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This review summarizes our current understanding of translation in prokaryotes, focusing on
the mechanistic and structural aspects of each phase of translation: initiation, elongation,
termination, and ribosome recycling. The assembly of the initiation complex provides mul-
tiple checkpoints for messenger RNA (mRNA) and start-site selection. Correct codon–anti-
codon interaction during the decoding phase of elongation results in major conformational
changes of the small ribosomal subunit and shapes the reaction pathway of guanosine tri-
phosphate (GTP) hydrolysis. The ribosome orchestrates proton transfer during peptide bond
formation, but requires the help of elongation factor P (EF-P) when two or more consecutive
Pro residues are to be incorporated. Understanding the choreography of transfer RNA (tRNA)
and mRNA movements during translocation helps to place the available structures of trans-
location intermediates onto the time axis of the reaction pathway. The nascent protein begins
to fold cotranslationally, in the constrained space of the polypeptide exit tunnel of the ribo-
some. When a stop codon is reached at the end of the coding sequence, the ribosome,
assisted by termination factors, hydrolyzes the ester bond of the peptidyl-tRNA, thereby
releasing the nascent protein. Following termination, the ribosome is dissociated into sub-
units and recycled into another round of initiation. At each step of translation, the ribosome
undergoes dynamic fluctuations between different conformation states. The aim of this article
is to show the link between ribosome structure, dynamics, and function.

Translation is the last step in gene expression,
during which the coding sequence of mRNA

is translated into the amino-acid sequence of a
protein. Translation is a highly dynamic process
that entails four major phases: initiation, elon-
gation, termination, and ribosome recycling.
During each phase, ribosomes form transient
complexes with auxiliary translation factors
that facilitate protein synthesis. In addition to
the compositional dynamics of translating ribo-
some complexes, conformational fluctuations of
the ribosome and the translation factors play an

important role in promoting the directionality
of the process. A major challenge is to under-
stand how the loosely coupled motions of the
translational components lead to rapid and ac-
curate protein production. Here, we summarize
recent results of biochemical, biophysical, and
structural work that dissected the order of events
at each step of translation in bacteria, identified
dynamic components, and captured structures
of individual intermediates. Understanding the
dynamics of ribosome complexes during trans-
lation could ultimately reveal how macromolec-
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ular machines navigate through the available
conformational space and how their dynamics
translates into function.

INITIATION

During translation initiation, the ribosome re-
cruits an mRNA and selects the start codon of
the open reading frame (ORF) (for recent re-
views, see Milon and Rodnina 2012; Duval
et al. 2015; Gualerzi and Pon 2015; see alsoMer-
rick and Pavitt 2018). In bacteria, translation
initiation occurs cotranscriptionally, with the
RNA polymerase (RNAP) and the ribosome
physically interacting with each other (Kohler
et al. 2017). The ribosome binds to the ribosome
binding site (RBS) of the mRNA as soon as it
emerges from the RNAP. Inhibition of transla-
tion leads to increased RNAP pausing, suggest-
ing that transcription and translation are kinet-
ically coupled (Landick et al. 1985; Proshkin
et al. 2010). So far, almost nothing is known
about the mechanism of initiation in the tran-
scription–translation complex, a molecular ma-
chine denoted as the expressome (Kohler et al.
2017). Similarly, very little is known about
initiation on mRNAs that are engaged in poly-
somes (Mitarai et al. 2008; Espah Borujeni
and Salis 2016), as most of the mechanistic
knowledge comes from studies that used free
mRNAs not attached to the RNAP or to a
preceding ribosome. Further studies are needed
to determine whether initiation in expressomes
or polysomes follows the same mechanism
as initiation by the pioneering ribosome on
free mRNA.

Among the different types of mRNAs found
in prokaryotes, mRNAs containing the Shine–
Dalgarno (SD) sequence are particularly well
studied. They usually have an extended 50 un-
translated region (50UTR) and an SD sequence
located 8–10 nt upstream of the start codon
(usually AUG). During SD-led initiation, the
small subunit ([SSU], 30S in bacteria) is recruit-
ed to the RBS through interactions between the
SD sequence and the complementary anti-SD
(aSD) sequence in 16S ribosomal RNA
(rRNA). Initiation on SD-led mRNAs is pro-
moted by initiation factors IF1, IF2, and IF3.

These bacterial factors display activities that
resemble those of eIF1A, eIF2, and eIF1 in eu-
karyotes, respectively, but there is very little se-
quence homology between these prokaryotic
and eukaryotic initiation factors. IF2 is homolo-
gous with eukaryotic initiation factor eIF5B.
IF1 enhances the activities of IF2 and IF3. IF2
is a GTPase that recruits the initiator fMet-
tRNAfMet. IF3 interferes with subunit associa-
tion, ensures the fidelity of fMet-tRNAfMet

selection over the elongator aminoacyl-tRNAs
(aa-tRNAs), and helps to discriminate against
mRNAs with unfavorable translation initiation
regions (TIRs) (Milon and Rodnina 2012; Duval
et al. 2015; Gualerzi and Pon 2015, and refer-
ences therein).

However, not all mRNAs have an SD se-
quence. mRNAs lacking the SD sequence exist
in most bacteria and archaea (Tolstrup et al.
2000; Weiner et al. 2000; Ma et al. 2002; Chang
et al. 2006). The number of SD-led genes among
162 completed prokaryotic genomes varies from
∼12% to 90%, suggesting a significant number
of non-SD-led or leaderless mRNAs (Chang
et al. 2006). Very little is known about initiation
on non-SD-ledmRNAs except that the 50UTR is
usually unfolded and the AUG start codon re-
sides in a single-strandedmRNA region (Scharff
et al. 2011). In archaea and some bacteria, inter-
nal ORFs of multicistronic mRNAs are more
likely to have an SD sequence than the leading
ORF; genes with an AUG start codon are more
likely to have an SD sequence than those with
GUG or UUG start codons (Ma et al. 2002;
Chang et al. 2006).

Another group of mRNAs comprises lead-
erless mRNAs that lack a 50UTR. Such mRNAs
are widespread in a variety of bacteria (Zheng
et al. 2011) and may play an important role in
regulating the stress response (Grill et al. 2000;
Vesper et al. 2011). A major determinant for
leaderless initiation is the presence of an AUG
start codon close to the 50 end of the mRNA
(Krishnan et al. 2010). Leaderless mRNAs
bind to 70S ribosomes directly; recruitment of
fMet-tRNAfMet is facilitated by IF2 and IF3
(Grill et al. 2000; Yamamoto et al. 2016).Where-
as IF2 can bind in a similar way to either the 30S
subunit or 70S ribosome (Goyal et al. 2015), IF3
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must move from its binding site on the 30S sub-
unit on 50S subunit joining. Binding of IF3 to
70S ribosomes promotes their dissociation into
subunits. This raises the question how IF3 can
promote initiation on 70S ribosomes without
splitting them into subunits. Recent results sug-
gest that after dissociating from its 30S site on
50S subunit joining, IF3 may remain bound at
the noncanonical binding site on the 50S sub-
unit, which would allow the factor to act in lead-
erless initiation without promoting the dissoci-
ation of the 70S ribosome into subunits (Goyal
et al. 2017). After translating the first ORF of a
polycistronic mRNA, the ribosome can also re-
initiate downstream at a second ORF using a

70S-scanning mechanism that requires fMet-
tRNAfMet and IF3 (Yamamoto et al. 2016).

Translation initiation on SD-led mRNAs in
Escherichia coli proceeds through three main
assembly intermediates (Fig. 1) (Milon and
Rodnina 2012; Duval et al. 2015; Gualerzi and
Pon 2015). The SSU, IF1, IF2, IF3, and fMet-
tRNAfMet form a labile 30S preinitiation com-
plex (30S PIC). As soon as mRNA is recruited,
start codon recognition converts the 30S PIC
into the stable 30S initiation complex (30S IC).
Joining of the large subunit ([LSU], 50S in bac-
teria) triggers the dissociation of the initiation
factors, the accommodation of fMet-tRNAfMet

in the P site, and the formation of the mature
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Figure 1. Kinetic model of translation initiation. (Top) Assembly of the 30S preinitiation complex (PIC) and 30S
initiation complex (IC). Arrival times are calculated using experimentally measured bimolecular association rate
constants and the in vivo concentrations of initiation factors in E. coli. Residence times are calculated from the
measured dissociation rate constants of the individual components; mRNA binding is shown as a last step, but
can occur at any step of the assembly pathway, independent of the presence of initiation factors or fMet-
tRNAfMet. Recognition of the start codon signifies the transition to the 30S IC (based on data in Milon et al.
2012). (Middle) Formation andmaturation of the 70S IC. After subunit joining, IF3may remain loosely bound to
a site on the large subunit (LSU) (based on data in Goyal et al. 2017). (Bottom) Checkpoints of mRNA selection.
From an mRNA-centric point of view, structured mRNAs can be recruited to the platform of the small subunit
(SSU), unfold, and then accommodate in the mRNA-binding channel of the SSU (based on data in Milon et al.
2008 and Milon and Rodnina 2012).
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70S IC, which is ready for translation elonga-
tion. The assembly pathway of the 30S PIC
does not follow a strict order of factor addition.
The factors can bind to the SSU independently
of each other. However, there is a kinetically
preferred sequence of factor association in the
order IF3 and IF2, then IF1, followed by the
recruitment of fMet-tRNAfMet through IF2
(Fig. 1) (Milon et al. 2012). Occasionally,
fMet-tRNAfMet can form an IF2•GTP/fMet-
tRNAfMet complex (Tsai et al. 2012), but this
complex does not constitute an obligatory deliv-
ery pathway for fMet-tRNAfMet (Milon et al.
2010). The mRNA can bind to the SSU at any
time, independent of the presence of the initia-
tion factors (Studer and Joseph 2006; Milon
et al. 2012). The association rate depends on
the properties of the mRNA, such as the pres-
ence of secondary structures in the RBS, as
well as the mRNA concentration (Studer and
Joseph 2006). Codon recognition changes the
conformation of the complex (Milon et al.
2008, 2012; Simonetti et al. 2008; Julian et al.
2011), stabilizes tRNA binding and destabilizes
IF3 binding (Milon et al. 2012; Qin et al. 2012;
Elvekrog and Gonzalez 2013; Hussain et al.
2016). IF3 changes its position on the ribosome
in response to codon recognition (Hussain et al.
2016).

The next major step entails the LSU docking
onto the 30S IC (Fig. 1). Rapid docking depends
on the presence of IF1, IF3, IF2•GTP, and fMet-
tRNAfMet (Antoun et al. 2006; Milon et al. 2008;
Goyal et al. 2015). In addition, the rate of sub-
unit joining is attenuated by themRNA depend-
ing on the sequence of the RBS, for example on
the strength of the SD–aSD interactions and the
length of the spacer between the SD and the start
codon (Milon et al. 2008). After GTP hydrolysis
by IF2, fMet-tRNAfMet accommodates in the P
site (Grigoriadou et al. 2007; Milon et al. 2008;
Goyal et al. 2015). Displacement of IF3 from its
30S binding site and dissociation of IF1 and IF2
from the complex allows the ribosome to make
intersubunit bridges and leads to formation of
the mature 70S IC (Fig. 1) (Fabbretti et al. 2007;
Chen et al. 2015; Goyal et al. 2015, 2017; Liu and
Fredrick 2015; MacDougall and Gonzalez
2015). The irreversible steps of start-codon rec-

ognition and GTP hydrolysis promote confor-
mational changes of the 30S subunit and induce
rotation of the two subunits relative to each oth-
er (Allen et al. 2005; Myasnikov et al. 2005; Mar-
shall et al. 2009; Julian et al. 2011; Coureux et al.
2016; Sprink et al. 2016).

A key question is which features of the
mRNA determine its translational efficiency. In
bacteria, the RBS spans nucleotides –20 to +15
around the translation start codon. Translational
efficiency is modulated by the nature of the co-
don used for initiation (AUG, GUG, or UUG),
the SD sequence and the spacer between the SD
sequence and the start codon, the mRNA sec-
ondary structure near the start site, and A/U-
rich elements in the mRNA that are recognized
by the SSU protein bS1. bS1, which is the largest
andmost acidic ribosomal protein, is required for
the binding and unfolding of structured mRNAs
(Duval et al. 2013; Byrgazov et al. 2015). The
relative contribution of each specific element is
not clear. The available on-line tools used to es-
timate translational efficiency from the thermo-
dynamic properties of the RBS yield predictions
that are quite good for engineered mRNAs (Salis
et al. 2009; Kosuri et al. 2013; Reeve et al. 2014;
Bonde et al. 2016). However, in natural mRNAs,
each element of the RBS alone appears to have
limited effect and can modulate the efficiency of
initiation only within a certain context.

A more holistic approach conceptualizes the
initiation pathway as comprising a sequence of
kinetic checkpoints (Fig. 1) (Milon and Rodnina
2012; Duval et al. 2015; Gualerzi and Pon 2015).
In this view, the initiation efficiency is deter-
mined by kinetic partitioning between the for-
ward stepson thepathway toward themature 70S
IC, and the backward or rejection steps. The
structure and thermodynamic stability of the
RBS affect the association (step 1) and unfolding
(step 2) of the mRNA. The identity of the start
codon determines the stability of the codon–an-
ticodon complex (step 3). Finally, the overall
conformation of the 30S IC, which is modulated
by the sequence context of the RBS, defines the
rate of LSU joining (step 4). The kinetic model
can explain any variations in the translational
efficiency of different mRNAs. If the rate con-
stants of the elemental steps are known, the
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translational efficiency can be predicted. In the
few cases where such measurements were possi-
ble, the calculated value matched well with the
directlymeasured translational efficiency (Milon
et al. 2008, 2012).However, formostmRNAs the
elemental rate constants are unknown, which
hinders the use of the kinetic parameters as de-
scriptors in global bioinformatics analysis. Al-
though the mechanism of translation initiation
is generally quite different in pro- and eukary-
otes, the principles of kinetic partitioning most
likely play a major role in start-site selection in
eukaryotes as well (see Sokabe and Fraser 2018).

ELONGATION

Elongation entails repetitive cycles of decoding,
peptide bond formation, and translocation.
Elongation begins as soon as the second codon
of the ORF becomes accessible for reading by
elongator aa-tRNAs and ends when the ribo-
some arrives at the stop codon. The basic mech-
anism of elongation is very similar in prokary-
otes and eukaryotes (see Dever et al. 2018) and is
facilitated by homologous translation factors
(EF-Tu/eEF1A, EF-G/eEF2, EF-P/eIF5A, SelB/
EFsec), with some notable additions, such as
eEF3, which is found in fungi.

Decoding

During decoding, the ribosome translates the
sequence of codons in anmRNA into the amino
acid sequence of a protein. A codon exposed in
the A site is recognized by aa-tRNAs, which in
bacteria are delivered to the ribosome in a ter-
nary complex with EF-Tu and GTP. The initial
recruitment of the EF-Tu•GTP/aa-tRNA com-
plex occurs through the interactions with the
bL12 stalk of the ribosome (Kothe et al. 2004;
Diaconu et al. 2005). Interaction of the aa-tRNA
anticodon with the mRNA codon in the decod-
ing site of the SSU triggers GTP hydrolysis
by EF-Tu. After Pi release, EF-Tu rearranges
into the guanosine diphosphate (GDP)-bound
form and releases the aa-tRNA. The aa-tRNA
accommodates in the A site of the LSU, while
EF-Tu•GDP dissociates from the ribosome
(Rodnina et al. 2017).

The structures of several key intermediates of
decoding, which were initially identified by bio-
chemical and biophysical studies, have been de-
termined by cryoelectron microscopy (cryo-
EM). Currently, a sequence of snapshots of
cognate decoding is available for EF-Tu•GTP/
Phe-tRNAPhe (Loveland et al. 2017) and
SelB•GTP/Sec-tRNASec (Fischer et al. 2016). In
contrast to EF-Tu, which is a general translation
factor that directs every elongator aa-tRNA to
the A site, SelB is a specialized elongation factor
that is responsible for the delivery of the 21st
natural proteinogenic amino acid, selenocys-
teine (Forchhammer et al. 1989). Whereas the
two cryo-EM structures capture somewhat dif-
ferent intermediates on the decoding pathway,
and some details appear specific for EF-Tu or
SelB, the overall sequence of rearrangements is
remarkably similar. Both reports (Fischer et al.
2016; Loveland et al. 2017) identify an early de-
coding intermediate where the ternary complex
is bound to the SSU, but the anticodon does not
yetbase-pairwith thecodon(Fig. 2).These struc-
tures have an open SSU-domain conformation
similar to or even more open than in ribosomes
with a vacantA site (Fischer et al. 2016; Loveland
et al. 2017). The 16S rRNA residues forming the
local core in the SSU decoding center point away
from the codon–anticodon complex, although
there seem to be subtle differences in the orien-
tationofdifferentnucleotidesbetween theEF-Tu
and SelB structures. In both structures, the key
residue A1492 is in the “flipped-out” (Ogle et al.
2001) open formoriented away from the codon–
anticodon complex. A1493 is in a semi-open ori-
entation in the ribosome–EF-Tu complex, but in
an open orientation in the SelB complex; also the
mobility of G530 of 26S rRNA appears to differ
between the two complexes (Fischer et al. 2016;
Loveland et al. 2017).

The second intermediate of the SelB com-
plex captures an early decoding state in which
only a single potential base pair is formed be-
tween codon and anticodon, whereas in the
EF-Tu-bound complex the anticodon is fully
base-paired with the codon; in both cases, the
ribosome remains in an open conformation. In
the EF-Tu complex, the GTP-binding pocket
remains distant from the LSU (Loveland et al.
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2017), and thus the GTPase activity of EF-Tu,
which requires an interaction of EF-Tu with the
sarcin-ricin loop (SRL) of the 23S rRNA as a
GTPase-activating element, remains low (Ma-
racci et al. 2014). In contrast to EF-Tu, SelB
interacts with the LSU in both intermediates
prior to codon recognition, but the contact
with the SRL is blocked by Sec-tRNASec (Fischer
et al. 2016). Interestingly, a similar protective

interaction of aa-tRNA with the SRL was iden-
tified among decoding intermediates of eukary-
otic translation, where it blocks the access of
eEF1A to the GTPase-activating center (Budke-
vich et al. 2014).

After the codon–anticodon interaction has
been established, the 16S rRNA residues at the
decoding center change their orientation to the
“flipped-in” (Ogle et al. 2001) conformation and
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Figure 2. Structural mechanism of decoding as visualized by cryoelectron microscopy (cryo-EM). (Top) Inter-
mediates of cognate decoding by elongation factor (EF)-Tu•GDP–Phe-tRNAPhe. (Left) Schematic of the cognate
codon–anticodon interaction between the UUC mRNA codon and the AAG anticodon of Phe-tRNAPhe. Other
panels show decoding intermediates from the T state prior to codon reading, A�/T, where the codon has been
recognized but EF-Tu did not move onto the sarcin-ricin loop (SRL) of the SSU and A/T state with the correct
codon–anticodon interaction and EF-Tu docked on the SRL. Insets on top show the orientation of the G-domain
of EF-Tu relative to the SRL. GCP, nonhydrolyzable GTP analog GDPCP. Insets at the bottom show the codon–
anticodon complex and the key residues of 16S ribosomal RNA (rRNA) interacting with it. (Middle) Same as
above for a near-cognate pair with a single G–U mismatch in the second position of the codon–anticodon
complex. (Bottom) Intermediates of cognate decoding by SelB•GDPNP/Sec-tRNASec. GNP, nonhydrolyzable
GTP analog GDPNP; IB, initial binding prior to codon reading; CR, codon reading complex in which the
anticodon of the tRNA comes into the proximity of the codon, but prior to base pairing; GA, GTPase-activated
complex analogous to the A/T state. (Figurewas prepared using structure coordinates fromFischer et al. 2016 and
Loveland et al. 2017, PDB 5UYK, 5UYL, 5UYM, 5UYN, 5UYP, 5UYQ, 5LZB, 5LZC and 5LZD.)
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close on the codon–anticodon complex (Fischer
et al. 2016; Loveland et al. 2017), consistent with
the local rearrangements inferred from compar-
isons of SSU structures with or without A-site
tRNA anticodon stem-loops (ASLs) (Ogle et al.
2001). In the EF-Tu complex, G530 appears to
act as a latch that fastens the codon–anticodon
helix into the decoding center. The local closure
of the decoding center coincides with the SSU
domain closure, which drags the tRNA and EF-
Tu toward the SRL. The magnitude of the con-
formational changes that take place on domain
closure (Fischer et al. 2016) appears to be even
larger than those previously reported for the
SSU–ASL complex (Ogle et al. 2001). The aa-
tRNA becomes distorted on codon recognition
(Valle et al. 2003; Schmeing et al. 2009; Schme-
ing et al. 2011; Fischer et al. 2016; Loveland et al.
2017). In solution, tRNA can adopt such distort-
ed tRNA conformations spontaneously within
less than a microsecond (Fischer et al. 2016).
The ribosome seems to stabilize specific subsets
of conformations in a given state, depending on
the interactions at the decoding center. Docking
of the G-domain of EF-Tu activates GTP hydro-
lysis, the irreversible step that separates initial
selection from the subsequent proofreading step.

GTP hydrolysis in EF-Tu and other transla-
tional GTPases relies on the universally con-
served His residue (His84 in E. coli EF-Tu) in
the Switch II region and on the conserved Asp
residue (Asp21 in EF-Tu) in the P loop (Maracci
et al. 2014). The SRL of the LSU acts as GTPase
activator (Wool et al. 1992; Schmeing et al.
2009). The interaction of the SRL with His84
shifts the pKa value of His84 in such a way that
the side chain becomes positively charged at
neutral pH and positions the nucleophilic water
molecule for the attack on the γ-phosphate of
GTP (Adamczyk and Warshel 2011; Wallin
et al. 2013; Aqvist and Kamerlin 2015). Com-
puter simulations favor the reaction mechanism
with an early proton transfer from water to the
γ-phosphate, followed by nucleophilic attack by
a hydroxide ion, a scenario that appears to be
consistent with the lack of pH-dependence of
GTP hydrolysis at near-neutral pH and a negli-
gible kinetic solvent isotope effect (Maracci et al.
2014). The conservedAsp21 complexed toMg2+

may contribute to the acceleration of GTP hy-
drolysis by “pushing” the negative charge to-
ward His84 (Aqvist and Kamerlin 2015). Thus,
GTP hydrolysis is primarily governed by the
electrostatics of the reaction center (Adamczyk
and Warshel 2011; Prasad et al. 2013; Maracci
et al. 2014; Aqvist and Kamerlin 2015). Also,
ribosomal protein bL12 contributes to the
GTPase activation through an as-yet-un-
determined mechanism (Mohr et al. 2002;
Diaconu et al. 2005). The mechanism of GTP
hydrolysis is likely to be conserved in all trans-
lational GTPases, such as EF-Tu, EF-G, SelB,
IF2, and RF3 and their eukaryotic homologs.

During decoding, the ribosome has to select
an aa-tRNA cognate to the given codon from the
pool of different aa-tRNAs. The fidelity of aa-
tRNA selection is high, with error frequencies
of 10−3 or less (Drummond and Wilke 2009).
One important unresolved question is how the
ribosome responds to codon–anticodon mis-
matches. The early model based on the compar-
ison of the 30S–mRNA complexes with cognate
ornear-cognateASLs suggested thatmismatches
disturb SSU domain closure (Ogle et al. 2002).
However, high-resolution crystal structures of
non- and near-cognate ribosome–mRNA–tRNA
complexes all showed an identical local and
global arrangement of the SSU (Demeshkina
et al. 2012; Rozov et al. 2015, 2016a,b). Similarly,
in the cryo-EM structure, near-cognate EF-
Tu•GTP/Lys-tRNA (anticodon UUU, which
makes a second position mismatch to the AGA
codon) induced the same local and global
conformational changes as EF-Tu•GTP/Phe-
tRNAPhe on the cognate UUC codon (Loveland
et al. 2017).However, onlyaminorportion of the
near-cognate ternary complexes adopts the
GTPase-activated state, whereas the majority is
rejected at the initial selection stage prior toGTP
hydrolysis (Rodnina et al. 2017). Thus, it is
possible that the available structures of the
near-cognate complexes provide snapshots of
translational errors, rather thanof regulardecod-
ing intermediates.Thevisualized complexes rep-
resent those that passed the selection screens of
the ribosome andwill result in the incorporation
of an incorrect amino acid into the protein. In
contrast, the structures of the rejectedmajorityof
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near-cognate complexesmaybe similar to that of
the complexes prior to codon–anticodon pair-
ing. Notably, such complexes must be even less
stable than the pre-codon-recognition interme-
diates of the cognate complexes, as they appear
too transient tobe capturedbycrystallographyor
cryo-EM. It should be emphasized that the struc-
tures of near-cognate complexes are extremely
valuable, as they show how tautomerization or
the presence of tRNA modifications help the
mismatched complexes to adopt the geometry
that the ribosome recognizes as correct.

After GTP hydrolysis and a slightly delayed
Pi release (Kothe and Rodnina 2006), EF-Tu
rearranges into the GDP-bound conformation.
Molecular-dynamic simulations suggested that
this may propel the 30 end of aa-tRNA toward
the A site on the LSU into a position where the
tRNA elbow interacts with H89 of the LSU
(Noel and Whitford 2016). Aa-tRNA may fluc-
tuate between the two conformational states un-
til EF-Tu is released. The accommodation of the
tRNA 30 end in the A site constitutes a separate
step (Geggier et al. 2010). This notion is sup-
ported by recent biochemical data (Ieong et al.
2016; Ranjan and Rodnina 2017), although the
two steps are not kinetically resolved for every
tRNA. The accommodation is slower for near-
cognate, compared to cognate aa-tRNA, which
provides a second chance to reject a tRNA with
mismatches in the codon–anticodon complex in
the proofreading stage (Rodnina et al. 2017).

Peptide Bond Formation

In the peptidyl transferase center of the ribo-
some, peptidyl-tRNA in the P site and aa-
tRNA in the A site react to form a peptide
bond. In comparison with the reaction between
model substrates in solution, the reaction on the
ribosome is accelerated about 107-fold (Sievers
et al. 2004). The ribosome’s active site is com-
prised of rRNA (Ban et al. 2000; Polikanov et al.
2014), and thus the ribosome is the largest
known RNA-catalyst and the only known natu-
ral ribozyme that has polymerase activity. Un-
like protein enzymes, the ribosome does not
provide catalytic groups with pKa values at neutral
pH (Youngman et al. 2004; Bieling et al. 2006).

The catalysis is mainly entropic (Sievers et al.
2004). The ribosome facilitates the reaction by
ordering water molecules, positioning of rRNA
and tRNA residues, and electrostatic shielding
(Sharma et al. 2005; Wallin and Aqvist 2010).

Peptide bond formation proceeds by nucle-
ophilic attack of the amino group of aa-tRNA on
the carbonyl carbon of the ester bond in pep-
tidyl-tRNA. In solution, the reaction is expected
to have two intermediates, a zwitterionic tetra-
hedral intermediate (T±), that is deprotonated
and forms a second intermediate (T−), and
then decomposes to form the reaction products
(Satterthwait and Jencks 1974). A comprehen-
sive analysis of heavy-atom kinetic isotope
effects indicated that the ribosome alters the re-
action pathway in such a way that the T± inter-
mediate no longer accumulates. Proton transfer
from the attacking nitrogen and formation of
the tetrahedral intermediate take place during
the rate-limiting step, while tetrahedral interme-
diate breakdown happens in a separate rapid
step (Hiller et al. 2011). Analysis of kinetic sol-
vent isotope effects showed that in the rate-lim-
iting transition state three protons move in a
concerted manner (Kuhlenkoetter et al. 2011).
Notably, there are several water molecules with-
in the peptidyl transferase center that can ex-
change protons (Polikanov et al. 2014). Also
the 20OH group of A76 of the P-site tRNA
(Zaher et al. 2011) and the 20OH of A2451 of
23S rRNA (Erlacher et al. 2006) contribute to
proton transfer and/or stabilize the charges de-
veloping as the reaction proceeds.

Currently there are two models that account
for the movement of protons in the active site
during peptide bond formation (Fig. 3). One
model, referred to as the eight-membered pro-
ton shuttle (Wallin and Aqvist 2010), suggests
that the attack of the α-amino group on the ester
carbonyl carbon results in an eight-membered
transition state in which a proton from the α-
amino group is received by the 20OH group of
A76, which at the same time donates its proton
to the carbonyl oxygen by way of an adjacent
water molecule (Kuhlenkoetter et al. 2011). Pro-
tonation of the 30OH is an independent rapid
step. The alternative model, referred to as the
“proton wire” model, suggests that one of the
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water molecules residing in the peptidyl trans-
ferase center is partially negatively charged by
the vicinity of the deprotonated amino-terminal
α-amino group of ribosomal protein bL27 and
of the negatively charged 50-phosphate oxygen
of the A-site A76 (Polikanov et al. 2014). Upon
formation of a tetrahedral intermediate, the
emerging positive and negative charges may be-
come separated in space and delocalized over
the pockets containing water molecules. The
two models account for the three protons mov-
ing in a concerted manner in the rate-limiting
transition state, but disagree on the exact proton
transfer pathway. One argument against the
proton wire model (Polikanov et al. 2014) is
that deletion of bL27 has no effect on peptide
bond formation (Maracci et al. 2015). Further-
more, the role of the 20OH of A2451 of the 23S
rRNA,whichplays an essential role in the proton
wire model, has not been tested at conditions of
rapid peptide bond formation (Erlacher et al.
2006). On the other hand, the proton shuttle
model has a less optimal stereochemistry than
the proton wire model (Polikanov et al. 2014).

The reactivities of natural amino acids in the
peptidyl transferase reaction differ substantially
(Wohlgemuth et al. 2008). Nevertheless, the ri-
bosome can make peptides with most amino
acid combinations without the help of any ad-
ditional auxiliary factors. One notable exception
is the synthesis of poly-Pro stretches with three
or more consecutive prolines or of distinct
XPPX sequences with two prolines flanked by
specific amino acids (Hersch et al. 2013; Peil
et al. 2013; Woolstenhulme et al. 2013). During
synthesis of such peptides the ribosome stalls
because of a low rate of peptide bond formation
(e.g., for the PPP motif the ribosome is stalled
after incorporation of the second Pro) (Ude et al.
2013). The stalling is alleviated by EF-P (Doerfel
et al. 2013; Ude et al. 2013), a specialized trans-
lation factor that enters the E site of the ribo-
some and acts by entropic steering of the P- and
A-site substrates toward their catalytically pro-
ductive orientation in the peptidyl transferase
center (Fig. 4) (Doerfel et al. 2015; Huter et al.
2017). The eukaryotic homolog of EF-P, eIF5A,
also accelerates the formation of poly-Pro chains
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20OHofA2451 in black. The nucleophilic attack is depicted by red arrows. In the eight-membered proton shuttle,
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Nature Publishing Group under a Creative Commons license.)

Translation in Prokaryotes

Cite this article as Cold Spring Harb Perspect Biol 2018;10:a032664 9



(Gutierrez et al. 2013). eIF5A appears to have
additional functions in elongation and termina-
tion (Schuller et al. 2017; also see Dever et al.
2018). EF-P does not have such a broad func-
tionality, because EF-P recognizes the tRNA in
the P site and favors interactions with tRNAPro

and tRNAfMet, but is considerably less active
with other tRNAs (Katoh et al. 2016).

EF-P and eIF5A are posttranslationally mod-
ified (for review see Lassak et al. 2016). Themod-
ification is essential for function (Doerfel et al.
2013; Gutierrez et al. 2013; Ude et al. 2013), but
varies between different groups of bacteria and
eukaryotes. In E. coli, Lys34 of EF-P is posttrans-
lationally modified to a lysyl-lysine (Yanagisawa

et al. 2010). In Pseudomonas aeruginosa and
Shewanella oneidensis Arg32 (which occupies
the position of E. coli Lys34) is rhamnosylated
(Lassak et al. 2015), whereas EF-P from Bacillus
subtilis bears a 5-aminopentanol moiety attached
to Lys32 (Rajkovic et al. 2016). In eukaryotes, the
conserved lysine residue of eIF5A is modified to
hypusine (Cooper et al. 1983).

Translocation

After peptide bond formation, the ribosomal
subunits move relative to each other, from the
nonrotated (N) state with the two tRNAs bound
to the P and A sites both on the SSU and LSU, to
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the rotated (R) state with the tRNAs bound
in hybrid P/E and A/P states. At the same
time, the uL1 stalk moves from an open to a
closed conformation toward the P-site tRNA
(for review, see Frank and Gonzalez 2010). Ri-
bosomes in the pretranslocation state (PRE)
fluctuate between N and R states. Molecular dy-
namics simulations suggest that ribosome rota-
tion and the concomitant internal movement of
the SSU head and body domains (referred to as
head swiveling) are intrinsically very rapid
and can occur in the microsecond time scale
(Bock et al. 2013). However, tRNA translocation
does not occur spontaneously because the inter-
actions of the two tRNAs with the ribosome

restrict the movement. In the posttranslocation
(POST) state the ribosomes are predominantly
in the N state with tRNAs in their classical
positions.

Translocation is promoted by EF-G at the
cost of GTP hydrolysis. Movement of the tRNAs
and the mRNA during translocation is a multi-
step process (Fig. 5). Currentmodels distinguish
up to eight discrete steps based on structural
information as well as ensemble and single-mol-
ecule kinetic studies using a large variety of fluo-
rescence reporters and fluorescence resonance
energy transfer (FRET) pairs (Guo and Noller
2012; Adio et al. 2015; Belardinelli et al. 2016a;
Sharma et al. 2016b; Wasserman et al. 2016). In
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(Lin et al. 2015) and an extended one after engagement with the ribosome (Ramrath et al. 2013; Zhou et al. 2014).
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permission from Taylor & Francis and Creative Commons Public Domain licensing.)
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addition to PRE and POST states, the ribosome
can adopt several intermediate conformations
that differ in the positions of the tRNAs with
respect to the SSU head and body domains
and the A- and P-site loops on the LSU. The
tRNA positions correlate with the degree of sub-
unit rotation and the SSU head domain swivel-
ing. These states are referred to as chimeric
(CHI) states (e.g., ap/P and pe/E [Ramrath et
al. 2013]; ap/ap [Zhou et al. 2014]; or noncanon-
ical states identified by smFRET [Chen et al.
2011; Adio et al. 2015; Wasserman et al. 2016]).

After EF-Gbinding to the ribosome, the SSU
head and body domainsmove in the same coun-
terclockwise (CCW) direction relative to the
LSU, which is referred to as forward, because it
corresponds with the direction of translocation
(Fig. 5) (Guo and Noller 2012; Belardinelli et al.
2016b;Wasserman et al. 2016). EF-G hydrolyzes
GTP, but retains the Pi (Savelsbergh et al. 2003,
2005). Then, the SSU body begins moving back-
ward in the clockwise (CW) direction, whereas
the SSU head remains in the forward-swiveled
state (Guo and Noller 2012; Belardinelli et al.
2016b; Wasserman et al. 2016). This may open
the decoding region sufficiently to uncouple the
tRNAs from the interactions with the ribosome
elements that hold the mRNA and the tRNA
anticodons in the A and P site, respectively.
This explains how CHI states are formed: while
the tRNA positions on the SSU head domain are
retained, the SSU body moves, leading to the
displacement of the tRNAs to the CHI states.

After the unlocking of the codon–anticodon
complexes from the SSU, the SSU head domain
starts to move backward (Guo and Noller 2012;
Belardinelli et al. 2016b;Wasserman et al. 2016).
The tRNAs adopt their canonical POST posi-
tions in P and E sites and EF-G releases Pi (Sa-
velsbergh et al. 2003). Next, the E-site tRNA
moves further away from the P-site tRNA,
which is accompanied by the loss of the E-site
codon–anticodon interaction, while the SSU
head moves further backward (Adio et al.
2015; Belardinelli et al. 2016a). Finally, the dis-
sociation of E-site tRNA and EF-G restores the
N state with a classical P/P position of the pep-
tidyl-tRNA. The role of EF-G is to accelerate and
stabilize the R state of the ribosome, to unlock

the tRNA–mRNA complex from the SSU, and
to ensure the forward movement of the tRNAs
by inserting EF-G domain 4 into the A site on
the SSU. In other words, EF-G acts as a ratchet
to rectify the Brownianmotions of the ribosome
into directed movement and promotes a key
conformational rearrangement of the SSU that
disrupts its interactions with the tRNAs, thereby
allowing for rapid tRNA translocation (for re-
view see Belardinelli et al. 2016b).

Translocation and Recoding

While moving along the mRNA the ribosome
may encounter structures such as stem-loops
or pseudoknots. In most cases, the ribosome
helicase composed of ribosomal proteins uS3,
uS4, and uS5 ensures mRNA unwinding by
a combination of active and passive helicase
mechanisms (Takyar et al. 2005; Qu et al.
2011). However, mRNA secondary structure el-
ements in combination with slippery sequences
can lead to –1 frameshifting. Slippery sites are
mRNA sequences where codons in the 0- and
–1-frame code for the same tRNAs. Ensemble
kinetics and single-molecule studies indicate
that –1 frameshifting on the mRNA coding for
the infectious bronchitis virus (IBV) protein 1a/
1b (which works in vivo in both eukaryotic and
bacterial systems [Napthine et al. 2003]) or
E. coli dnaX occurs during translocation of
two tRNAs attached to the slippery site codons
(Caliskan et al. 2014; Chen et al. 2014; Kim et al.
2014; Yan et al. 2015). Recoding in eukaryotes is
described in Dever et al. (2018). The secondary
structure element disturbs the ribosome dynam-
ics during translocation. While early steps of
translocation proceed with unperturbed effi-
ciency, the backward swiveling of the SSU head
domain is impeded by the structure obstacle in
themRNA(Caliskan et al. 2014;Kimet al. 2014).
Ribosomes that are stalled in an unlocked state
are apparently less stringent in maintaining the
reading frame and can slip in the –1 direction.

Cotranslational Protein Folding

During elongation, the nascent peptide moves
through the polypeptide exit tunnel of the ribo-
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some, which spans from the peptidyl transferase
center to the cytoplasmic surface of the LSU
(Fig. 6). The exit tunnel is about 100 Å long
and can accommodate 30 or more amino acids,
depending on the structure of the peptide, be-
fore the nascent chain emerges from the ribo-
some. Emerging nascent proteins can start fold-
ing within the tunnel, which can accommodate
secondary structure elements or even small do-
mains (for reviews see Balchin et al. 2016; Rod-
nina 2016; Thommen et al. 2017). While travel-
ing through the exit tunnel, the peptide can
adopt a nonnative compact structure, which is
rearranged to a native form when the whole do-
main emerges from the exit port (Holtkamp
et al. 2015). The ribosome affects protein folding
by imposing a vectorial folding pathway and by
coupling folding to the pace of translation. Ini-
tial folding events are restricted by the confined
space within the exit tunnel and are further
modulated by interactions between the peptide
emerging from the exit tunnel and the surface of
the LSU. The relationship between the rate of
translation and the direction of protein folding
is quite complex. The presence of rare codons in
the mRNA slows down translation, alters the
kinetics of cotranslational folding, and changes
the distribution of protein conformations in the
resulting mature protein pool (Clarke and Clark
2008; Tsai et al. 2008; Zhang et al. 2009; Siller
et al. 2010; Spencer et al. 2012; Yu et al. 2015;
Buhr et al. 2016; Sharma et al. 2016a). Computer

modeling suggests that changes of the transla-
tion rate can coordinate local folding rates and
induce or prevent misfolding (O’Brien et al.
2014; Trovato and O’Brien 2017). Cotransla-
tional protein folding is also affected by the pro-
teins that bind in the vicinity of the exit port,
such as the chaperone trigger factor (Gloge
et al. 2014; Balchin et al. 2016).

TERMINATION

Termination occurs when the ribosome en-
counters a stop codon in themRNA. In bacteria,
stop codons are recognized by the termination
(or release) factors RF1 and RF2, which read the
codons UAG/UAA and UGA/UAA, respective-
ly. Another termination factor, RF3, facilitates
turnover of RF1 and RF2 but is not required for
peptidyl-tRNA hydrolysis. Crystal and cryo-EM
structures as well as smFRET studies show that
RF1 and RF2 stabilize the ribosome in the N
state (Rawat et al. 2003, 2006; Korostelev et al.
2008, 2010; Weixlbaumer et al. 2008), whereas
RF3 alone stabilizes the R state (Gao et al. 2007;
Jin et al. 2011). When RF3 binds to the RF1–
ribosome complex, RF1 changes its position and
RF3 adopts a different conformation than in
complexes with just one factor bound (Pallesen
et al. 2013).

The mechanism of termination entails three
steps: recognition of the stop codon, hydrolysis
of the ester bond of the peptidyl-tRNA (these
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Figure 6. Cotranslational protein folding. Callouts summarize the potential effects at each step (Rodnina 2016).
U, unfolded state; C, compact transient state or folding intermediate; N, native fold.
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two steps are accomplished by RF1 or RF2) and
dissociation of RF1/RF2 with the help of RF3.
RF1 and RF2 select the respective stop codons
by conserved recognition motifs, PVT in RF1 or
SPF in RF2. Crystal structures identified the
principal elements involved in the recognition
(Korostelev et al. 2008, 2010; Laurberg et al.
2008; Weixlbaumer et al. 2008; Santos et al.
2013). The uracil in the first position of all three
stop codons is recognized by the amino terminus
of helix α5 of either RF1 or RF2. In RF1, inter-
actions of the Thr residue in the PVT motif re-
strict reading to anAat the secondpositionof the
codon. In contrast, in RF2 the Ser residue in the
SPVmotif can bind to both A and G. The ability
of RF1 to read both A and G in the third codon
position is explained by a rotation of the side-
chain amide of a Gln residue that is conserved in
RF1, but not in RF2. RF2 has a hydrophobic Val
residue at the homologous position and is re-
stricted to an A in the third codon position.

Peptidyl-tRNAhydrolysis is catalyzed by the
peptidyl transferase center of the ribosome with
the help of the GGQ motif that is conserved in
RF1 and RF2. The Gln residue of the GGQmotif
is methylated; the modification increases the
rate of peptide release, in particular for RF2.
The reaction is expected to move through a tet-
rahedral intermediate, which breaks down and
forms free peptide and deacylated tRNA (Jin
et al. 2010). Proton inventories and computer
simulations indicate that the transition state of
the RF2-dependent hydrolysis reaction involves
only one proton in flight (Trobro and Aqvist
2009; Kuhlenkoetter et al. 2011). Mutational
analysis, pH/rate dependencies, and the lack of
a D2O effect are consistent with two possible
reaction mechanisms (Kuhlenkoetter et al.
2011; Indrisiunaite et al. 2015). The attacking
water molecule could donate a proton to a hy-
droxide ion that facilitates both proton transfer
and nucleophilic attack. Alternatively, a hydrox-
ide ion could act as an attacking group in which
the proton in flight could be transferred to the
20OH directly or through another water mole-
cule. The 20OH of the P-site substrate is vital for
orienting the nucleophile in a hydrogen-bond-
ing network productive for catalysis (for review,
see Rodnina 2013).

RF3 is required to release RF1/RF2 from the
ribosome, but the mechanism of RF3 action is
controversial (Zavialov et al. 2001, 2002; Palle-
sen et al. 2013; Koutmou et al. 2014; Peske et al.
2014; Shi and Joseph 2016). RF3 has a higher
binding affinity for GDP than for GTP and can
be activated by the ribosome through accelerat-
ing the nucleotide exchange. The original model
for the RF3mechanism relied onmeasurements
of the affinity of RF3 for GTP and GDP, which
suggested that at cellular concentrations ofGTP/
GDP most RF3 should be in the GDP-bound
form (Zavialov et al. 2001). This model suggest-
ed that RF3•GDP can bind to the ribosome in a
complex with RF1 or RF2 only after the peptide
is released, thereby forming an unstable encoun-
ter complex. Subsequent dissociation of GDP
would lead to a stable high-affinity complex
with RF3 in the nucleotide-free state. The sub-
sequent binding of GTP to RF3 would promote
RF1/RF2 dissociation. In the final step of the
model, RF3 hydrolyzes GTP and dissociates
from the ribosome (Zavialov et al. 2001, 2002).
However, more direct measurements of the RF3
affinity for GTP and GDP did not confirm a
large preference of RF3 for GDP (Koutmou
et al. 2014; Peske et al. 2014). Whereas GDP
binding is favored, the affinity difference to
GTP is only 10-fold, which suggests that at cel-
lular conditions, where GTP is present in large
excess over GDP, RF3 adopts the GTP-bound
form. Furthermore, RF3•GTP binding is inde-
pendent of peptide release, because a catalytical-
ly inactive RF2 mutant activates nucleotide ex-
change in RF3 (Peske et al. 2014). Because GTP
binding to RF3 in the ribosome–RF2–RF3 com-
plex is rapid, the lifetime of the putative apo-RF3
state (5 ms at cellular concentrations of RF3
[Peske et al. 2014]) is too short to have physio-
logical significance. Peptide release results in the
stabilization of the RF3•GTP–ribosome com-
plex, thereby promoting the dissociation of
RF1/2, followed by GTP hydrolysis and dissoci-
ation of RF3•GDP from the ribosome (Peske
et al. 2014). Further work will be required to
clarify the differences and come to a unifying
model of translation termination.

Interestingly, the mechanism of translation
termination appears different in prokaryotes

M.V. Rodnina

14 Cite this article as Cold Spring Harb Perspect Biol 2018;10:a032664



and eukaryotes, where only two factors, eRF1
and eRF3, are responsible for termination on
all three codons. In eukaryotes, eRF1 and
eRF3 form a stable complex, which is recruited
to the stop codon. Peptide release requires GTP
hydrolysis by eRF3. Further steps of termination
and ribosome recycling in eukaryotes require
factors that do not exist in prokaryotes, such
as ABCE1 (Rli1) (for reviews, see Dever and
Green 2012; Jackson et al. 2012; see also Hellen
2018). The functional significance of these dif-
ferences between prokaryotes and eukaryotes
remains unclear.

RIBOSOME RECYCLING

After termination, the ribosomes still contain
mRNA and tRNA, which have to be released
to allow for the reuse of ribosomal subunits in
the next round of initiation. In bacteria, subunit
splitting is catalyzed by the ribosome recycling
factor (RRF) and EF-G. RRF binds to the A site
of the ribosome (Gao et al. 2005) and stabilizes a
fully rotated state of the ribosome, with the
P-site tRNA in the hybrid P/E binding state
(Dunkle et al. 2011). GTP hydrolysis by EF-G
promotes the push of RRF against the key inter-
subunit bridge, thereby promoting subunit split-
ting (Gao et al. 2005). An earlier suggestion that
EF-G facilitates a translocation-likemovement of
RRF that acts as a tRNA mimic has been refuted
by biochemical (Peske et al. 2005) and structural
studies (see Fu et al. 2016 for references).

Efficient ribosome recycling occurs when
RRF binds to the post-termination complex be-
fore EF-G is recruited (Borg et al. 2016). In prin-
ciple, RRF and EF-G can bind independently of
each other, but binding of EF-G•GTP in the
absence of RRF leads to futile GTP hydrolysis
without ribosome splitting (Seo et al. 2004; Sa-
velsbergh et al. 2009; Borg et al. 2016). The se-
quence of subsequent events is currently a mat-
ter of debate. One model suggests that GTP
hydrolysis by EF-G and the subsequent delayed
Pi release result in the ribosome splitting into
subunits. The resulting SSU still carries the
mRNA and tRNA. Dissociation of tRNA is pro-
moted by IF3, while mRNA is exchanged spon-
taneously. This sequence of events is supported

by extensive kinetic experiments from different
groups (Seo et al. 2004; Peske et al. 2005; Savels-
bergh et al. 2009; Borg et al. 2016), smFRET
study (Prabhakar et al. 2017), and time-resolved
cryo-EM (Fu et al. 2016). However, in all these
experiments, model mRNAs were used that
contained an SD sequence that could stabilize
the mRNA binding. An alternative pathway was
recently suggested for mRNAs that do not con-
tain an SD sequence in the vicinity of the stop
codon (which is a normal case after termina-
tion) (Chen et al. 2017). In the latter case, GTP
hydrolysis by EF-G was suggested to promote
mRNA release, which would be a novel, unex-
pected function for EF-G. This is followed by
tRNA dissociation and finally subunit splitting
(Chen et al. 2017). Future experiments will
showwhich order of events is correct or whether
multiple different dissociation pathways are
possible.

CONCLUSIONS AND PERSPECTIVES

The most important result of the last decade of
studies on prokaryotic translation mechanisms
is the view of the ribosome as a dynamic molec-
ular machine, which changes its conformations
at each step of translation. The movements of
ribosome elements, including subunit rotations,
flexing of SSU domains, or large movements of
the S1 and L12 stalks, are inherently rapid and
are gated by its ligands, such as tRNAs and
translation factors. We can now describe the
choreography of many steps of translation using
a combination of ensemble kinetics and single-
molecule techniques. Once the order of events is
established, crystallography and cryo-EM can
provide structures of intermediates. In the fu-
ture, it would be exciting to obtain structural
studies in a time-resolved fashion without the
use of antibiotics or nonhydrolyzable GTP ana-
logs that are now used to block intermediates
(e.g., by performing time-resolved cryo-EM or
XFEL [X-ray free-electron laser] crystallogra-
phy). An improvement of the time resolution
of single-molecule techniques may yield addi-
tional, yet uncharacterized transient intermedi-
ates. Tracking translation in living cells is anoth-
er emerging direction. Thus, it is likely that soon
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we will have a near-complete 3D picture of pro-
karyotic translation resolved in time and space
and possibly in living cells. The major challenge
for years to come is to understand how eukary-
otic ribosomes work. Whereas, in principle, the
same experimental approaches can be used to
study translation in bacteria and eukaryotes, the
technical hurdles of reconstructing functional
pathways for each step of translation are ex-
tremely high and amplified by a larger number
of accessory proteins, extensive heterogeneity
of components and complexes, and probably a
larger degree of conformational mobility of
translational components in eukaryotes. Solving
these technical challenges and dissecting the de-
tailed structural and functional mechanisms of
the eukaryotic ribosome will constitute a mile-
stone toward understanding translation and its
regulation in health and disease.
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