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Biased sequential sampling underlies the effects of
time pressure and delay in social decision making
Fadong Chen1,2 & Ian Krajbich3,4

Social decision making involves balancing conflicts between selfishness and pro-sociality. The

cognitive processes underlying such decisions are not well understood, with some arguing for

a single comparison process, while others argue for dual processes (one intuitive and one

deliberative). Here, we propose a way to reconcile these two opposing frameworks. We

argue that behavior attributed to intuition can instead be seen as a starting point bias of a

sequential sampling model (SSM) process, analogous to a prior in a Bayesian framework.

Using mini-dictator games in which subjects make binary decisions about how to allocate

money between themselves and another participant, we find that pro-social subjects become

more pro-social under time pressure and less pro-social under time delay, while selfish

subjects do the opposite. Our findings help reconcile the conflicting results concerning the

cognitive processes of social decision making and highlight the importance of modeling the

dynamics of the choice process.
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Social decisions typically involve conflicts between selfishness
and pro-sociality. A basic goal in decision science is to
understand the cognitive processes that underlie these social

decisions. There is a large literature describing the various factors
that influence other-regarding behavior, including distributional
preferences1–3, reciprocity4, social distance5, and guilt-aversion6,
but these are all static models that simply predict choice out-
comes. Recently there have been efforts to understand the
dynamics of social decision making, with both single-process7–9

and dual-process10–12 models. However, the nature of social
decision making is still disputed7–24.

One question is whether social decisions are the result of a
single comparison process, or the result of two processes: one, a
fast and intuitive process and the other, a slow and deliberative
process7,10? The second question is whether people exhibit a
selfish or pro-social bias? The latter question is usually posed
under the presumption of dual processes: given that there is an
intuitive process, does it favor selfishness or pro-sociality?

To answer this question, some dual-process researchers have
examined relative response times (RT)10,11,13,14,17–19,23 to estab-
lish people’s intuitions. However, it has recently been argued that
RT data cannot be used as evidence for intuitive/deliberative
processes, since they are sensitive to the particular choice pro-
blems used by the researchers7,16,25.

An alternative approach which does not have this limitation is
to experimentally manipulate RT (e.g., using time pressure) or
impose cognitive load to try to establish people’s intuitive
responses. In this manipulation literature, some have made a
distinction between behavior in giving contexts (e.g., dictator
games) and in cooperative contexts (e.g., public goods games).

In the giving context, subjects are simply asked whether they
would like to give some of their money to another person (or
charity). Here, some studies conclude that promoting intuition
increases altruistic behavior15, while others find no effect of
promoting intuition20. A meta-analysis finds that promoting
intuition increases giving for women but not for men26.

In the cooperative context, subjects are put into groups of two
or more and can pay a cost to give a larger benefit to the other(s)
in their group. Here, some studies conclude that people’s intui-
tion favors cooperation10,24,27, while other studies conclude that
promoting intuition has no effect on cooperation21,22,28; a meta-
analysis finds that intuition promotes cooperation29, and that—
unlike for giving behavior—this is equally true for both women
and men30. (One study in which participants were incentivized to
make a choice quickly and then could subsequently change their
decision did not find a difference between giving and coopera-
tion31). Here we have decided to focus on the giving context,
since these games are easier to interpret, as they do not depend on
subjects’ beliefs about others’ choices.

Given the mixed evidence for whether intuition favors pro-
sociality, cooperation, or selfishness, we return to the question of
whether a single comparison process might better describe social
decisions. A growing literature in decision neuroscience has
argued for the prevalence of sequential sampling model (SSM)
processes in decision making and cognition. These models,
exemplified by the diffusion model (DDM), assume that infor-
mation is sampled continuously until there is sufficient net evi-
dence for one of the available options32.

One challenge to the simple SSM story in ref. 7 is the body of
time pressure results reported in some articles10,21,24,27,28. If,
indeed, time pressure amplifies existing behavioral tendencies10,
an unbiased SSM (no starting point bias) cannot account for that
behavior. In a SSM framework, time pressure reduces the amount
of evidence needed to reach a decision, reducing RT but also
consistency. In an unbiased SSM, reducing consistency should
push the probability of any particular response towards 50%.

In some cases, decision makers may exhibit a bias towards one
response, perhaps because that response consistently yields better
outcomes. This behavior is captured by a bias in the starting point
of the process33–37. In such cases, reducing the amount of evi-
dence needed to reach a decision will amplify the choice bias. The
starting point is therefore the natural candidate for explaining the
purported effects of time pressure on social preferences.

We have two goals in this paper. The first is to document the
effects of time-pressure and time-delay, using a wide array of
decision problems and accounting for individuals’ social pre-
ferences. The second is to argue for a DDM with biased starting
points (“biased DDM”), which integrates the dual process fra-
mework with the SSM framework and can account for both RTs
and the effects of time manipulations. We provide a clear
mechanism for how a predisposition (which some might call an
“intuition”) and deliberation might interact to yield a decision. In
sum, we aim to offer a unified account of social decision making
that provides a clear explanation for the conflicting RT and time-
pressure data in the literature.

We test our model using an experiment where subjects made
binary decisions in a series of mini-dictator games, in time-free,
time-pressure, and time-delay conditions. We take each subject’s
change in pro-sociality from time-delay to time-pressure condi-
tions as the measure of their predisposition. We find that people
are heterogeneous in whether they are predisposed to pro-
sociality (more pro-social under time pressure) or selfishness
(more selfish under time pressure). In an out-of-sample test, this
predisposition predicts subjects’ pro-sociality in the time-free
condition. We then fit the biased DDM to the time-free data,
show that it outperforms an unbiased DDM (and in some cases, a
standard logistic choice model8), and find that subjects’ predis-
positions predict their starting points in the model. In particular,
subjects with starting points biased towards pro-sociality become
more pro-social under time pressure and more selfish under time
delay, while subjects with starting points biased towards self-
ishness become more selfish under time pressure and more pro-
social under time delay.

Results
The task. In the experiment, subjects made binary decisions in
200 mini-dictator games, where they allocated money between
themselves (dictator) and another subject (receiver) anon-
ymously. Each decision involved a conflict between selfishness
and advantageous inequality aversion2 (Fig. 1, Supplementary
Fig. 1). In other words, each game offered subjects the opportu-
nity to increase the receiver’s earnings by reducing their own
earnings, reducing the inequality between them (see Supple-
mentary Note 1).

We divided the 200 trials into four blocks of 50 games each. In
the time-pressure block, subjects had to make each decision
within 2 s. In the time-delay block, subjects had to make each
decision after viewing the options for 10 s. In the other two (time-
free) blocks, subjects had unlimited time to make each decision.
The first and last blocks were time-free blocks, while the other
two were counterbalanced across subjects (see Methods, Supple-
mentary Methods for more detail).

The bias towards selfishness or pro-sociality. We employ the
inequality aversion model proposed by Fehr and Schmidt2 to
estimate subjects’ preferences (advantageous inequality aversion,
β) under time-free (βf), time-pressure (βp), and time-delay (βd)
conditions separately (see Methods). The estimation results show
that the effect of decision time differs substantially across sub-
jects. To see this, we split subjects according to the median
indifference β (the β which would make a subject indifferent
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between the two options) from all of our choice problems; with
this cutoff, 93% of the selfish subjects chose the selfish option on
the majority of trials, while 100% of the pro-social subjects chose
the pro-social option on the majority of trials (see Supplementary
Note 2 for analyses based on other cutoffs).

Subjects with higher βf (pro-social subjects) became more pro-
social under time pressure (P= 0.024, two-sided Wilcoxon
signed-rank test, since β is not normally distributed), while
subjects with lower βf (selfish subjects) became more selfish under
time pressure (P= 0.041) (Fig. 2a). Similarly, pro-social subjects
became marginally less pro-social under time delay (P= 0.167),
while selfish subjects became less selfish under time delay (P=
0.004), though these effects are less pronounced (Fig. 2b). The
effect of decision time for prosocial and selfish subjects is more

obvious if we compare time pressure and time delay conditions
directly (Fig. 2c) (see Supplementary Table 1 for regression
results).

In addition, βp−βd is correlated with βf (two-sided Spearman
correlation test, r= 0.390, P= 5 × 10−5, Supplementary Fig. 2,
Supplementary Tables 2-3). In other words, subjects were
heterogeneous in the way in which reduced time affected their
pro-sociality, and this effect predicted their pro-sociality under
normal (time-free) conditions.

Sequential sampling process. Prior studies have shown that
behavior in social decision making is in line with SSM predic-
tions7–9. Specifically, RT decreases with strength of preference.
Our experiment not only allows us to test this hypothesis, but also
allows us to test whether this hypothesis still holds under time
pressure. In particular, if decisions under time pressure exclu-
sively (or preferentially) rely on an intuitive, automatic process,
then we might expect no (or a greatly reduced) relationship
between RT and strength of preference.

To test this, we calculated the utility difference between Option
A and Option B in the experiment (as an index of the strength of
preference) using the estimated preference parameters (βf,βp,βd).
Mixed-effects regressions with log(RT) as the dependent variable
reveal that RT was negatively related with the absolute utility
difference in in the time-free and time-pressure conditions (and
marginally in the time-delay condition) (t(4997)=−9.71, P <
0.001 for the time-free condition, t(4997)=−7.186, P < 0.001 for
the time-pressure condition, and t(4997)=−1.718, P= 0.086 for
the time-delay condition) (Fig. 3). The relationship between RT
and strength-of-preference is understandably weaker in the time-
delay condition, since it is likely that in many cases subjects
decided in under 10 s. In those cases, the true decision times are
unobservable, and we should expect no relationship between RT
and strength-of-preference.

The biased DDM. These results paint a complex picture. On the
one hand, the relationship that we observe between RT and
strength of preference in all time conditions is consistent with a
single SSM process. On the other hand, the amplification of
preferences under time pressure (and attenuation under time
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Fig. 2 Advantageous inequality aversion (β) under different time conditions. Higher β indicates stronger pro-sociality. Each dot represents one subject’s
degree of pro-sociality (β), comparing a time-free and time-pressure conditions, b time-delay and time-free conditions, and c time-delay and time-pressure
conditions. Notice that subjects to the left of the vertical red line (split by the median indifference β, selfish subjects) are consistently shifted downwards
while those to the right (pro-social subjects) are consistently shifted upwards. The number of subjects (NS) in the experiment was 102. 12 subjects whose
βf is outside of (−1, 2), 26 subjects whose βp is outside of (−1, 2), and 8 subjects whose βd is outside of (−1, 2) are not shown but were included in the
statistical analyses. The black dashed line is the identity line

Option A Option B

You earnYou earn 85 95

1821

F J

The other
person earns

The other
person earns

Fig. 1 Screenshot of the mini-dictator game in the time-free condition. In
this game, the subject can either press key “J” to choose the selfish option
(Option B) which has a higher payoff for herself (95 vs. 85 in this example)
or press key “F” to choose the pro-social option (Option A) which has a
higher payoff for the other participant (21 vs. 18 in this example). The text is
enlarged for display purposes. Refer to Supplementary Fig. 1 for actual
screenshots
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delay) is the opposite of what one would expect from time
pressure in an unbiased SSM. Here, we argue that a SSM with
starting points biased towards subjects’ generally preferred
actions can account for these patterns (Fig. 4).

To make things more concrete, we focus on the DDM32, which
was originally developed for memory, cognition, and perception
and has been increasingly used to study economic decision
making7,8,38–45. The DDM assumes that decisions are generated
by a noisy process that accumulates relative evidence (R) that one
option is better than the other. The relative evidence R follows a
diffusion process and evolves in small time increments according to
a stochastic difference equation, Rt+1= Rt+ v+ st (with discrete
time this is technically a random walk model), where v is the drift
rate that represents the average strength of preference for the selfish
option, and s represents mean-zero Gaussian noise. A choice is
made once R reaches one of the two thresholds, normalizing the
pro-social threshold to zero and the selfish threshold to a constant,
a. An additional feature of the DDM is that there can be an initial

bias in the starting point (R0), often referred to as a response bias46,
towards selfishness or pro-sociality.

For now, we will assume that these starting points are biased
towards a subject’s generally preferred choice; later we will verify
this assumption by fitting the starting points to the data.
Specifically, the process starts near the selfish threshold for
subjects who are generally selfish (R0 > a/2), and the process starts
near the pro-social threshold for subjects who are generally pro-
social (R0 < a/2).

To see why starting point biases are necessary to account for
our choice data, let’s first consider a simple DDM without starting
point biases (unbiased DDM). In that model, drift rate is the sole
determinant of “preference” in a given choice situation, where we
define preference as the option that the subject would choose
given unlimited time to decide. In our setting, the drift rate
determines whether the subject is more than 50% likely to choose
the selfish option, with positive drift rates producing predomi-
nantly selfish choices and negative drift rates producing
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Fig. 4 A graphical illustration of the DDM. 0 and a are the two preset thresholds for the pro-social option and the selfish option, and a is a free parameter.
Non-decision time, t0, denotes the time required for encoding the stimulus and decision execution. The three paths indicate the evolution of the relative
evidence (R) over time. The red path which starts near the threshold of the selfish option represents the DDM process for a subject with a response bias
towards the selfish option; the blue path which starts near the threshold of the pro-social option represents the DDM process for a subject with a response
bias towards the pro-social option; and the black path represents a DDM process without starting point bias (unbiased DDM)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05994-9

4 NATURE COMMUNICATIONS |  (2018) 9:3557 | DOI: 10.1038/s41467-018-05994-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


predominantly pro-social choices. For a given drift rate, the
threshold separation determines the subject’s preference-choice
consistency. With infinite threshold separation, the subject would
always choose in line with their preference, while with zero
threshold separation, the subject would choose randomly.

In the DDM literature, time pressure is modeled using
narrower decision thresholds (or in the case of time limits,
collapsing thresholds), which reduce RT at the cost of
consistency. This assumption is supported by a large body of
research showing that time pressure narrows thresholds but does
not affect drift rates32,47,48. Whether thresholds also collapse over
time is an active debate in the DDM literature, with conflicting
theoretical and empirical arguments49–53.

To visualize the effects of time pressure on choice behavior in
the unbiased DDM, we simulated 50 fake subjects with drift rates
sampled from a uniform distribution vi∈[−0.0002, 0.0002]ms−1,
and with a threshold separation of either a= 2 or a= 1. For each
fake subject, we simulated 1000 trials with each threshold
separation. What the simulations clearly show is that these fake
subjects’ selfish choice probabilities are consistently closer to 50%
with the narrower thresholds, i.e. under time pressure (Fig. 5a;
also with collapsing thresholds, see Supplementary Fig. 3a). This
is opposite to the pattern we see in our data.

Now let’s consider what happens when subjects’ decisions are
partly determined by starting points. With infinite threshold
separation, the starting point would have no effect and the subject
would always choose in line with their preference. However, with
finite threshold separation, the narrower the thresholds, the more
influence the starting points have on the decision.

To visualize the effects of time pressure on choice behavior in
the DDM with biased starting points (biased DDM), we again
simulated 50 fake subjects with the same distribution of drift rates
and threshold separations as before. We additionally assumed
that each fake subject’s starting point (relative to a/2) was
proportional to their drift rate. Specifically, a fake subject’s
starting point was R0=a/2 + 5000·v. As before, for each fake
subject, we simulated 1000 trials with each threshold separation.
What these simulations clearly show is that the fake subjects’
choice probabilities are consistently more extreme with the
narrower thresholds, i.e., under time pressure (Fig. 5b; also with
collapsing thresholds, see Supplementary Fig. 3b). This is the
pattern we see in our data.

These latter simulations assume that a subject’s starting point is
proportional to their drift rate. We believe this to be a reasonable

assumption, since subjects with more extreme preferences will
find themselves more often making the same choice (either selfish
or pro-social) and so may want to adjust their starting points
further in that direction, to save time. Indeed, this is a likely
mechanism for how people generate predispositions. Below, we
verify this assumption by showing that βf correlates with starting
points. Nevertheless, a simpler model, for example R0= a/2 ±
0.25, produces the same phenomenon of more extreme choice
probabilities with narrower thresholds, but displays a disconti-
nuity in choice behavior, due to the starting-point discontinuity
at v= 0 (Fig. 5c; also with collapsing thresholds, see Supplemen-
tary Fig. 3c).

The simulations above are simplified in the sense that they
assume a single drift rate (i.e., strength-of-preference) per subject.
In the real experiment, each subject experienced a variety of
decisions and therefore a variety of drift rates. Therefore, as a
robustness check, we carried out the simulations behind Fig. 5
using the actual parameters estimated from the time-free data.
We then compared the resulting βf and βp estimated from the
simulated data. The biased DDM simulations (Supplementary
Fig. 4a and Supplementary Fig. 4c) produced similar patterns as
seen in the data (Figs. 2, 5). That is, the results show that under
time pressure, simulated selfish subjects (split according to
median indifference β) became more selfish and simulated pro-
social subjects became more pro-social. Similar to Fig. 5a, the
pattern produced by the unbiased DDM simulations (Supple-
mentary Fig. 4b and Supplementary Fig. 4d) is not consistent with
the results seen in the experiment.

In sum, if the only difference between selfish and pro-social
subjects was their drift rates, then time pressure should have
brought their behavior closer together (not observed in the data),
but if they also differed in their starting points, then time pressure
should have made their behavior more extreme (observed in the
data). Differences between groups in other parameters might
additionally be present, but they cannot explain the time-pressure
phenomenon without biased starting points, since the effects of
narrower (or collapsing) thresholds on choice (Fig. 5a, Supple-
mentary Figs 3a, 4b, d) do not depend on the initial threshold
separation or drift rates.

In the next section, we attempt to verify these conclusions with
formal model fits on data independent from the data used to
classify subjects as being predisposed to selfish or pro-social
behavior. Specifically, we separate subjects based on whether they
became more or less pro-social under tighter time constraints. We
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hypothesized that both groups of subjects would be better fit by
DDMs with biased starting points than ones without. We
additionally hypothesized that the subjects who became more
pro-social under tighter time constraints would exhibit starting
points biased towards the pro-social threshold, while subjects who
became more selfish under tighter time constraints would exhibit
starting points biased towards the selfish threshold.

Model fitting. We first split subjects based on how their pre-
ferences changed from time-pressure to time-delay conditions,
resulting in 56 selfishly predisposed subjects (βp < βd) and 46 pro-
socially predisposed subjects (βp > βd). Splitting by gender, 24 of
56 (43%) females and 22 of 46 (48%) males were pro-socially
predisposed, in contrast to the findings from ref. 26

We fit the DDM at both the group and individual level on the
time-free data. We focus exclusively on fitting the time-free data
since these are the only data that display the roughly log-normal
RT distributions produced by the DDM. The time constraints in
the other two conditions distort the RT distributions and
preclude fitting DDMs to those data (Supplementary Fig. 5).

Our hypothesis was that the relative starting point, z= R0/a
(z∈[0,1]), would be greater (less) than 0.5 for the selfishly
predisposed (pro-socially predisposed) subjects. The starting
point z was indeed greater than 0.5 (0.547 at the group level,
and an average of 0.564 at the individual level) for selfishly
predisposed subjects, and was less than 0.5 (0.403 at the group
level and an average of 0.452 at the individual level) for pro-

socially predisposed subjects (Table 1, Supplementary Table 4).
At the individual level, the starting points were greater than 0.5
for 40 of 56 selfishly predisposed subjects (P= 0.002, two-sided
Binomial test), and the starting points were less than 0.5 for 30 of
46 pro-socially predisposed subjects (P= 0.054) (see Supplemen-
tary Table 4 and Supplementary Note 3).

In the previous section, we assumed that starting points would
be correlated with subjects’ generally favored options. Verifying
this assumption, we found that the starting points were negatively
correlated with βf (two-sided Spearman correlation test, r=
−0.594, P= 10−11, Fig. 6a). Importantly, starting points were also
negatively correlated with βp−βd (r=−0.460, P= 10−6, two-
sided Spearman correlation test) (Fig. 6b, Supplementary Fig. 6).
In other words, subjects who were more pro-social under time
pressure compared to time delay, showed a larger starting point
bias towards the pro-social threshold in the time-free condition.
This indicates that we can use starting points, estimated on time-
free data, to expose underlying biases which in the past have been
inferred by comparing time-constrained conditions.

Finally, a logistic regression of βp−βd on DDM parameters
(Supplementary Table 5) revealed that the only significant
predictor was the starting point bias (P= 0.006). This indicates
that the starting point bias is likely the key mechanism to explain
the impact of time constraints.

Model validation. When fitting models to data, there is always a
concern of over-fitting. That is why we have focused on the

Table 1 Estimation results of the biased DDM

Subject type Relative starting point (z) Non-decision time (t0) (s) Threshold (a)

Group level Selfishly predisposed 0.547 (0.010) 0.272 (0.076) 3.419 (0.047)
Pro-socially predisposed 0.403 (0.008) 0.426 (0.042) 3.818 (0.061)

Individual level Selfishly predisposed 0.564 (0.015) 0.743 (0.056) 3.356 (0.107)
Pro-socially predisposed 0.452 (0.019) 0.692 (0.042) 4.204 (0.216)

The standard errors of the estimators are reported in parentheses. The standard errors at the group level are calculated using a jackknife method74, 75. The estimated drift rates and variability of the
starting points at the group level are not reported. Details of the estimated parameters at the individual level are reported in Supplementary Table 4.
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relationship between time-free model parameters and behavior in
the time-pressure and time-delay conditions. Taking this idea a
step further, in this section we test whether the time-free model
with biased starting points (biased DDM) provides better fits after
accounting for the number of model parameters (using BIC) and
whether it can better predict other out-of-sample time-free data.

Looking at the individual-level fits, the BICs of the biased
DDM were lower than the BICs of the unbiased DDM for 71 (of
102) subjects (two-sided Binomial test, P < 10−4). That is, the
biased DDM generally fits the data better than the unbiased
DDM. Specifically, the biased DDM fits the data better than the
unbiased DDM for subjects who have a larger starting point bias,
while the unbiased DDM fits the data better than the biased DDM
for subjects whose starting point is near 0.5 (Fig. 6a).

Next we validate the biased DDM by comparing its out-of-
sample predictions with those of the unbiased DDM and logistic
choice models54,55. In one logistic model (Logit), the dependent
variable was a dummy indicating whether the choice was selfish
or pro-social, and the independent variables were the difference
between the dictator’s payoffs (DicDiff) and the difference
between the receiver’s payoffs (ReceDiff). In a second logistic
model (Logit+RT), we added another independent variable, RT.
More specifically, we estimated these models for selfishly
predisposed and pro-socially predisposed subjects separately
using one half of the data (Games 1–50) and used the estimated
parameters to predict choices in the other half of the data (Games
51–100, see Methods). We then calculated the absolute error (AE)
between the predicted and empirical probabilities of choosing the
selfish option in each game (Table 2; see also Supplementary
Figs 7–9, Supplementary Table 6).

The summed AE for the biased DDM was less than that for the
unbiased DDM for both selfishly predisposed and pro-socially
predisposed subjects. Since the number of selfishly predisposed
and pro-socially predisposed subjects was not equal, we also used
Cramer’s λ56 to quantify each model’s predictive power (higher λ
= better predictions). Cramer’s λ for the biased DDM (0.198) was
higher than that of the unbiased DDM (0.163), Logit (0.1648),
and Logit+RT (0.1650). Therefore, the biased DDM generally
outperformed the other models in terms of out-of-sample
predictions.

Discussion
Our paper provides an alternative account for the cognitive
processes underlying social decision making. Subjects are het-
erogeneous in whether they generally favor selfishness or pro-
sociality. This produces a bias in their initial belief that the selfish
or pro-social option is the better choice. Once the options appear,
subjects update their initial beliefs by evaluating and comparing
the options, in line with a SSM account. Thus, a DDM with biased

starting points unifies single- and dual-process accounts of social
decision making, allowing us to explain features of the data, and
other findings in the literature, that otherwise could not be
explained by either account on its own. In particular, it captures
the relationship between strength-of-preference and RT, while
also explaining why choice biases are magnified under time
pressure and attenuated under time delay. Other evidence-
accumulation models that are designed to capture intuition57,58

do not explain these results. The model in ref. 57 does not
explicitly predict any effects of time pressure or time delay, and
the model in ref. 58 predicts a bi-modal RT distribution, which is
not the case in our data (Supplementary Fig. 5).

Our out-of-sample prediction results reveal that the biased
DDM outperforms the simple unbiased DDM and logistic choice
models in predicting choices. Thus, it is important to take these
prior biases into account when modeling social decision making.
These results also underline the usefulness of computational
models for describing social behavior59,60. In particular, what we
are suggesting is that time pressure affects decisions not by
engaging a different decision process, but instead by simply
allowing less time for the decision maker to update from their
prior. Thus, under time pressure, the prior plays a larger role in
determining the decision.

One might wonder how a starting point would be biased
towards the selfish or pro-social option? Starting-point biases are
more often associated with response biases (e.g., spatial biases)
and it is not immediately obvious how this would translate to a
setting where the alternatives vary across trials. One likely pos-
sibility is that subjects initially scan their own payoffs to deter-
mine which option is better for them, consistent with ref. 17. This
is consistent with the idea that most of the non-decision time is
for stimulus encoding.

An advantage of our approach is that it relies on a well-
established modeling framework that has proven useful in many
domains of human behavior61,62 and that has substantial support
from neural data63–66. Moreover, the consequences of starting
point biases in SSMs are mathematically precise and well
understood, generating falsifiable predictions that can be tested
with choice and RT distributions. Although here we have
restricted ourselves to the dictator game, this framework could be
applied to cooperative settings, provided that beliefs could be
measured or estimated, and utilities calculated. This would be a
useful next step for this research.

We acknowledge that the direct evidence supporting a DDM-
like process under time delay is relatively weak. While we believe
that a DDM process is still at work under time delay, the issue is
that the true RTs are unobservable. That is, we do not know when
subjects actually make their decisions, since they are forced to
wait until 10 s have passed before responding. It seems likely that
most subjects still do use a DDM, raise their decision thresholds

Table 2 Out-of-sample prediction results

Selfishly predisposed subjects Pro-socially predisposed subjects

∑AEbiased DDM 3.147 3.445
∑AEunbiased DDM 3.575 4.091
∑AELogit 3.081 3.757
∑AELogit + RT 3.127 3.749
Cramer’s λ of biased DDM 0.198

Cramer’s λ of unbiased DDM 0.163

Cramer’s λ of Logit 0.1648

Cramer’s λ of Logit+RT 0.1650

In this table, we use the data from Games 1–50 to predict decisions in Games 51–100 in the time-free condition
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to allow for the extra time, but still finish their decisions well
before they are cued to respond. After the cue, they respond at a
roughly random time. This is consistent with the roughly Normal
RT distribution seen in this condition (Supplementary Fig. 5). It
is worth nothing though that the biased DDM simulations under
time delay do produce similar choice patterns (Supplementary
Fig. 10) as seen in the experimental data (Fig. 2b).

The SSM framework also opens the door for more detailed
modeling of dual process cognition, building on other imple-
mentations of intuition vs. deliberation57,67–70. Finally, a starting
point bias captures the behavioral phenomenon while being
agnostic about its source (e.g., genetics, upbringing, experiment
instructions, prior decisions, etc.). More research is required to
fully characterize the factors that affect these starting points and
how they change over time71.

Methods
Subjects. In total 102 subjects (56 females) participated in the experiment. Eigh-
teen subjects took part in an initial experiment at The Ohio State University (OSU),
followed by 84 subjects at the University of Konstanz. On average, subjects earned
20 dollars at OSU and 16 Euros at Konstanz (including show-up fees). Subjects
gave informed written consent before receiving the instructions at OSU, and we
obtained informed consent from subjects when they registered for the experiment
at Konstanz. OSU’s Human Subjects Internal Review Board approved the
experiment.

Experimental design. The mini-dictator games under different time conditions
had the same properties but minor differences in payoffs. Specifically, the differ-
ences between the dictators’ payoffs (DicDiff) were 2, 4, 6, 8, and 10, while the
differences between the receivers’ payoffs (ReceDiff) were from 3 to 57, in steps of
6. In every trial, the subject had to decide whether to give up some of their own
money in order to increase the other subject’s payoff and reduce the inequality
between them. We first fixed the parameters for 50 games in the time-free con-
dition (Games 1–50). We then decreased (increased) all the payoffs by 1 for one
half of these games and increased (decreased) all the parameters by 1 for the other
half of games to get the 50 games for the time-pressure (-delay) conditions. Finally,
we decreased all the parameters by 2 for one half of the games and increased all the
parameters by 2 for the other half of games to get the other 50 time-free trials
(Games 51–100).

At the beginning of each session, we randomly matched subjects into two-
person groups. We randomized the order of the games within the different time
conditions for each group.

Preference estimation. We employ the inequality aversion model proposed by
Fehr and Schmidt2 to estimate subjects’ preferences using maximum likelihood
estimation (MLE). A subject’s utility for each option in the mini-dictator game is
given by

U ud; urð Þ¼ud � β ud � urð Þ; ð1Þ

where ud is the dictator’s payoff and ur is the receiver’s payoff. The parameter β
indicates the subject’s social preference, with higher β indicating stronger pro-
sociality.

Fitting the biased DDM at the group level. We estimated the biased DDM using
subjects’ 100 decisions in the time-free condition for selfishly predisposed and pro-
socially predisposed subjects separately. We used Fast DM72 with the Kolmogorov-
Smirnov method to estimate the model. In the estimation, we let the drift rate (v)
depend on the payoffs in each trial. Thus, we estimated a drift rate for each
combination of DicDiff and ReceDiff. Since we had 50 different combinations (5
DicDiff and 10 ReceDiff) in our games, this meant 50 drift rates. In the estimation,
we also included inter-trial variability of the starting point (szr), but kept szr, the
non-decision time (t0), and the threshold (a) constant across games.

Fitting the DDM at the individual level. We estimated the biased DDM and the
unbiased DDM at the individual level using subjects’ 100 decisions in the time-free
condition. We used RWiener73 with MLE to estimate the model. In the estimation,
we set the drift rate (v) as a linear function of DicDiff and ReceDiff,

v ¼ dc þ dd � DicDiff þ dr � ReceDiff ð2Þ

Thus, we estimated six parameters in total for the biased DDM: the relative starting
point (z), the threshold (a), the non-decision time (t0), the drift constant (dc), the
weight on DicDiff (dd), and weight on ReceDiff (dr). In the unbiased DDM, we
fixed the relative starting point at z= 0.5. Supplementary Table 4 and Supple-
mentary Table 7 show the details of the estimation results. The BIC for each

estimation is given by

BIC ¼ ln nð Þk� 2lnðLÞ; ð3Þ

where n is the number of observations in the data, k is the number of parameters
estimated by the model, and L is the likelihood in the MLE estimation.

Nonparametric test. We use Spearman correlation tests whenever looking at the
correlation between β and other measures/parameters. The fitting procedure for
Fehr-Schmidt model can produce extreme parameter values for some subjects who
(almost) always choose the pro-social or selfish options. For example, some sub-
jects have β of 335 or −217, while the typical range of values is between 0 and 1.
For a linear Pearson correlation, this can seriously distort the estimates. The rank-
based Spearman correlations allow us to include all subjects, and the resulting
correlation is almost the same as the Pearson correlation where we exclude these
“outlier” subjects.

Out-of-sample predictions. To do out-of-sample predictions, we estimated the
biased DDM and the unbiased DDM based on half of the data in the time-free
condition, and then used the estimated parameters to predict subjects’ decisions in
the other half of the data. Since we did not have enough trials at the individual
level, we estimate these models at the group level. Specifically, we estimated the
model using Games 1–50 and 51–100 separately. Here we again used the
Kolmogorov-Smirnov method of Fast DM72 (the estimation results are shown in
Supplementary Table 8). We used the estimated parameters to simulate the biased
DDM and the unbiased DDM 5000 times for each game to determine the predicted
probability of the selfish choice in each game.

For the logistic model predictions, we regressed the following two logistic
models on the same halves of the data (the regression results are shown in
Supplementary Table 9),

Logit : Selfish ¼γ0 þ γ1 � DicDiff þ γ2 � ReceDiff þ ε; ð4Þ

Logitþ RT : Selfish

¼γ0þγ1 � DicDiffþγ2 � ReceDiffþγ3 � RTþε;
ð5Þ

and used the results to calculate the predicted probabilities of selfish choices.
Since the number of selfishly predisposed subjects was different from the

number of pro-socially predisposed subjects, we measured the aggregate predictive
performance using Cramer’s λ56 which is calculated as

λ¼�Pþ � �P�; ð6Þ

where �Pþ and �P� denote the predicted probability of choosing the selfish option on
trials in which the selfish option was actually chosen and on trials in which the pro-
social option was actually chosen, respectively. Thus, λ∈[0,1] reflects how much of
the choice variation across trials is captured by the model. λ= 1 indicates that the
model can perfectly predict choice outcomes, while λ= 0 indicates that the model
predicts decisions at chance.

Code availability. The code for the analyses presented in this article is available
from the corresponding author upon reasonable request.

Data Availability
The data that support the findings in this article are available in OSF with the identifier
https://doi.org/10.17605/OSF.IO/UKG7B.
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