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Abstract

Habitat fragmentation and climate change are both prominent manifestations of global

change, but there is little knowledge on the specific mechanisms of how climate

change may modify the effects of habitat fragmentation, for example, by altering

dynamics of spatially structured populations. The long-term viability of metapopula-

tions is dependent on independent dynamics of local populations, because it mitigates

fluctuations in the size of the metapopulation as a whole. Metapopulation viability will

be compromised if climate change increases spatial synchrony in weather conditions

associated with population growth rates. We studied a recently reported increase in

metapopulation synchrony of the Glanville fritillary butterfly (Melitaea cinxia) in the

Finnish archipelago, to see if it could be explained by an increase in synchrony of

weather conditions. For this, we used 23 years of butterfly survey data together with

monthly weather records for the same period. We first examined the associations

between population growth rates within different regions of the metapopulation and

weather conditions during different life-history stages of the butterfly. We then exam-

ined the association between the trends in the synchrony of the weather conditions

and the synchrony of the butterfly metapopulation dynamics. We found that precipita-

tion from spring to late summer are associated with the M. cinxia per capita growth

rate, with early summer conditions being most important. We further found that the

increase in metapopulation synchrony is paralleled by an increase in the synchrony of

weather conditions. Alternative explanations for spatial synchrony, such as increased

dispersal or trophic interactions with a specialist parasitoid, did not show paralleled

trends and are not supported. The climate driven increase in M. cinxia metapopulation

synchrony suggests that climate change can increase extinction risk of spatially struc-

tured populations living in fragmented landscapes by altering their dynamics.
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1 | INTRODUCTION

The two most prominent manifestations of human-induced global

change are habitat loss with habitat fragmentation and climate

change. Although the former continues to be the main causative

agent in driving species extinctions (Millennium Ecosystem Asses-

ment, 2005; Newbold et al., 2015; Pimm et al., 2014; Tittensor

et al., 2014), the effects of climate change are expected to increase

to matching levels during the coming decades (Leadley et al., 2010).

With the rapid advance of both, one of the most central questions

in the contemporary research on biodiversity, conservation and ecol-

ogy is how these two facets of global change jointly influence natu-

ral populations (Eigenbrod, Gonzalez, Dash, & Steyl, 2015; Holyoak

& Heath, 2016; Mantyka-Pringle, Martin, & Rhodes, 2012; McGill,

Dornelas, Gotelli, & Magurran, 2015; Oliver & Morecroft, 2014).

However, as detailed long-term data on the dynamics of spatially

structured metapopulations in fragmented landscapes are available

for only a few systems, the exact mechanisms by which climate

change modifies the effects of habitat fragmentation are not well

understood (Holyoak & Heath, 2016; Oliver & Morecroft, 2014).

Moreover, studies on the joint effects of habitat fragmentation and

climate change primarily focus on changes in the mean climatic con-

ditions. Changes in variability of weather conditions can also influ-

ence populations in fragmented landscapes, and variability is likely to

change as climate change advances. Information on how changes in

climatic variability can influence populations inhabiting fragmented

landscapes is of utmost importance (Alexander & Perkins, 2013;

Easterling, 2000; Huntingford, Jones, Livina, Lenton, & Cox, 2013;

IPCC, 2013; Lawson, Vindenes, Bailey, & van de Pol, 2015).

Metapopulations inhabiting fragmented landscapes are likely very

vulnerable to changes in variability of weather conditions. The long-

term stability of a metapopulation relies on independent population

dynamics in different parts of the landscape, such that decreases in

abundance at one region are balanced out by increases in another,

and colonization of unoccupied habitat continuously makes up for

local extinctions (Hanski, 1999; Hanski & Woiwod, 1993; Hastings &

Harrison, 1994; Heino, Kaitala, Ranta, & Lindstr€om, 1997). The inde-

pendence of population dynamics over the landscape can be chal-

lenged by climate change if climatic conditions are related to

population growth rates. Below, we will briefly outline the mecha-

nisms that can disrupt independence and introduce synchrony in

population dynamics and how they might be influenced by climate

change.

Independence of population dynamics in different parts of a

metapopulation can be disrupted by three primary mechanisms: (1)

increasing spatial extent of synchrony in environmental conditions

influencing population growth rate (i.e., Moran effect; Moran, 1953),

(2) increased dispersal of individuals between local populations, and

(3) a change in the spatial extent of trophic interactions (e.g., a

predator with a geographic range different from that of the prey)

(Liebhold, Koenig, & Bjørnstad, 2004). Climate change can drive

metapopulation synchrony via any of the above mentioned

mechanisms. First, climate change can create a Moran effect via a

decrease in spatial environmental variability (Allstadt, Liebhold, John-

son, Davis, & Haynes, 2015; Koenig & Liebhold, 2016; Liebhold

et al., 2004; Post & Forchhammer, 2004; Ranta, Kaitala, & Lindstrom,

1999). Second, as temperature and wind conditions influence the

dispersal propensity of many taxa (Cormont et al., 2011; Kuussaari,

Rytteri, Heikkinen, Heli€ol€a, & von Bagh, 2016), increasing tempera-

ture has the potential to drive increasing dispersal resulting in phase

locking (Fox, Vasseur, Hausch, & Roberts, 2011; Gyllenberg, S€oder-

backa, & Ericsson, 1993). Third, climate change can alter the spatial

extent of trophic interactions influencing the dynamics of the sys-

tem, for example, by enabling colonization of new species preying

on the focal population or changing the dynamics of existing preda-

tor populations. Although we are unaware of studies explicitly docu-

menting the latter case, there are several examples of distribution

changes in top predators and changes in the interactions within food

chains due to climate change (Gilman, Urban, Tewksbury, Gilchrist, &

Holt, 2010; Harley, 2011; Hazen et al., 2012; Romo & Tylianakis,

2013), all of which can disrupt metapopulation dynamics by changing

the density-dependence structure of the prey populations in a given

system. Lastly, all the above-described mechanisms may respond to

climate change simultaneously or interact with each other. If all the

mechanisms are not considered, the driver of population dynamics

synchrony can be misidentified. Therefore, to understand the role of

climate change, it is crucial that all of the potential mechanisms are

considered.

The Glanville fritillary butterfly (Melitaea cinxia) metapopulation

in the Finnish archipelago and its associated parasitoids have been

extensively studied for over two decades with the aim of under-

standing habitat fragmentation and metapopulation dynamics (Hanski

& Ovaskainen, 2000; Nieminen, Siljander, & Hanski, 2004; Ojanen,

Nieminen, Meyke, P€oyry, & Hanski, 2013). A temporal increase in

the coherence of the M. cinxia metapopulation dynamics was

reported by Hanski and Meyke (2005) and Tack, Mononen, and Han-

ski (2015). Increasing frequency of late summer drought events was

suggested as the potential driver of the change, but no change in cli-

matic variability was detected (Tack et al., 2015). Since climate

change is expected to have greater influence on spring than on sum-

mer conditions in the northern hemisphere, the previous study may

have missed important aspects of climate change by focusing solely

on late summer precipitation conditions (Bonsal, Zhang, Vincent, &

Hogg, 2001; Huntingford et al., 2013; Robeson, 2004). Finally, other

potential explanations, such as increasing dispersal, or changes in

predation, have not been addressed.

Here, using data on the metapopulation dynamics of M. cinxia

from 1993 to 2015 together with monthly weather data, we exam-

ine the association of synchrony of the metapopulation dynamics of

M. cinxia with climate. More specifically, we focus on answering the

following questions: (i) How has the spatial extent of synchrony of

population growth rate changed across time? (ii) How are different

weather conditions over the entire life cycle associated with M. cinx-

ia population growth rate across different regions of the
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metapopulation? (iii) Has spatial synchrony of the influential weather

conditions changed with time, and is the synchrony of weather asso-

ciated with metapopulation synchrony? (iv) Can changes in the syn-

chrony of the M. cinxia metapopulation be attributed to changes in

dispersal propensity or trophic interactions? Our results shed light

on the potential mechanisms by which climate change can alter

metapopulation dynamics in a fragmented landscape, and thus con-

tributes to the understanding of the potential interaction between

habitat fragmentation and climate change.

2 | MATERIALS AND METHODS

2.1 | The Finnish Glanville fritillary butterfly
metapopulation

The Glanville fritillary butterfly, M. cinxia, inhabits a large network of

ca. 4400 dry meadows containing at least one of its host plants, rib-

wort plantain (Plantago lanceolata) or spiked speedwell (Veronica spi-

cata: Plantaginaceae) in the �Aland islands on the southwestern coast

of Finland (Nieminen et al., 2004). The Finnish M. cinxia metapopula-

tion is univoltine. Its development can be divided to egg, predia-

pause larval (instars from 1st to 4th/5th), postdiapause larval (instars

from 4th/5th to 7th), chrysalis, and adult stages (Kuussaari, van Nou-

huys, Hellemann, & Singer, 2004; Murphy, Wahlberg, Hanski, & Ehr-

lich, 2004; Wahlberg, 2000). Based on our observations, the first

adults normally emerge in late May or early June. The flight season

lasts approximately 30 days (mean 30 days, median 32 days;

Table S1), ending by early July. The first prediapause larval nests

start appearing in mid-July, first overwintering silk nests (4th or 5th

instar) can be found in mid-August, and most nests have entered

diapause by the beginning of September. The larvae diapause until

late March, after which they go through from two to three additional

larval stages before pupation in mid-May (Kuussaari et al., 2004;

Saastamoinen, Ikonen, Wong, Lehtonen, & Hanski, 2013; Wahlberg,

2000).

Since 1993, the suitable meadows in �Aland have been censused

for M. cinxia occupancy and population size by counting the number

of overwintering larval nests every autumn, followed up by a check

of overwintering mortality of the nests the following spring (Niemi-

nen et al., 2004; Ojanen et al., 2013). The initial number of surveyed

habitat patches was ca. 1200. Then, between 1998 and 1999 an

extensive remapping of potential habitats was conducted, after

which the number of surveyed patches increased threefold. Cur-

rently, ca. 4400 habitat patches are surveyed (Hanski et al., 2017;

Ojanen et al., 2013). Estimates of the detection probability of each

overwintering nest varies between 0.5 and 0.6, but the probability

of incorrectly inferring a habitat patch as unoccupied is only 0.1

(Ojanen et al., 2013). Typically, the undetected populations are small,

consisting of one or very few larval nests, so their contribution to

the metapopulation dynamics is negligible. For the few cases in

which more nests were observed in the spring than in the previous

autumn, the autumn nest count has been corrected to match that of

the spring nest count. Other than changes in the number of habitat

patches surveyed, the changes to the systematic survey protocol and

sampling effort have been minor throughout the years, which makes

observations across years comparable (Ojanen et al., 2013).

Due to aggregation of habitat patches in the landscape, the
�Aland islands can be subdivided into semi-independent habitat patch

networks (SINs), with habitat connectivity that is high enough to

allow for frequent exchange of dispersing individuals between

patches within the same SIN (Hanski, Moilanen, Pakkala, & Kuus-

saari, 1996). Using hierarchical clustering implemented in the soft-

ware SPOMSIM (Moilanen, 2004), a recent study clustered the

entire metapopulation to 125 SINs that differ in patch number, size

and connectivity (Hanski et al., 2017). Of these, 33 SINs can be con-

sidered viable according to spatially explicit metapopulation theory

(i.e., metapopulation capacities above a species specific extinction

threshold; Hanski et al., 2017). Each of the viable SINs contain on

average 82 habitat patches (median = 69, SD = 39) with an average

area of a patch of 2260 m2 (median = 687 m2, SD = 5467 m2). The

viable SINs are distributed throughout the �Aland islands (Hanski

et al., 2017).

In the present study, we chose to focus on the dynamics of SINs

rather than on individual habitat patches. We do so because local

populations in individual habitat patches frequently go extinct, so

time series of local population growth rate dynamics would be very

heterogeneous. Furthermore, the spatial scale of our weather data

better matches the spatial scale of the SINs rather than the individ-

ual habitat patches. We exclude the nonviable SINs from the

analyses because many of them are unoccupied for all or most of

the 23-year study period.

2.2 | Natural enemies of M. cinxia

Melitaea cinxia has been observed to be host to a generalist pupal

parasitoid species Pteromalus apum, and prey to lady beetles (Coc-

cinellidae), lacewings (Chrysopidae), pentatomid bugs (Pentatomidae),

red ants (Myrmica rubra), spiders, and dragonflies (Odonata) (van

Nouhuys & Hanski, 2004; van Nouhuys & Kraft, 2012). The rate of

predation by these generalists has not been systematically recorded,

however, we do not expect them to have greatly impacted the syn-

chrony of population dynamics of the host because we have

observed no evidence of large changes in predator community over

time, and mobile individuals of these taxa would not be likely to

track M. cinxia density in the landscape. Furthermore, M. cinxia are

chemically defended by sequestered plant defensive chemicals (Reu-

dler & van Nouhuys, 2018; Suomi, Sir�en, Jussila, Wiedmer, & Riek-

kola, 2003) and are thus not likely to be prey to many invertebrate

and vertebrate predators (Kuussaari et al., 2004).

While we do not expect a large role for generalist predators, M.

cinxia larvae are frequently parasitized by two specialist parasitoid

wasp species, Cotesia melitaearum (Braconidae: Microgastrinae) and

Hyposoter horticola (Ichneumonidae: Campoplaginae) (van Nouhuys &

Hanski, 2004, 2005). Of the two species, only C. melitaearum has

the potential to influence synchrony of the M. cinxia metapopulation

dynamics. This is because the highly mobile H. horticola invariably
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parasitizes one third of the caterpillars in almost every nest every

year across the metapopulation (Montovan, Couchoux, Jones, Reeve,

& van Nouhuys, 2015; van Nouhuys & Ehrnsten, 2004; van Nouhuys

& Hanski, 2002). The sedentary C. melitaearum, on the other hand, is

restricted to the northwestern side of the archipelago in most years

and inhabits only well-connected M. cinxia SINs (van Nouhuys &

Hanski, 2002). Where present, C. melitaearum can be locally abun-

dant, potentially driving local populations of M. cinxia to extinction

(Lei & Hanski, 1997). Furthermore, rate of parasitism and subsequent

parasitoid population size is related to spring temperature (van Nou-

huys & Lei, 2004). The M. cinxia populations are surveyed for

C. melitaearum every spring when the mortality of the overwintering

nests is surveyed (Ojanen et al., 2013). At this time, the overwinter-

ing generation of the C. melitaearum larvae leave the host and spin

white silken cocoons that are visible in the M. cinxia nests (van Nou-

huys & Lei, 2004). Although otherwise spanning the entire study

period, the data for the occurrence of C. melitaearum in 2010 was

unfortunately lost due to a hard drive break down.

2.3 | Weather data

The weather data used in the analyses is a part of ClimGrid, which is

a gridded climatology dataset with a cell size of 10 km * 10 km

(Aalto, Pirinen, & Jylh€a, 2016), provided by the Finnish Meteorologi-

cal Institute. We obtained monthly average temperature and precipi-

tation sum estimates for months that approximately match the

different life-history stages of M. cinxia (see above), for the area cov-

ering the �Aland islands (from 59.9° to ca. 60.5° Lat. and from ca.

19.5° to ca. 20.9° Lon.). Weather conditions from September to the

following February were averaged to reflect average conditions dur-

ing diapause and, for this period, we also extracted average snow

cover depth and incorporated it into analyses of population growth

rate (see below). These analyses can be found in the supplementary

material, but for simplicity, we will restrict our focus to precipitation

and temperature in the main text. For the rest of the weather condi-

tions, we considered each month separately: March, April, and May

were considered to reflect postdiapause larval conditions, June con-

ditions to reflect the adult stage conditions (Table S1), and July and

August conditions to reflect prediapause larval conditions (Kuussaari

et al., 2004; Murphy et al., 2004). It is more difficult to associate

egg and pupal stages with any particular month as they last a shorter

period of time and overlap with the timing of larval and adult stages.

The egg stage mostly coincides with the adult stage in June, but can

partly coincide with prediapause larval stages in early July, and the

pupal stage occurs mostly in May coinciding with late instars of

postdiapause larval development (Murphy et al., 2004).

As nonstationarity due to temporal trends in time series data

may bias analyses (Bjørnstad, Ims, & Lambin, 1999; Liebhold et al.,

2004; Legendre & Legendre, 2012; but see Chevalier, Laffaille,

Ferdy, & Grenouillet, 2015), we tested for temporal trends in each

of the weather variables and detrended the variables whenever

trends were detected. We estimated the number of smooth tempo-

ral basis functions using the R package SpatioTemporal (Lindstr€om,

Szpiro, Sampson, Bergen, & Oron, 2013), by fitting up to five smooth

orthogonal basis functions in addition to an intercept model. The

appropriate number of functions was selected based on BIC values

obtained via cross-validation, and the selected functions were then

used as covariates in linear regressions to withdraw residuals that

were then used as detrended weather variables.

2.4 | Associations between growth rate and
weather conditions

We calculated the log-transformed population growth rates for each

viable SIN for each year as ri,t = log [(Ni,t + 1)/(Ni,t-1 + 1)], where Ni,t

is the number of overwintering larval nests in SIN i at time t. For

simplicity, we refer to the log-transformed population growth rate

simply as population growth rate throughout the manuscript.

To examine during which life-history stages are weather condi-

tions most influential for the population growth rates, we built a set

of Bayesian linear mixed models, each corresponding to different

biological hypotheses for the influence of weather conditions on

population growth rate (Table 1). Each model, excluding the null

model, included a set of detrended weather covariates corresponding

to different life-history stages or a combination of them. Since the

habitat patches in a single SIN can fall into several different weather

data grid cells, weather covariates for each SIN were calculated as

the weighted average of the weather conditions of the individual

habitat patches. The weights for each patch were obtained from the

spatially explicit metapopulation model, by estimating the contribu-

tion of the patch to the metapopulation capacity of the SIN based

on the spatial location, size, and quality of the habitat patch (for

details, see Hanski et al., 2017). Also, as the different weather vari-

ables vary at different scales, we standardized them to a mean of

zero and unit variance for the analyses. SIN identity was added as a

random intercept and, to account for density dependence in the

growth rate (Nieminen et al., 2004), we included a first-order auto-

correlation term for population growth rate in all of the models. In

addition to the models reported in Table 1, we analyzed a version of

model 1 that also included average snow cover depth (Table S2).

We then conducted model selection based on the “leave-one-

out” information criterion (LOOIC; Vehtari, Gelman, & Gabry, 2016)

to choose the most informative model(s) for further inspection and

to be used in downstream analyses of the synchrony of weather

conditions.

2.5 | Temporal trends in the metapopulation and
weather synchrony

For estimating how the spatial extent of synchrony in population

growth rates has changed with time across the entire metapopula-

tion, we divided the data into seven 5-year time periods, each over-

lapping the previous one by 2 years. The only exception is the last

time window from 2012 to 2015, which covers only 4 years. Shifting

the frame of the time windows such that the first one contains

4 years (i.e., 1994–1997) instead of the last one does not change
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the results (results not shown). Within each of these time windows,

we counted pairwise cross-correlations in population growth rate

between all pairs of SINs, transformed them to Fisher’s z to account

for the truncated distribution, and divided them into distance bins

with 10 km increments to match the resolution of the weather data.

We then withdrew average z-transformed cross-correlations and

estimated the standard error of the average pairwise correlation

from 1000 bootstrapped datasets. In each dataset, each SIN was

represented only once to avoid pseudoreplication (Koenig & Knops,

1998).

For the detrended weather variables, we calculated syn-

chronies and their confidence intervals in different distance

classes in each time window, similar to that done for the SIN

growth rate (see above). When conducting the Fisher’s z trans-

formation to the weather variables, cross-correlations with a

value of one were removed from the data. Such cases appeared

only in the temperature variables and represent only 0.2% of all

pairwise cross-correlations. We then combined the individual syn-

chrony estimates to obtain an estimate of overall synchrony in

weather conditions that are central for M. cinxia SIN growth

rates. For this, we calculated the weighted median across the

synchronies in different weather variables, using the absolute val-

ues of the coefficients obtained from the selected linear model

of the relationship between SIN growth rate and weather vari-

ables (see above). We chose to use median to avoid overestima-

tion of the correlation due to some extreme values. Combining

z-transformed correlation values describing synchrony in different

weather variables comes with the difficulty that they differ in

their overall levels and ranges. Hence, variables that have wider

ranges of variability would dominate after combining, which

would complicate the biological interpretation of the combined

correlation. Therefore, we standardized the z-transformed pair-

wise correlations to a zero mean and unit variance for each

weather variable prior combining them.

To verify the temporal and distance trends in growth rate

and weather synchrony, we ran Bayesian linear models with

time window, distance class and their interaction as covariates

(see details in “2.8 Implementation of statistical analyses”). As

the synchrony estimates in each distance class in each time win-

dow are averages or medians of pairwise Fisher’s z-transformed

Pearson correlations between SINs or raster cells, we incorpo-

rated the standard error in the response to the linear models

(for estimating standard error, see above). To account for tem-

poral autocorrelation between consecutive time windows in the

above-described analyses, the models were run with a first-order

autocorrelation term.

In order to study the association between population growth

rate and weather synchronies, we derived estimated residual syn-

chronies and their standard errors from the above-described mod-

els and used them in a Bayesian linear model accounting for error

in both the response (residual population growth rate synchrony)

and the predictor (residual weather synchrony). We focused on

residuals instead of raw variables in order to obtain a robust esti-

mate of the association avoiding including any spatial and/or tem-

poral trends in the estimates of the association between the two

synchronies. As the association between the two synchronies can

TABLE 1 Models for hypotheses regarding the relationship between SIN growth rate and weather. The table includes the covariates, the
LOOIC value, and the standard error of the LOOIC for each model

No. Hypothesis Covariates LOOIC SE

1 Full TD+TMar+TApr+TMay+TJun+TJul+TAug+PD+PMar+PApr+PMay+PJun+PJul+PAug 1977.26 44.00

2 Diap., postdiap. & adult TD+TMar+TApr+TMay+TJun+PD+PMar+PApr+PMay+PJun 2002.33 43.27

3 Diap., adult & prediap. TD+TJun+TJul+TAug+PD+PJun+PJul+PAug 2016.91 44.04

4 Postdiap., adult, prediap. TMar+TApr+TMay+TJun+TJul+TAug+PMar+PApr+PMay+PJun+PJul+PAug 1976.47 43.17

5 Diap. & postdiap. TD+TMar+TApr+TMay+PD+PMar+PApr+PMay 2019.64 42.64

6 Diap. & adult TD+TJun+PD+PJun 2106.96 43.55

7 Diap. & prediap. TD+ TJul+TAug+PD+PJul+PAug 2025.19 44.43

8 Postdiap. & adult TMar+TApr+TMay+TJun+PMar+PApr+PMay+PJun 2002.93 43.81

9* Post- & prediap. TMar+TApr+TMay+TJul+TAug+PMar+PApr+PMay+PJul+PAug 1988.70 42.69

10 Adult & prediap. TJun+TJul+TAug+PJun+PJul+PAug 2027.23 42.18

11 Diap. TD+PD 2110.65 43.69

12 Postdiap. TMar+TApr+TMay+PMar+PApr+PMay 2030.82 42.87

13 Adult TJun+PJun 2105.49 42.57

14 Prediap. TJul+TAug+PJul+PAug 2035.86 42.73

15 Temperature TD+TMar+TApr+TMay+TJun+TJul+TAug 2026.02 43.85

16 Precipitation PD+PMar+PApr+PMay+PJun+PJul+PAug 1999.48 44.69

17 Null Random intercept and autocorrelation only 2112.83 42.44

PD: average diapause period precipitation; PMon: monthly precipitation; TD: average diapause period temperature; TMon: monthly average temperature.
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differ in different distance classes, we included distance class and

its interaction with weather synchrony in the analysis.

2.6 | Temporal trends in connectivity and
colonization dynamics

As we do not have annual mark–recapture data spanning the entire

metapopulation, our data do not contain direct estimates of dispersal

between habitat patches. However, we do have annual data on habi-

tat patch occupancies, local extinctions, and (re)colonizations. From

these, we can derive proxies for dispersal. First, we calculated patch

connectivity (Si,t), which is associated with dispersal potential

between occupied habitat patches and thus reflects dispersal that

cannot be observed from the data directly. Patch connectivity

approximates the expected number of immigrants to patch i in year

t as the sum of the individual immigrant contributions from all other

occupied habitat patches in that particular year (Hanski, 1994). We

calculated Si,t similarly to Hanski et al. (2017), with the modification

that the exponential dispersal kernel was corrected to account for

two-dimensional dispersal:

Si;t ¼
X
j 6¼i

Aim
i � a2

2p
e�adi;j � Nj;t�1

Aim
i is the area of patch i in hectares scaled by the exponent im,

which represents the effects of patch size on immigration probability

(Hanski, Alho, & Moilanen, 2000). ða2=2pÞe�adi;j is the two-dimen-

sional exponential dispersal kernel (Clark, Silman, Kern, Macklin, &

HilleRisLambers, 1999), in which a is the parameter describing the

scale of dispersal and di,j is the distance between patches i and j in

kilometers. Nj,t�1 is the number of observed winter nests in patch j

in the fall of the previous year. Parameter values used in the calcula-

tion of connectivity were a = 2 and im = 0.44 as estimated by

Hanski et al. (2017). The value of a corresponds to a mean dispersal

distance of 1 km (Nathan, Klein, Robledo-Arnuncio, & Revilla, 2012),

a value derived from M. cinxia mark–recapture data, population

dynamics models and landscape genetic studies (Fountain et al.,

2017; Hanski, Kuussaari, & Nieminen, 1994; Hanski et al., 2017).

The population level connectivities were then averaged to SIN level

by using weights for each patch obtained from the spatially explicit

metapopulation model (see above) and log-transformed.

Second, in addition to patch connectivity, we examined the pro-

portion of the population within each SIN resulting from local colo-

nization events for each study year. This describes the relative

importance of colonization events for the whole SIN and estimates

the part of the dispersal events that can be observed in the data

(i.e., the ones that have resulted in colonization). The proportion of

the population resulting from observed colonization events within

each SIN was estimated as the proportion of overwintering nests

found in habitat patches unoccupied in the previous spring.

Temporal trends in both connectivity and colonization were esti-

mated with a Bayesian generalized linear mixed effects model (bino-

mial in the former, Gaussian in the latter), with both the intercept

and slope allowed to vary between SINs. For the model examining

the proportion of new colonizations, we included the proportion of

patches occupied in the previous year as a predictor to account for

a saturation effect (i.e., if the proportion of occupied patches within

a SIN is very high then there are few patches that can become

newly colonized).

As the number of surveyed patches increased manifold after

1999 (see above), and as such large differences in the numbers of

patches could bias analyses conducted on ratios, we decided to con-

sider only the 2000–2015 data for our analyses of colonization and

connectivity. Although the number of surveyed patches is very dif-

ferent pre- and post-1999, the majority of the habitat patches dis-

covered in the remapping are small and/or of low quality and

therefore they contribute very little to the total number of nests,

and hence to the dynamics of the metapopulation. Therefore, they

are not expected to bias other analyses (Hanski & Meyke, 2005;

Hanski et al., 2017).

2.7 | Temporal trends in the parasitoid C.
melitaearum

We examined the temporal trends in both the proportion of viable

M. cinxia SINs that are occupied by the specialist parasitoid C. meli-

taearum, and in the proportion of C. melitaearum occupied patches

within SINs. For the latter, to avoid zero-inflation in the data, we

used a subset of SINs that have been occupied by the parasitoid in

at least eight of the study years (i.e., over a third of the study per-

iod). The former captures temporal trends in the metapopulation

wide distribution of the parasitoid and the latter describes changes

in the distributions within SINs. Both were analyzed using Bayesian

generalized linear mixed effects models with a binomial distribution

and a first-order autocorrelation term. For the latter, intercepts and

slopes were allowed to vary between SINs.

2.8 | Implementation of statistical analyses

All statistical analyses were implemented in R (version 3.3.2; R

Core Team, 2016). The linear and generalized linear mixed models

were implemented using the packages brms (version 1.7.0;

B€urkner, 2017) and RStan (version 2.14.1; Stan Development

Team, 2016) as interfaces for the Stan statistical modeling plat-

form (Carpenter et al., 2017). Prior to running the models, correla-

tions between covariates and variance inflation factors were

examined. In all the analyses, the variance inflation factors

remained below 5, and hence, we did not consider there to be

any serious multicollinearity issues. For all models, we ensured

that each estimate had a minimum of 10,000 effective samples

and that bR values were below 1.05. In practice, this meant that

for each model we ran four chains for 35,000 iterations with a

warm-up period of 5000 iterations and a thinning rate of 10 iter-

ations.

As a weakly informative prior for the coefficients of covariates,

we used a normal distribution with a mean of zero and a standard

deviation of 10 in all models. For the residual standard deviation
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(rres), we set a prior following half Student’s t distribution with 3

degrees of freedom and a scale of 10. For the models with random

effects, we set priors following a half Cauchy distribution with a

scale of five for the standard deviations of the random intercepts

and slopes.

Convergence and mixing of chains was inspected visually using

the bayesplot R package (Gabry, 2017).

3 | RESULTS

3.1 | Detrending weather variables

There were temporal trends only in May temperature, March pre-

cipitation, and August precipitation, and for each of them, a single

temporal basis function was selected (Figure S1, Table S3). For

May temperature, the temporal basis function suggests an increas-

ing linear trend, with temperature increasing each year by ca. 0.03

°C. For March precipitation, the smooth basis function suggests a

cyclically fluctuating trend with peaks at ca. 8–9 year intervals,

and for August precipitation, there is a unimodal trend, with

increasing precipitation until 2008 after which precipitation has

started to decline. An intercept model was selected for the rest

of the weather variables.

3.2 | Associations between population growth rate
and weather conditions

Melitaea cinxia population growth rate is positively associated with

most of the examined precipitation variables (Table 2), and nega-

tively associated with diapause and July temperatures. No additional

weather variables have coefficients differing from zero, if a credible

interval (Cr.I.) of 90% is considered instead of the reported 95%

interval. The strongest association is with May precipitation and the

only precipitation variables not exhibiting associations with growth

rate are diapause period (September to February) and August precip-

itations (Table 2). Our additional analyses with snow cover as a

covariate suggest increasing snow cover reduces population growth

rate (Table S2).

The above-described coefficients derive from the full model,

which best describes the relationship between population growth

rate and weather conditions. However, the model for postdiapause,

adult, and prediapause conditions (model number 4 in Table 1) was

very similar with respect to the LOOIC value and the difference

between the two models cannot be distinguished from zero

(Table S4). Since the full model contains variables that have coeffi-

cients that differ from zero, but which are not in model 4, choosing

the full model minimizes the risk of omitting potentially important

variables from further downstream analyses.

3.3 | Synchrony in population growth rate and
weather

There has been an increase in synchrony of population growth rate

over time and this has occurred across different distance classes

(Figure 1a). In distance classes up to 30 km, synchrony seems to be

increasing until the 2003–2007 time window, after which the corre-

lations plateau. The cross-correlations seem to exhibit an interaction

with both the time window and the distance class: the temporal

trend in synchrony is stronger in shorter distance classes, whereas

the temporal trend is less clear in the longer distance classes

(Table 3). That being said, also the longest distance classes exhibit a

clear increase in the last time window (Figure 1a). Note that the

intercept refers to the first time window (1994–1998) and first dis-

tance class (0–10 km; Table 3).

The synchrony of weighted average weather conditions increases

with time and decreases with increasing distance class (Figure 1b,

Table 3). The increase in the synchrony of weather conditions with

time is similar across distances as the interaction term between time

window and distance did not differ from zero (neither 95% nor 90%

Cr.I; Table S5). With few exceptions, the general trend of increasing

synchrony with time, especially in the two latter time windows, also

holds when observing each of the weather variables separately (Fig-

ures S2 and S3).

Finally, there is a tendency for the residual population growth

rate synchrony to be positively associated with residual weather syn-

chrony (Figure 1c, Table 3). However, due to large standard errors in

the estimates of the detrended residuals, the 95% Cr.I. does not

TABLE 2 Estimated coefficients, their estimated standard errors,
and 95% credible intervals for the selected model on the association
between weather conditions and SIN growth rates

Covariate Est. coef. Est. SE

95% Cr.I.

Lower Upper

Intercept �0.023 0.032 �0.086 0.040

TD �0.119 0.060 �0.238 �0.001

TMar �0.058 0.057 �0.171 0.054

TApr 0.026 0.048 �0.069 0.119

TMay 0.065 0.044 �0.021 0.151

TJun 0.095 0.059 �0.023 0.209

TJul �0.153 0.052 �0.254 �0.051

TAug �0.041 0.058 �0.154 0.072

PD 0.094 0.073 �0.049 0.239

PMar 0.114 0.049 0.017 0.209

PApr 0.146 0.051 0.047 0.247

PMay 0.401 0.067 0.269 0.533

PJun 0.128 0.051 0.027 0.229

PJul 0.162 0.069 0.027 0.299

PAug �0.058 0.059 �0.172 0.057

AR[1] �0.132 0.042 �0.214 �0.050

r(SIN intercept) 0.051 0.039 0.002 0.143

rres 0.932 0.025 0.885 0.981

AR[1]: first-order autocorrelation term; PD: Average diapause period pre-

cipitation; PMon: Monthly precipitation; TD: average diapause period tem-

perature; TMon: monthly average temperature; r(SIN intercept): standard

deviation of random intercepts; rres: residual standard deviation.
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differ from zero (Table 3). However, the 90% Cr.I. does not include

zero (Lower: 0.022; Upper: 0.912) suggesting that a relationship

between the two synchronies exists. The relationship does not seem

to depend on the distance class, as the interaction between residual

weather synchrony and distance class does not differ from zero (nei-

ther 95% nor 90% Cr.I; Table S6).

3.4 | Temporal trends in population connectivity,
colonization dynamics, and parasitoid distribution

We did not observe increasing trends in our proxies of dispersal over

time (Figure 2, Table 4). In fact, if anything, the proportion of the

population within a SIN representing colonizations of patches unoc-

cupied in the previous time step has decreased. Similarly, there were

no apparent increasing or decreasing trends in the parasitoid C. meli-

taearum distribution between or within SINs (Figure 3, Table 4).

4 | DISCUSSION

We observed that the previously reported temporal increase in the

synchrony of the Glanville fritillary butterfly, M. cinxia, (Hanski &

Meyke, 2005; Tack et al., 2015) metapopulation is a result of

increased synchrony across all distances, and that the increase is

paralleled by a temporal increase in synchrony of weather conditions

(Figure 1). Furthermore, we show that other potential explanations

for the increasing synchrony—namely increasing dispersal and

changes in trophic interactions with an influential specialist para-

sitoid—do not exhibit trends matching that of increasing

(a)

(b)

(c)

F IGURE 1 Fisher’s z-transformed cross-correlation between (a)
SIN annual population growth rates over different distance classes
and (b) in weighted median weather conditions across time, and (c)
the residual relationships between the two after accounting for
distance class and temporal trend

TABLE 3 Estimated coefficients, their estimated standard errors,
and 95% credible intervals for models of the effects of time and
distance on average synchrony in SIN growth rates and weighted
averaged weather conditions

Covariate Est. coef. Est. SE

95% Cr.I.

Lower Upper

SIN growth rate synchrony (Fisher’s z-score)

Intercept 0.048 0.156 �0.217 0.289

Time window 0.205 0.056 0.123 0.305

Dist. class 0.041 0.033 �0.013 0.096

Time window : Dist. class �0.026 0.010 �0.042 �0.010

AR[1] 0.762 0.154 0.461 0.944

rres 0.163 0.032 0.115 0.220

Weather synchrony (weighted average Fisher’s z-score)

Intercept 0.437 0.079 0.310 0.567

Time window 0.101 0.022 0.065 0.138

Dist. class �0.228 0.012 �0.247 �0.209

AR[1] 0.782 0.121 0.557 0.938

rres 0.078 0.022 0.045 0.116

Residual SIN growth rate synchrony vs. residual weather synchrony

Intercept �0.046 0.037 �0.120 0.026

Residual weather synchrony 0.460 0.272 �0.077 0.999

rres 0.189 0.035 0.125 0.262

AR[1]: first-order autocorrelation term; rres: residual standard deviation.
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metapopulation synchrony, and are therefore unlikely drivers of syn-

chrony of M. cinxia. We will elaborate on these below.

4.1 | Alternative explanations for increased
synchrony

An increase in synchrony could be driven by increased dispersal

between local populations and SINs over time (Gyllenberg et al.,

1993; Kendall, Bjørnstad, Bascompte, Keitt, & Fagan, 2000; Liebhold

et al., 2004). However, ecological long-term datasets most often do

not allow for characterization of dispersal dynamics and hence disen-

tangling the effects of dispersal and environmental conditions on

population synchrony is notoriously difficult. Therefore, dispersal as

a driver of population synchrony has been ruled out in situations

where one can be sure that no dispersal between study regions

occurs, for example, due to geographic barriers (Grenfell et al.,

1998), or using comparative data on sets of species that differ in

their dispersal abilities (Peltonen, Liebhold, Bjørnstad, & Williams,

2002). With extensive surveys of metapopulation dynamics (i.e.,

patch level extinctions and recolonizations), we can derive proxies

that reflect temporal trends in dispersal within the system. We esti-

mated both connectivity between local populations and proportion

of the population representing colonizing events. Neither showed an

increasing trend and, in fact, colonizations seem to have decreased

over time (Figure 2 and Table 4). Hence, there is no evidence sug-

gesting that the increased metapopulation synchrony would be asso-

ciated with increased dispersal, and it may even be the opposite.

Another frequently reported driver of population synchrony is a

spatially correlated predator that can drive cyclic populations into

the same phase (Liebhold et al., 2004; Vasseur & Fox, 2009). Alter-

natively, synchrony may increase if parts of a metapopulation are

(a)

(b)

F IGURE 2 Temporal trends in (a) the connectivity between local
populations and (b) the proportion of overwintering Melitaea cinxia
nests within each SIN representing colonization of new patches. The
boxplots illustrate the variability between SINs in different years and
the trend line illustrates the temporal trend derived from a binomial
GLM (+-95% Cr.I.)

TABLE 4 Estimated coefficients, their estimated standard errors,
and 95% credible intervals for models of the temporal trends in
Melitaea cinxia population connectivity, proportion of colonizing
overwintering nests, proportion of SINs, and patches within SINs
occupied by C. melitaearum

Covariate Est. coef. Est. SE

95% Cr.I.

Lower Upper

Temporal trend in log(population connectivity)

Intercept 0.824 0.384 0.187 1.446

Year 0.002 0.031 �0.047 0.053

AR[1] 0.412 0.064 0.310 0.522

r(S intercept) 1.994 0.316 1.521 2.553

r(Year|SIN slope) 0.142 0.031 0.093 0.194

rres 1.227 0.044 1.157 1.303

Temporal trend in the proportion of colonizing overwintering nests

Intercept 1.252 0.003 0.886 1.639

Year �0.052 0.000 �0.080 �0.024

Prop. patches occupied(t-1) �5.759 0.005 �6.547 �4.971

AR[1] 0.218 0.001 0.090 0.336

r(SIN intercept) 0.685 0.002 0.453 0.970

r(Year|SIN slope) 0.037 0.000 0.003 0.074

rres 0.975 0.001 0.890 1.070

Temporal trend in the proportion of SINs occupied by C. melitaearum

Intercept �3.505 0.005 �4.352 -2.734

Year 0.004 0.001 �0.079 0.086

AR[1] 0.714 0.002 0.364 0.986

r(SIN intercept) 0.607 0.006 0.039 1.693

r(Year|SIN slope) 0.082 0.001 0.019 0.190

rres 0.906 0.002 0.694 1.162

Temporal trend in proportion of patches within each SIN occupied by C.

melitaearum

Intercept �1.181 0.006 �2.222 �0.287

Year �0.016 0.000 �0.087 0.061

AR[1] 0.421 0.003 �0.125 0.927

rres 0.758 0.002 0.451 1.203

AR[1]: first-order autocorrelation term; r(SIN intercept): standard deviation

of random intercepts; r(Year|SIN slope): standard deviation of random slopes

of the temporal trend; rres: residual standard deviation.
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released from predation as spatially restricted predator can alter the

density dependence locally, creating asynchrony (Walter et al.,

2017). Previous studies have documented that the braconid para-

sitoid wasp C. melitaearum can impact the population dynamics of M.

cinxia and in some cases even drive local populations into extinction

(Lei & Hanski, 1997). Cotesia melitaearum is rather sedentary and is

typically restricted to few SINs in the M. cinxia metapopulation (van

Nouhuys & Ehrnsten, 2004; van Nouhuys & Hanski, 2002, 2004).

Therefore, any change in the distribution—be it a decrease or an

increase—could potentially alter the metapopulation synchrony of M.

cinxia. However, our results suggest no trend in either the propor-

tion of SINs or patches within SINs related to C. melitaearum. There-

fore, the hypothesis that synchrony could be driven by a change in

density dependence due to a change in the extent of C. melitaearum

is not supported. Admittedly, our surveys do not systematically

account for natural enemies other than C. melitaearum so we have

not analyzed them. However, the observed predators are broad gen-

eralists that do not appear to systematically use M. cinxia as prey

(van Nouhuys & Hanski, 2004). Over many years of field studies of

all life stages, we have not observed substantial changes in predator

community. While they may respond to M. cinxia density within a

local population under some conditions (van Nouhuys & Kraft,

2012), we do not expect individuals of these taxa to drive synchrony

by moving in the landscape in response to local density of M. cinxia.

4.2 | Evidence for a Moran effect

Population growth rate synchrony increases in parallel with the syn-

chrony of weather conditions and, even if there is some uncertainty

in the estimate, there is an indication of an association between

population dynamics synchrony and weather synchrony even after

the removal of the temporal trend and the effect of distance. It is

worth noting that our estimate of the association is conservative as

detrending synchronies with respect to time and distance prior to

analyzing the relationship between them may underestimate their

association (Chevalier et al., 2015). The paralleled trends in metapop-

ulation and weather synchronies and the residual relationship

between the two point toward a Moran effect, in which correlated

environmental conditions force populations into synchrony (Liebhold

et al., 2004; Moran, 1953).

The increase in weather synchrony can be seen in different

weather components individually (Figures S2 and S3), but more

importantly, it is also evident when combining the weather condi-

tions according to their importance to M. cinxia population growth

rate (Figure 1b). To this end, precipitation-related variables are par-

ticularly influential for M. cinxia population growth rate (Table 2). Of

these, May precipitation—the time corresponding to postdiapause

larval development and pupation (Murphy et al., 2004)—has the

strongest positive association. The importance of precipitation is

concordant with a recent study suggesting a central role for precipi-

tation in global natural selection patterns (Siepielski et al., 2017).

Although in-depth discussion of the specific mechanisms by which

the different weather variables influence the M. cinxia metapopula-

tion growth rate is beyond the scope of this study, the fact that

May precipitation stands out as influential makes perfect sense: The

larvae consume much more host plant biomass per capita during the

postdiapause than during the prediapause phase, and can be forced

to compete for resources with their siblings, which there can be

hundreds of (Kuussaari & Singer, 2017; Kuussaari et al., 2004). As

the habitats of M. cinxia are dry meadows characterized by shallow

soils, host plant growth can be very limited in the absence of precip-

itation during spring.

In a previous study, Tack et al. (2015) suggested that the syn-

chrony of M. cinxia in �Aland was driven by an increase in the fre-

quency of late summer drought events, while our results suggest

that it is the overall increase in synchrony of weather conditions,

with spring and early summer weather being most important, and

late summer conditions playing less of a role (Table 2). Our analysis

included many weather variables that had not been considered pre-

viously, and therefore, it is not too surprising that our findings are

different from those of Tack et al. (2015). Indeed, population growth

rates of several butterfly species have been reported to be sensitive

to weather conditions across their life cycle (Mills et al., 2017;

(a)

(b)

F IGURE 3 Temporal trends in the occurrence of a specialist
parasitoid Cotesia melitaearum at the level of different (a) SINs and
(b) habitat patches within SINs. The boxplots illustrate the variability
between SINs in different years and the trend line illustrates the
temporal trend derived from a binomial GLM (�95% Cr.I.)
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Radchuk, Turlure, & Schtickzelle, 2013). This being said, the results

of the current study are concordant with those of Tack et al. (2015)

in the sense that July precipitation was observed to be positively

associated with M. cinxia growth rate in both.

4.3 | Population synchrony is increasing across
various systems and scales

The results at hand add to the growing pool of evidence that change

in climatic conditions is likely to drive synchrony in populations

dynamics across systems (Allstadt et al., 2015; Defriez & Reuman,

2017; Defriez, Sheppard, Reid, & Reuman, 2016; Hansen et al., 2013;

Koenig & Liebhold, 2016; Sheppard, Bell, Harrington, & Reuman,

2015; Shestakova et al., 2016). However, few studies (if any) have

reported a weather synchrony driven increase in a highly dynamic

metapopulation system characterized by frequent local extinctions

and recolonizations. In such dynamic systems with high local turnover,

synchrony can have large effects for long-term metapopulation viabil-

ity, as habitat recolonization can be reduced due to synchronous pop-

ulation declines or extinctions (Hanski & Woiwod, 1993). Additionally,

whether synchrony increases extinction risk or not is dependent on

the source of synchrony: Increased dispersal can maintain high levels

of habitat recolonization even if it increases synchrony, but environ-

ment induced synchrony is likely more detrimental as simultaneous

population declines or local extinctions are less likely to be balanced

out by dispersal (Hanski & Woiwod, 1993; Heino et al., 1997).

Furthermore, whereas previous studies have reported climate dri-

ven increase in population synchrony on large scale patterns ranging

from regional (e.g., within the area of a country; Sheppard et al.,

2015; Defriez et al., 2016; Shestakova et al., 2016) to continental

(Defriez & Reuman, 2017; Hansen et al., 2013; Koenig & Liebhold,

2016), our results are at a smaller spatial scale, suggesting generaliz-

ability of the phenomenon across scales. In cyclic populations, Moran

effect has been suggested to work primarily on shorter spatial scales,

whereas phase locking due to dispersal and/or predators is a likely

driver of synchrony at longer distances (Fox et al., 2011). Our results

and the findings of Fox et al. (2011) would suggest that the impact

of climate change on population dynamics can be prevalent on rela-

tively small spatial scales.

With increasing habitat fragmentation and advancing climate

change there is a need for understanding the interactions between

the two, and the ways one facet of global change might influence

that of the other (Holyoak & Heath, 2016; Oliver & Morecroft,

2014). Our results suggest that climate change can alter the dynam-

ics of spatially structured populations occupying fragmented land-

scapes. Although the M. cinxia in Finland exhibits classical

metapopulation dynamics with recurrent extinction and colonization

events, our results should apply to other spatially structured systems

with limited dispersal between local populations. Another important

aspect of climate change that our results highlight is that in addition

to changes in average weather conditions, changes in the spatial

variability of weather conditions can have important consequences

for natural populations and should not be overlooked.
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