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Abstract

Protein secondary structure prediction can provide important information for protein 3D structure 

prediction and protein functions. Deep learning offers a new opportunity to significantly improve 

prediction accuracy. In this paper, a new deep neural network architecture, named the Deep 

inception-inside-inception (Deep3I) network, is proposed for protein secondary structure 

prediction and implemented as a software tool MUFOLD-SS. The input to MUFOLD-SS is a 

carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, 

which consists of a rich set of information derived from individual amino acid, as well as the 

context of the protein sequence. Specifically, the feature matrix is a composition of physio-

chemical properties of amino acids, PSI-BLAST profile, and HHBlits profile. MUFOLD-SS is 

composed of a sequence of nested inception modules and maps the input matrix to either eight 

states or three states of secondary structures. The architecture of MUFOLD-SS enables effective 

processing of local and global interactions between amino acids in making accurate prediction. In 

extensive experiments on multiple datasets, MUFOLD-SS outperformed the best existing methods 

and other deep neural networks significantly. MUFold-SS can be downloaded from http://

dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html.

Keywords

Protein Structure Prediction; Protein Secondary Structure; Deep Neural Networks; Deep Learning

1. INTRODUCTION

Protein tertiary (3D) structure prediction from amino acid sequence is a very challenging 

problem in computational biology1. Protein secondary structure prediction is an important 

step in reaching the goal. If secondary structure can be predicted accurately, the information 

is very useful for various tertiary structure related predictions, such as solvent accessibility 

prediction2, protein disorder prediction3, and protein tertiary structure prediction4. Protein 

secondary structures can also help identify protein function domains and may guide the 

rational design of site-specific mutation experiments5.
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Protein secondary structure prediction is often evaluated by the Q3 accuracy - the accuracy 

of a three-class classification, i.e., helix (H), strand (E) and coil (C), which is simply the 

percentage of correctly predicted secondary structure positions in the protein sequences. In 

the 1980s, the Q3 accuracy was below 60%. In the 1990s, the Q3 accuracy reached 70% 

because of the use of additional protein evolutionary information, such as the position-

specific score matrices (PSSM). Since then, the Q3 accuracy has gradually improved to 

around 80% on benchmark datasets. Another commonly used performance measure is the 

Q8 accuracy -the accuracy of an eight-class classification: 310-helix (G), α-helix (H), π-

helix (I), β-strand (E), β-bridge (B), β-turn (T), bend (S), and loop or irregular (L)6.

The previous protein secondary structure methods can be divided into two main categories: 

template-based methods7 using known protein structures as templates or template-free 

methods8. Although template-based methods often perform better than template-free 

methods, in the Critical Assessment of Protein Structure Prediction (CASP), a community-

wide experiment for protein structure prediction, typically no homologous templates could 

be found for hard protein targets and template-based methods did not work well. For 

template-free methods, several machine-learning methods, such as neural networks7, 8, 

hidden Markov chain9, support vector machine10 were used. Secondary structure prediction 

often uses features such as physicochemical propensities, solvent accessibilities and 

evolutionary information obtained from the protein sequence profiles as the input. Overall, 

the Q3 accuracy has gradually improved to 76–80% and the Q8 accuracy has gradually 

improved to over 70%7–10.

The earlier machine-learning methods for protein secondary structure prediction cannot 

effectively account for non-local interactions between residues that are close in the 3D space 

but far from each other in their sequence positions10. Many existing techniques rely on 

sliding windows of size 10–20 amino acid to capture some “short to intermediate” non-local 

interactions11–12. Recent deep-learning approach offers great potential over previous 

methods in handling long range non-local interactions. As shown in “Supplemental 

Materials“, our deep-learning method significantly outperformed methods using sliding 

windows, which only reflect local interactions, especially in the beta-protein category, 

whose secondary structures depends more on the long-range interactions.

The contributions of this work include: (1) A new very deep learning network architecture, 

Deep3I, was proposed to effectively process both local and global interactions between 

amino acids in making accurate secondary structure prediction. Extensive experimental 

results show that the new method outperforms the best existing methods and other deep 

neural networks significantly. (2) A software tool MUFOLD-SS was implemented based on 

the new method. This tool can predict the protein secondary structure fast and accurately.

Protein secondary structure prediction has been a very active research area in the past 30 

years. A small improvement of its accuracy can have a significant impact on many related 

research problems and software tools.

Various machine learning methods, including different neural networks, have been used by 

previous protein secondary structure predictors. Over the years, the reported Q3 accuracy on 
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benchmark datasets went from 69.7% by the PHD server13 in 1993, to 76.5% by 

PSIPRED14, to 80% by structural property prediction with integrated neural networks 

(SPINE)11, to 79–80% by SSPro using bidirectional recurrent neural networks15, and to 82% 

by structural property prediction with integrated deep neural network (SPIDER2) 3.

In recent years, significant improvement has also been achieved on Q8 accuracy by deep 

neural networks. In 16, deep convolutional neural networks integrated with a conditional 

random field was proposed and achieved 68.3% Q8 accuracy and 82.3% Q3 accuracy on the 

benchmark CB513 dataset. In 17, a deep neural network with multi-scale convolutional 

layers followed by three stacked bidirectional recurrent layers was proposed and reached 

69.7% Q8 accuracy on the same test dataset. In 18, deep convolutional neural networks with 

next-step conditioning technique were proposed and obtained 71.4% Q8 accuracy. In 12, 

long short term memory bidirectional recurrent neural networks (LSTM-bRNN) were 

applied to this problem and a tool named SPIDER3 was developed, achieving 84% Q3 

accuracy and a reduction of 5% and 10% in the mean absolute error for Psi-Phi angle 

prediction on the dataset used in their previous studies 3. These successes encouraged us to 

explore more advanced deep-learning architectures. The current work improves upon the 

previous methods through the development and application of new neural network 

architectures, including Residual networks19, inception networks20, and Batch 

Normalization21. Other than the prediction accuracy, secondary structure prediction provides 

an ideal testbed for exploring and testing these state-of-the-art deep learning methods.

2. MATERIALS AND METHODS

2.1. Problem formulation

Protein secondary structure prediction is that given the amino acid sequence, also called 

primary sequence, of a protein, predict the secondary structure type of each amino acid. In 

three-class classification, the secondary structure type is one out of three, helix (H), strand 

(E) and coil (C). In eight-class classification, the secondary structure type is one out of eight: 

(G, H, I, E, B, T, S, L).

To make accurate prediction, it is important to provide useful input features to machine 

learning methods. In our method, we carefully design a feature matrix corresponding to the 

primary amino acid sequence of a protein, which consists of a rich set of information derived 

from individual amino acid, as well as the context of the protein sequence.

Specifically, the feature matrix is a composition of physio-chemical properties of amino 

acids, PSI-BLAST profile, and HHBlits profile. Each amino acid in the protein sequence is 

represented as a vector of 8 real numbers ranging from −1 to 1. The vector consists of the 

seven physio-chemical properties as in 22 plus a number of value 0 or 1 representing the 

existence of an amino acid at this position as an input (called NoSeq label). The reason of 

adding the NoSeq label is because the proposed deep neural networks are designed to take a 

fixed size input, such as a sequence of length 700 in our experiment. Then, to run a protein 

sequence shorter than 700 through the network, the protein sequence will be padded at the 

end with 0 values and the NoSeq label is set to 1. For example, if the length of a protein is 
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500, then the first 500 rows have NoSeq label set to 0, and the last 200 rows have 0 values in 

the first 7 columns and 1 in the last column.

The second set of useful features comes from the protein profiles generated using PSI-

BLAST 23. In our experiments, the PSI-BLAST software parameters were set to (evalue: 

0.001; num_iterations: 3; db: UniRef50) to generate PSSM, which was then transformed by 

the sigmoid function into the range (0, 1). Each amino acid in the protein sequence is 

represented as a vector of 21 real numbers ranging from 0 to 1, representing the 20 amino 

acids PSSM value plus a NoSeq label in the last column. The feature vectors of the first 5 

amino acids are shown. The third through nineteenth columns are omitted.

The third set of useful features comes from the protein profiles generated using HHBlits24. 

To have a fair comparison with tools published previously, in our experiments, the HHBlits 

software used an older version of the sequence database, uniprot20_2013_03, which can be 

downloaded from http://wwwuser.gwdg.de/~compbiol/data/hhsuite/databases/hhsuite_dbs/. 

Again, the profile values were transformed by the sigmoid function into the range (0, 1). 

Each amino acid in the protein sequence is represented as a vector of 31 real numbers, of 

which 30 from amino acids HHM Profile values and 1 NoSeq label in the last column.

The three sets of features can be combined into one feature vector of length 58 for each 

amino acid as input to our proposed deep neural networks. For the deep neural networks that 

take fixed size input, e.g., sequence of length 700, the input feature matrix would be of size 

700 by 58. If a protein is shorter than 700, the input matrix would be padded with NoSeq 
rows at the end to make it full size. If a protein is longer than 700, it would be split into 

segments less than 700.

For our new deep neural networks, the predicted secondary structure output of a protein 

sequence is represented as a fixed size matrix, such as a 700 by 9 matrix for 8-state labels 

plus 1 NoSeq label) matrix or a 700 by 4 matrix for 3-state labels plus 1 NoSeq label. One of 

the first 8 columns have a value 1 (one hot encoding of the target class), while the others are 

0.

2.2. New deep inception networks for protein secondary structure prediction

In this section, a new deep inception network architecture is proposed for protein secondary 

structure. The architecture consists of a sequence of inception modules followed by a 

number of convolution and fully connected dense layers.

Figure 1 shows the basic inception module 20. The inception model was used for image 

recognition and achieved the state-of-the-art performance. It consists of multiple convolution 

operations (usually with different convolutional window sizes) in parallel and concatenates 

the resulting feature maps before going into next layer. Usually, different convolutional 

window sizes can be 1×1, 3×3, 5×5, 7×7 along with a 3×3 max pooling (see Supplemental 

Materials). The 1×1 convolution is used to reduce the feature map dimensionality and the 

max pooling is used for extracting image region features. In our protein secondary structure 

prediction experiment, the max pooling is not suitable because the sequence length will 

change and hence it was not applied in our study. The inception module consists of several 
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parallel convolutional networks that can extract diverse features from input. In this work, an 

inception network is applied to extract both local and non-local interactions between amino 

acids and a hierarchical layer of convolutions with small spatial filters is used to be 

computationally efficient. By stacking convolution operations on top of one another, the 

network has more ability to extract non-local interaction of residues.

A deep inception network consists of a sequence of inception modules. Figure 2 shows a 

network with three inception modules followed by a convolutional layer and two dense 

layers. A dense layer is a fully connected neural network layer. The input of the network is 

the feature matrix for a protein sequence, such as a matrix of size 700 by 58, and the output 

is the target label matrix. Different numbers of inception modules were tried in our 

experiments to find appropriate values for our prediction tasks. The deep neural networks 

were implemented, trained, and experimented using TensorFlow25 and Keras26 (https://

github.com/fchollet/keras).

2.3. New deep inception-inside-Inception networks for protein secondary structure 
prediction (Deep3I)

In this section, a new deep inception-inside-inception network architecture (Deep3I) is 

presented. The architecture extends deep inception networks through nested inception 

modules.

Figure 3 shows a deep inception-inside-inception network (Deep3I) consisting of two 

Deep3I blocks, followed by a convolutional layer and two dense layers. A Deep3I block is 

constituted by a recursive construction of an inception model inside another Inception 

module. Stacked inception modules could extract non-local interactions of residues over a 

diverse range in a more effective way. Adding more Deep3I blocks is possible but requires 

more memory.

Each convolution layer, such as ‘Conv (3)’ in Figure 3, consists of four operations in 

sequential order: 1) A one- dimensional convolution operation using the kernel size of three; 

2) The Batch normalization technique21 for speeding up the training process and acting as a 

regularizer; 3) The activation operation, ReLU 27; and 4) The Dropout operation 28 to 

prevent the neural network from overfitting by randomly dropping neurons during the deep 

network training process so that the network can avoid co-adapting.

Deep3I networks were implemented, trained, and experimented using TensorFlow and 

Keras. In our experiments, a large number of network parameters and training parameters 

were tried. For the results reported, the dropout rate was set at 0.4. During training, the 

learning rate scheduler from Keras was used to control the learning rate. The initial learning 

rate was 0.0005, and after every 40 epochs, the learning rate dropped as shown by the 

following formulas: lrate = 0.0005 * pow (0.8, floor(epoch + 1)/40). An early stopping 

mechanism from Keras was used to stop the network training when the monitored validation 

quantity (such as validation loss and/or validation accuracy) stopped improving. The 

“patience” (number of epochs with no improvement after which training was stopped) was 

set as a number from 5 to 8. TensorBoard from Keras was used to visualize dynamic graphs 

of the training and validation metrics.
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The new Deep3I networks are different from existing deep neural networks. The networks in 
17–18 consist of residual blocks and a multi-scale layer containing convolutional layers with 

convolution window sizes of 3, 7, and 9 to discover the protein local and global context. 

Although Deep3I uses convolution window size of 1 or 3, through stacked deep convolution 

blocks, the network can represent both local and global context well, while maintains 

efficient computation.

3. RESULTS AND DISCUSSION

In this section, extensive experimental results of the proposed deep neural networks on 

multiple commonly used datasets and performance comparison with existing methods are 

presented. Additional benchmark comparisons can be found in Supplemental Materials.

The following five publically available datasets were used in our experiments:

1) CullPDB dataset. CulPDB29 was downloaded on 15 June 2017 with 30% 

sequence identity cutoff, resolution cutoff 3.0Å and R-factor cutoff 0.25. The 

raw CullPDB dataset contains 10,423 protein sequences. All sequences with 

length shorter than 50 or longer than 700 were filtered out, which left the 

remaining 9972 protein sequences. CD-HIT30 was then used to remove similar 

sequences between CullPDB and CASP10, CASP11 and CSAP12 datasets. 

After that, there were 9589 proteins left. Among them, 8 protein sequences were 

ignored because they are too short to generate PSI-BLAST profile. For the final 

9581 proteins, 9000 were randomly selected as the training set and the rest 581 

as the validation set.

2) JPRED dataset5. All proteins from the JPRED dataset belong to different super-

families, which gives the experimental result a more objective evaluation.

3) CASP datasets. CASP10, CASP11 and CASP12 datasets were downloaded from 

the official CASP website http://predictioncenter.org. The Critical Assessment of 

protein Structure Prediction, or CASP, is a bi-annual worldwide experiment for 

protein structure prediction since 1994. The CASP datasets have been widely 

used in the bioinformatics community. To get the secondary structure labels of 

the proteins, the DSSP program6 was used. Some of the PDB files (including 

T0675, T0677 and T0754) could not generate the DSSP result; so, they were 

discarded. Some protein sequences (including T0709, T0711, T0816 and T0820) 

are too short and PSI-BLAST could not generate profiles; so, they were also 

removed. Finally, 98 out of 103 in CASP10, 83 out of 85 in CASP11 and 40 out 

of 40 in CASP12 were used as our CASP dataset.

4) CB513 benchmark4. This benchmark has been widely used for testing and 

comparing the performance of secondary structure predictors.

5) Most recently PDB (Protein Data Bank). Because training data used in different 

tools are not same, it is important to use PDB files that have not been seen by 

any previous predictors (including ours) to objectively evaluate the performance. 

For this purpose, the most recently published protein PDB files dated from 
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2017-7-1 to 2017-8-15 were downloaded. This set contains 614 proteins, each of 

which share less than 30% sequence identity. Then, 385 proteins with a length 

between 50 and 700 were kept. To perform a more objective test, each of the 385 

proteins was searched against CullPDB using BLAST and was classified into 

two categories: 1) easy cases where e-value is less than or equal to 0.5; and 2) 

hard cases which can have no hit or e-value higher than 0.5. After the 

classification, there are 270 easy cases and 115 hard cases.

In our experiments, the Deep3I configuration as shown in Fig. 3 was used to generate the 

results reported in this paper. In most cases, the CullPDB dataset was used to train various 

deep neural networks, while the other datasets were only used in testing and performance 

comparison with other methods and existing results.

3.1. PSI-BLAST vs. DELTA-BLAST

When generating the sequence profiles, most researchers 4,14–16 chose PSI-BLAST23, which 

can reliably generate a good protein sequence profiles. Besides PSI-BLAST, other profile 

search tools are available, such as CS-BLAST31, DELTA_BLAST32, PHI-BLAST33, etc. In 

this work, the performance between two popular tools were compared: PSI-BLAST vs. 

DELTA-BLAST on the JPRED dataset to decide which tool to use to generate the input 

feature vectors for the new Deep3I network. For the PSI-BLAST experiment: both training 

and test data profiles were generated by setting the e-value at 0.001, num_iterations at 3 and 

db is UniRef50. The JPRED dataset itself contains a training set of 1348 protein sequences 

and a test set of 149 protein sequences. The JPRED training dataset was used to train the 

Deep3I network and the JPRED test dataset was used to report the prediction Q3. The 

Deep3I network were trained five times from random initial weights, and the average Q3 

accuracy and standard deviation are reported in Table 1. The same procedure was used for 

DELTA-BLAST with its default search database (2017/4/1, with a size of 8.7GB). The 

comparison of their results is shown in Table 1. Even though the average profile generation 

time of DELTA-BLAST is faster than PSI-BLAST, the Q3 accuracy of MUFOLD-SS using 

DELTA-BLAST is not as high as using PSI-BLAST. Hence, PSI-BLAST was chosen to 

generate profiles in the rest of our experiments.

3.2. MUFOLD-SS vs. the Best Existing Methods

Many previous researchers14–16 benchmarked their tools or methods using the dataset 

CB5134. For a fair comparison, the same CullPDB dataset was used to train and test 

MUFOLD-SS in the same way as for existing methods reported in previous publications.

Table 2 shows the performance comparison between MUFOLD-SS and four of the best 

existing methods (SSPro, DeepCNF-SS, DCRNN, and DCNN) in terms of the Q8 prediction 

accuracy on the CB513 dataset. All these methods were compared under the condition of the 

same input and features. In this case, only the protein sequence and PSI-BLAST profiles 

were provided. No additional technique like the next-step condition proposed in 18 was 

involved. SSPro was run without using template information. The result shows MUFOLD-

SS obtained the highest accuracy.
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Tables 3 and 4 show the performance comparison between MUFOLD-SS and the best 

existing methods (SSPro, PSIPRED, DeepCNF-SS) in terms of the Q3 prediction accuracy 

on the CASP datasets. PSIPRED could not predict 8-class classification, and thus do not 

have result on Q8 accuracy.

For all methods, their prediction accuracies on the CASP10 and CASP11 datasets are 

generally higher than their accuracies on the CASP12 dataset. This is because CASP12 

contains more hard cases and the profiles generated are not as good as for those in CASP10 

and CSAP11 datasets. Furthermore, MUFOLD-SS outperformed SSPro with template in in 

all cases, even though SSPro used the template information from similar proteins, whereas 

MUFOLD-SS did not.

3.3. Effects of Hyper-Parameters of MUFOLD-SS

Tables 5 and 6 show the Q3 and Q8 accuracy comparison between MUFOLD-SS with 1 or 2 

blocks and the proposed Deep Inception Networks with 1 to 4 inception modules. The 

results of Deep Inception Networks with different number of modules are similar, whereas 

MUFOLD-SS with two blocks is slightly better than that with one block. Both Deep3I 

networks performed better than Deep inception networks. The reason may be that the ability 

of inception network in capturing non-local interaction between residues is not as good as 

MUFOLD-SS. MUFOLD-SS consists of integrated hierarchical inception modules, which 

gives more ability to extract high level features, i.e. non-local interactions of residues.

3.4. Results Using Most Recently Released PDB Files

The purpose of this test was to conduct a real-world testing, just like CASP, by using the 

most recently published PDB protein files dated from 2017-7-1 to 2017-8-15. These PDB 

files had not been viewed by any previous predictors. As mentioned before, the most 

recently released PDB proteins were classifier into two categories: the 270 easy cases and 

115 hard cases.

MUFOLD-SS is compared with the best available tools in this field, including PSIPRED, 

SSPro, and the newly developed SPIDER3 on this set of data. Some protein files in this 

dataset has special amino acid like ‘B’, which causes SPIDER3 prediction failure. To make a 

fair comparison, proteins containing those special cases were excluded (20 hard cases and 44 

easy cases in total) and the remaining proteins were used as test cases to compare the four 

tools. Again, MUFOLD-SS was trained using the CullPDB dataset and tested on the new 

dataset.

Table 7 shows the performance comparison of the 4 tools. Again, MUFOLD-SS 

outperformed the other state-of-the-art tools in both easy and hard cases. Different from 

traditional neural networks that use a sliding window of neighbor residues to scan over a 

protein sequence in making prediction, MUFOLD-SS takes the entire protein sequence (up 

to 700 amino acids) as the input and processes local and global interactions simultaneously. 

It is remarkable that MUFOLD-SS can outperform SPIDER3 in both easy and hard cases. 

Another advantage of MUFOLD-SS is that it can generate prediction for 3-class and 8-class 

classification at the same time, while some other tools like Psipred and SPIDER3 can predict 

only 3-class or 8-class classification. Last but not the least, MUFOLD-SS can even 
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outperform SSPro with template in hard cases. (For hard cases, SSPro with template get 

81.88% in Q3 and 71.8% in Q8.

4. CONCLUSION AND FUTURE WORK

In this work, a new deep neural network architecture Deep3I was proposed for protein 

secondary structure prediction. Extensive experimental results show that Deep3I’s 

implementation MUFOLD-SS obtained more accurate predictions than the best state-of-the-

art methods and tools. The experiments were designed carefully, and the datasets used in 

training, e.g., the CullPDB dataset, were processed to remove any significantly similar 

sequences with the test sets using CD-HIT to avoid any bias. Compared to previous deep-

learning methods for protein secondary structure prediction, this work uses a more 

sophisticated, yet efficient, deep-learning architecture. MUFOLD-SS utilizes hierarchical 

deep Inception blocks to effectively process local and non-local interactions of residues. It 

will provide the research community a powerful prediction tool for secondary structures.

In the future work, we will apply MUFOLD-SS to predict other protein structure related 

properties, such as backbone torsion angles, solvent accessibility, contact number, and 

protein order/disorder region. These predicted features are also useful for protein tertiary 

structure prediction and protein model quality assessment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
An Inception module. The red square “Conv(1)” stands for convolution operation using 

window size 1 and the number of filters is 100. The green square “Conv(3)” stands for 

convolution operation using window size 3 and the number of filters is 100. The yellow 

square “Concatenate” stands for feature concatenation.
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Figure 2. 
A deep inception network consisting of three inception modules, followed by one 

convolution and two fully-connected dense layers.
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Figure 3. 
A deep inception-inside-inception (Deep3I) network that consists of two Deep3I blocks. 

Each Deep3I block is a nested inception network self. This network was used to generate the 

experimental results reported in this paper.
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Table 1.

Comparison of the profile generation execution time and MUFOLD-SS Q3 accuracy using PSI-BLAST and 

DELTA-BLAST

Tool average profile generation time (minutes) Q3 accuracy %

PSI-BLAST* 16.8(+/−10.14) 84.21(+/−0.49)

DELTA-BLAST 7.56(+/−3.96) 83.63(+/−0.31)

*
Database for PSI-BLAST search was UniRef50 download on 2017/4/12, 8.7GB.
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Table 2.

Q8 accuracy (%) comparison between MUFOLD-SS and existing state-of-the-art methods using the same 

sequence and profile of benchmark CB513.

Tool CB513

SSPro (Cheng et al., 2005) 63.5*

DeepCNF-SS (Wang et al., 2016) 68.3*

DCRNN (Li and Yu, 2016) 69.7*

DCNN (Busia et al., 2017) 70.0**

MUFOLD-SS 70.63

*
results reported by (Wang et al., 2016)

**
results reported by (Busia et al., 2017)
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Table 3.

Q3 accuracy (%) comparison between MUFOLD-SS and other state-of-the-art methods on CASP datasets.

CASP10 CASP11 CASP12

SSpro (w/o template) * 78.5 77.6 76.0**

SSpro(w/ template) * 84.2 78.4 76.6**

PSIPRED* 81.2 80.7 80.4**

DeepCNF-SS** 83.22 82.22 81.30

SPIDER3** 82.6 81.5 79.87

MUFOLD-SS ** 86.49 85.20 83.36

*
results reported by (Wang et al., 2016)

**
experiment results we conducted
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Table 4.

Q8 accuracy (%) comparison between MUFOLD-SS and other state-of-the-art methods on CASP datasets.

CASP10 CASP11 CASP12

SSpro(w/o template)* 64.9 65.6 63.1**

SSpro (w/ template)* 75.9 66.7 64.1**

DeepCNF-SS** 72.81 71.64 69.76

MUFOLD-SS** 76.47 74.51 72.1

*
results reported by (Wang et al., 2016)

**
experiment results we conducted
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Table 5.

Q3 accuracy (%) comparison between MUFOLD-SS with different number of blocks and Deep Inception 

Networks with different number of modules.

# of modules CASP10 CASP11 CASP12

Deep Inception 1 86.05 84.13 82.48

2 86.12 84.31 82.80

3 86.03 84.29 82.69

4 86.02 84.44 82.67

MUFOLD-SS 1 86.51 84.56 82.94

2 86.49 85.20 83.36
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Table 6.

Q8 accuracy (%) comparison between MUFOLD-SS with different number of blocks and Deep Inception 

Networks with different number of modules.

# of modules CASP10 CASP11 CASP12

Deep Inception 1 75.41 73.12 71.22

2 75.70 73.26 71.55

3 75.14 73.33 71.31

4 75.23 73.37 71.42

MUFOLD-SS 1 76.03 73.74 71.54

2 76.47 74.51 72.1
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Table 7.

Q3 (%) and Q8 (%) compared with MUFOLD-SS and other state-of-the-art tools using recently PDB.

Easy case Hard case

Q3 Q8 Q3 Q8

PSIPRED 82.55 N/A 80.76 N/A

SSPro 78.76 66.53 76.01 63.14

SPIDER3 86.23 N/A 82.64 N/A

MUFOLD-SS 88.20 78.65 83.37 72.84
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Table 8.

Comparison of mean absolute errors (MAE) of Psi-Phi angle prediction between MUFOLD-SS and SPIDER3.

Angle CASP10 CASP11 CASP12

SPIDER3 Psi 31.13 33.04 35.60

Phi 19.26 20.45 21.12

MUFOLD-SS Psi 25.74 27.18 30.16

Phi 17.62 18.88 19.64
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