total volume of 100 �l.
After incubation at 4 °C with rotation for 1 h, beads were
washed extensively using TAP buffer. Bound material was
eluted using Laemmli buffer and analyzed by SDS-PAGE and
Western blotting.

Structural model

The model for the predicted structure of ASCC1 was gener-
ated using the publicly available Phyre2 server (28, 29).

Statistical analysis

All p values were calculated by the unpaired two-tailed
Student’s t test.

Immunofluorescence microscopy

All immunofluorescence microscopy was done as described
previously (21, 35). 100 cells were analyzed at least in biological
triplicate for all quantifications.

Immunoprecipitation and Western blotting

Immunoprecipitation of HA-tagged ASCC1, ASCC1 mutants,
and ASCC2 was performed by transfection of constructs into
293T cells using Transit293 reagent (Mirus Bio). Cells were
treated with 0.5 mM MMS as indicated, collected, washed in 1	
PBS, and frozen at �80 °C. Cell pellets were resuspended in IP
lysis buffer (50 mM Tris, pH 7.9, 300 mM NaCl, 10% glycerol, 1%
Triton X-100, 1 mM DTT, and protease inhibitors), lysed by
sonication, and cleared by centrifugation. An equal volume of
IP lysis buffer containing no salt was added (final concentration
of NaCl was 150 mM). Lysates were then incubated with
anti-HA resin (Santa Cruz Biotechnology) for 3– 4 h at 4 °C
with rotation. The beads were washed extensively with IP lysis
buffer containing 150 mM NaCl, and bound material was eluted
with Laemmli buffer.

Preparation of viruses, transfection, and viral transduction
for immunoprecipitation of HA-tagged ASCC1 or HA-empty
from PC-3 WT and ASCC3 KO cells was performed as
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described previously (34). Cells were selected with 1 �g/ml
puromycin for 24 h. The media were then replaced with normal
media for 2 days, after which cells were transfected with FLAG-
ASCC2. Cells were collected and washed in 1	 PBS and frozen
at �80 °C 2 days after transfection. Immunoprecipitation was
then executed as described above.

Endogenous immunoprecipitation was carried out by col-
lecting the cells and freezing at �80 °C as above. Cell pellets
were resuspended in TAP buffer containing 300 mM KCl, lysed
by sonication, and cleared by centrifugation. IP lysis buffer con-
taining no salt was added to bring the final concentration of KCl
to 100 mM. Samples were pre-cleared by incubation with pro-
tein A/G beads (Santa Cruz Biotechnology) with rotation at
4 °C. After centrifugation, the supernatant was then incubated
with the relevant antibodies overnight at 4 °C. Protein A/G
beads were then added and rotated at 4 °C for 1 h. The samples
were then centrifuged and washed extensively with TAP buffer.
Bound material was eluted with Laemmli buffer and analyzed
by Western blotting. All antibodies and concentrations used in
this study are shown in Table S1.
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