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Abstract

The balletic motion of bird flocks, fish schools, and human crowds is believed to emerge from 

local interactions between individuals, in a process of self-organization. The key to explaining 

such collective behavior thus lies in understanding these local interactions. After decades of 

theoretical modeling, experiments using virtual crowds and analysis of real crowd data are 

enabling us to decipher the ‘rules’ governing these interactions. Based on such results, we build a 

dynamical model of how a pedestrian aligns their motion with that of a neighbor, and how these 

binary interactions are combined within a neighborhood in a crowd. Computer simulations of the 

model generate coherent motion at the global level and reproduce individual trajectories at the 

local level. This approach yields the first experiment-driven, bottom-up model of collective 

motion, providing a basis for understanding more complex patterns of crowd behavior in both 

everyday and emergency situations.
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The spectacle of a murmuration of starlings careening in near-perfect synchrony, or a school 

of herring smoothly circling in a ‘mill’ formation, are prime examples of collective behavior 

in biological systems. Humans exhibit such collective motion as well, when a crowd of 

pedestrians adopts a common motion on the way to a train platform, or forms opposing lanes 

of traffic in a shopping mall. Collective behavior can also go tragically awry, such as a 

stampede in a stadium or collective motion to one exit in a burning nightclub. How do many 

individuals spontaneously coalesce into a coherently moving body? After decades of 

theoretical modeling, research has now advanced to the point that experimentally-grounded 

models of collective motion are possible.

THE SELF-ORGANIZATION OF BEHAVIOR

Beyond its intrinsic fascination, collective motion is a paradigmatic case of self-organized 

behavior. There is a growing recognition among biologists, psychologists, and cognitive 

scientists that general principles of self-organization hold promise for explaining the 

organization of human and animal behavior at multiple levels, avoiding appeals to a prioi 
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neural or cognitive structure (Camazine et al., 2001; Goldstone & Gureckis, 2009; Kelso, 

1995).

The ingredients of self-organization have been identified in systems ranging from lasers to 

ant trails (Haken, 1983): (a) an open system that dissipates energy, (b) composed of many 

interacting components, (c) which are locally coupled by physical or information fields; (d) 

a fluctuation that nudges the system away from disorder;2 and (e) a positive feedback that 

amplifies this initial fluctuation, capturing more components, (f) to yield an emergent spatial 

or temporal pattern.

One can see this process at work in fish schooling. A shoal of foraging fish (dissipative 

components), locally coupled by sensory information, is randomly oriented (disorder). The 

approach of a predator triggers nearby fish to escape by swimming in a similar direction, 

which progressively recruits neighboring fish into the emerging pattern (positive feedback), 

to form a coherently moving school. Collective motion has become a test bed for self-

organized behavior because these mechanisms are observable and amenable to experimental 

study.

MODELING COLLECTIVE MOTION

If collective behavior emerges from local interactions between individuals, then the crux of 

the problem is understanding the nature of these interactions. This insight has motivated a 

raft of ‘microscopic’ or agent-based models, focused on the local level of individual 

behavior. They are complementary to ‘macroscopic’ models, which treat huge crowds as a 

fluid and focus on global properties such as density and mean velocity (Cristiani, Piccoli, & 

Tosin, 2014).

The Attraction-Repulsion Framework

The dominant class of microscopic models is the attraction-repulsion framework, derived 

from early research on fish schooling (Schellinck & White, 2011). It assumes three basic 

rules (Figure 1): (a) attraction – move toward neighbors in a far zone, (b) repulsion – move 

away from neighbors in a near zone, and (c) alignment – match the velocity (speed and 

heading direction) of neighbors in an intermediate zone. By adjusting the radii of these 

zones, the model can generate unaligned aggregation (shoaling), strongly aligned translation 

(schooling), and rotational motion (mills) (Couzin, Krause, James, Ruxton, & Franks, 2002). 

Craig Reynolds (1987) famously applied this model to computer animation, producing the 

wildebeest stampede in The Lion King and the bat swarms in Batman.

The stripped-down self-propelled particle model (Czirók & Vicsek, 2000) subsequently 

showed that a velocity-based alignment rule alone can generate translational motion, as well 

as transitions from incoherent to coherent motion. Conversely, the social force model 

(Helbing & Molnár, 1995) was predicated on position-based attraction and repulsion rules. 

It, too, generates plausible patterns of global motion, but individual trajectories do not 

2Technically this is known as ‘symmetry-breaking’ because the pattern of components is no longer symmetric (invariant) under 
transformations such as translation and rotation.
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resemble human locomotion at the local level (Pelechano, Allbeck, & Badler, 2007). More 

recently, vision-based models proposed that local interactions are driven by visual or 

cognitive heuristics (Moussaïd, Helbing, & Theraulaz, 2011; Ondrej, Pettré, Olivier, & 

Donikian, 2010).

With recent advances in 3D motion tracking of animals and humans, researchers are starting 

to compare such theoretical models with observational data, yielding many tantalizing 

insights (Cavagna et al., 2010; Charalambous, Karamouzas, Guy, & Chrysanthou, 2014; 

Hildenbrandt, Carere, & Hemelrijk, 2010; Lukeman, Li, & Edelstein-Keshet, 2010; 

Moussaïd et al., 2012; Wolinski et al., 2014; Zhang, Klingsch, Schadschneider, & Seyfried, 

2012). Computer simulations of observational data are, however, insufficient to test local 

rules. It has recently been recognized that the same motion pattern can be generated by 

different local rules (Vicsek & Zafeiris, 2012; Weitz et al., 2012), an example of degeneracy 

in complex systems. Deciphering the rules and the perceptual information that actually 

govern local interactions thus requires experimental manipulation of individual behavior at 

the local level (Gautrais et al., 2012; Sumpter, Mann, & Perna, 2012).

BEHAVIORAL DYNAMICS

My students and I are pursuing just such an experiment-driven, bottom-up model of human 

crowd behavior (for a similar approach in fish, see Gautrais et al., 2012; Zienkiewicz, 

Barton, Porfiri, & Di Bernardo, 2015). In the behavioral dynamics approach (Warren, 2006), 

we first study each basic behavior and model it as a dynamical system. Related experiments 

determine the visual information that controls that behavior (Gibson, 1979; Warren, 1998). 

The resulting control laws are analogous to local ‘rules’ but emphasize their continuous 

dynamical rather than logical cognitive form.

Building a Pedestrian Model

We began by building a pedestrian model that captures how people walk through an 

environment of goals, obstacles, and moving objects (Fajen & Warren, 2003; Warren & 

Fajen, 2008). We tested participants walking in virtual reality (VR), making it possible to 

manipulate the visual environment, and modeled their locomotor trajectories. To get an 

intuition for the model, imagine that a pedestrian’s heading direction is attached to the goal 

direction by a damped spring (Figure 2a). As the pedestrian walks forward, their heading is 

pulled into alignment with the goal (an attractor); conversely, another spring pushes their 

heading away from the direction of an obstacle (a repeller). The path of locomotion is the 

result of all such ‘spring forces’ acting on the pedestrian as they move through the 

environment. This simple attractor/repeller dynamics successfully models the emergence of 

locomotor paths and predicts paths in more complex environments.

Alignment Dynamics

To scale up to crowds, we next studied binary interactions between two pedestrians – in 

particular, how one person follows another (Dachner & Warren, 2014; Rio, Rhea, & Warren, 

2014). Rather than keeping a constant distance from the leader, we found that the follower 

matches the leader’s velocity – similar to an alignment rule. The results allowed us to 
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formulate a simple model of alignment dynamics, in which the follower linearly accelerates 

to match the leader’s speed (Figure 2b), and angularly accelerates to match the leader’s 

heading (Figure 2c). By manipulating the visual information for the leader in VR, we have 

determined that the follower does this by jointly canceling the leader’s optical expansion and 

change in bearing direction, yielding a visual control law for following that decays with 

distance (Dachner & Warren, 2017). We believe these alignment dynamics form the basis of 

collective motion.

A PEDESTRIAN’S NEIGHBORHOOD

In a crowd, however, each pedestrian is influenced by multiple neighbors, so the key to 

collective motion is a pedestrian’s zone of influence or neighborhood. We thus set out to 

determine how the influences of multiple neighbors are combined within a neighborhood. To 

probe these interactions experimentally, we created a novel VR paradigm in which a 

participant is asked to “walk with” a virtual crowd, allowing us to manipulate the speed and 

heading of neighbors and measure the participant’s response. We compared the results to 

motion-capture data on a human ‘swarm’, in which a group of 16–20 participants walked 

together about a large hall, veering randomly left and right. What we discovered enabled us 

to formulate the first bottom-up model of collective motion.

Superposition and Coupling Strength

Nearly all models of collective motion assume that binary interactions between a pedestrian 

and each neighbor are linearly combined, a principle known as superposition. To test this 

basic assumption, we perturbed the speed or heading of a subset of the 12 virtual neighbors 

(Figure 3a) and measured the participant’s change in speed or heading (Rio, Dachner, & 

Warren, 2017). We found that the mean response increased linearly with the number of 

perturbed neighbors, supporting superposition (the correlation coefficient, a measure of 

agreement that varies between 0 and 1, was r=.99). This proportional response was observed 

on individual trials.

However, we also found that the response to near neighbors (~1.8m) was significantly 

greater than to far neighbors (~3.5m) (Figure 3b). Most ‘zonal’ models assume a constant 

coupling strength with a hard radius (Figure 1), but analysis of the human ‘swarm’ data 

(Figure 4) confirmed that coupling strength decreases exponentially with distance, going to 

zero at about 4m. Such a ‘soft’ radius is advantageous for collective motion (Cucker & 

Smale, 2007). We thus modeled the neighborhood as a weighted average of neighbors, 

where the weight decays exponentially with distance. This might have a visual basis, for a 

neighbor’s visual angle and optical velocity decrease with distance due to the laws of 

perspective, and farther neighbors are progressively occluded by nearer neighbors in a 

crowd.

On the other hand, coupling strength did not consistently depend on a neighbor’s 

eccentricity (lateral position). This result suggests that the human neighborhood is circular, 

which is borne out by the swarm data (Figure 4). Yet coupling strength obviously drops to 

zero at the edges of the field of view. Prey species often have nearly panoramic vision, 

implying that flocks and schools are bi-directionally coupled (but see Nagy, Akros, Biro, & 
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Vicsek, 2010). In contrast, humans have an approximately 180° visual field, which implies 

that crowds are uni-directionally coupled, so a pedestrian only responds to neighbors in front 

of them. This suspicion is confirmed by analysis of time delays in the swarm data, which 

shows that a pedestrian turns after neighbors ahead, followed by neighbors behind. The 

observation has important implications for causal networks in crowds, how crowds steer and 

make decisions.

Metric or Topological?

Most microscopic models assume that a zone or neighborhood (Figure 5) is defined by 

metric distance, such that an individual is influenced by all neighbors within a fixed radius 

(e.g. 4m). In contrast, evidence suggests that starlings have neighborhoods defined by 

topological distance, or a fixed number of nearest neighbors (e.g. 7) regardless of their 

absolute distance (Ballerini et al., 2008; but see Evangelista, Ray, Raja, & Hedrick, 2017). 

This adaptation would insure cohesive flocking despite large variation in the density of a 

swooping murmuration and prevent birds drifting away from the flock.

We tested these hypotheses in humans by manipulating the density of a virtual crowd of 12 

neighbors. In the critical experiment (Wirth & Warren, 2016), we perturbed the heading of 

the nearest 2–4 neighbors, who always appeared at constant distances, while unperturbed 

neighbors varied in distance (Figure 5). The topological hypothesis predicts that density 

should have no effect on the response. In contrast, the metric hypothesis predicts that 

responses should be greater in the low-density condition, when fewer unperturbed neighbors 

appear in the neighborhood, than in the high-density condition. That is precisely what we 

found, consistent with the metric hypothesis.

Double Decay

However, it seemed unlikely that a group of neighbors outside a metric radius of 4m would 

be completely ignored. To check, we varied the distance of the entire virtual crowd up to 8m 

– and found that the participant still responded to heading perturbations. The response 

decreased with distance again, but at a much more gradual rate than before. This result 

raised the prospect of a flexible neighborhood with two decay rates: a slow decay to the 

nearest neighbors in the crowd, possibly due to the laws of perspective, and a faster decay 

within the crowd, perhaps due to added occlusion.

To test the double-decay hypothesis, we varied the distance of the whole crowd and 

selectively perturbed the near, middle, or far row of neighbors. As expected, we observed a 

gradual decay to the nearest neighbor, which went to zero at about 11m, followed by a more 

rapid decay within the crowd, which went to zero 4m from the nearest neighbor. Such a 

flexible neighborhood would allow pedestrians to coordinate their motion with a group up to 

11m away, so they don’t drift away from the ‘flock’.

A Neighborhood Model

Taken together, the experimental results enabled us to formalize a model of a pedestrian’s 

neighborhood (Figure 6) as (a) circularly symmetric, (b) with a uni-directional coupling to 

neighbors within ±90° of the heading direction, (c) whose influences are combined as a 
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weighted average, (d) with weights that decay exponentially with metric distance (e) at two 

decay rates.

CROWD DYNAMICS

Combining the neighborhood model (Figure 6) with the alignment dynamics (Figure 2) 

gives us a model of the local interactions underlying collective motion. Specifically, a 

pedestrian’s linear (or angular) acceleration is a weighted average of the difference between 

their current speed (or heading) and that of each neighbor, where the weight decays 

exponentially with distance. We tested this model against human data at the global and local 

levels.

Global Motion

First, to demonstrate that the model generates globally coherent motion, we performed 

multi-agent simulations of ten 10s segments of the ‘swarm’ data. The model agents were 

assigned the initial positions and velocities of the participants and then ‘let go’, simulating 

the trajectories of all interacting agents. The model indeed generated patterns of collective 

motion, with a mean ‘dispersion’ of 21° (mean pairwise difference in heading over a 3s 

traveling window), comparable to the human mean of 24°. The model thus reproduces the 

basic phenomenon of common motion with a coherence comparable to human crowds.

Local Trajectories

We cannot expect to simulate individual trajectories this way, however – akin to predicting 

the motions of individual molecules in a gas. Instead, we simulated each participant in the 

swarm one at a time, treating the positions and velocities of their neighbors as input (Figure 

7) (Rio et al., 2017). The mean correlation between model and human trajectories for the ten 

segments was r=.95 for heading and r=.70 for speed (a bit lower because there was little 

speed variation in the swarm).

We also simulated the trajectories of participants walking in the virtual crowd experiment, 

when the neighbors’ speed or heading was perturbed. The model closely reproduced human 

trajectories (mean r=0.89 for changes in heading, mean r=0.82 for changes in speed). 

Moreover, the model’s final heading and speed were virtually identical with the mean human 

data in each condition (Figure 3). The model thus reproduces pedestrian motion at the local 

as well as global level.

The Neighborhood as a Mechanism of Self-Organization

Essential to self-organization is a positive feedback mechanism that progressively recruits 

more individuals into the emerging pattern. In collective motion, this role is played by the 

local neighborhood. Each individual is visually coupled to multiple neighbors ahead, and 

influences others behind. As neighbors begin to align, they increasingly influence the 

neighborhoods that contain them, drawing more individuals into alignment. In this manner, a 

pattern of coherent motion propagates through the crowd.
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Conclusion

Thanks to experiments with virtual crowds and motion-capture data on real crowds, we are 

beginning to decipher the local interactions that underlie collective crowd behavior. This 

approach has yielded the first experiment-driven, bottom-up model of collective motion, 

accounting for both globally coherent motion and local trajectories. Challenges ahead 

include building a full vision-based model, explaining more complex patterns of crowd 

behavior, formally linking the microscopic and macroscopic levels of description (Cristiani 

et al., 2014; Degond, Appert-Rolland, Moussaïd, Pettré, & Theraulaz, 2013), understanding 

the causes of crowd disasters and improving evacuation planning (Helbing, Buzna, 

Johansson, & Werner, 2005; Schadschneider, Klingsch, Klüpfel, Rogsch, & Seyfried, 2008).
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Figure 1. 
The attraction-repulsion framework: An individual is repelled from neighbors in the near 

zone (orange), aligns their velocity with neighbors in the intermediate zone (green), and is 

attracted to neighbors in the far zone (blue). Each zone has a constant coupling strength with 

a hard metric radius r. Reprinted from Giardina (2008).
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Figure 2. 
Pedestrian model and velocity alignment dynamics. (a) Goals and obstacles: As pedestrian 

walks with speed s, their heading direction is attracted to the goal direction by a damped 

spring with negative stiffness (−kg), and repelled from the obstacle direction by a damped 

spring with positive stiffness (+ko); stiffness decays exponentially with distance (dg and do). 

The current heading is the resultant of all spring forces, which evolve over time, yielding an 

emergent locomotor path. (b) Following: speed matching. Follower is attracted to leader’s 

speed by spring with stiffness ks. (c) Following: heading matching. Follower is attracted to 

leader’s heading direction by spring with stiffness −kh.

Warren Page 11

Curr Dir Psychol Sci. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
A participant walks with a virtual crowd of 12 neighbors. (a) The heading direction (or 

speed) of a subset of neighbors (S=0, 3, 6, 9, 12, red), in a near zone or a far zone, is 

perturbed midway through a 12s trial. (b) Participant’s mean final heading in the last 2s 

(solid curves) increases linearly with the number of perturbed neighbors, but the response is 

greater to near (blue) than far (red) neighbors. Simulations of the crowd model (dotted 

curves) are nearly identical, within the 95% confidence interval of the human data (shaded 

regions). Modified from Rio, Dachner, & Warren (2017).
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Figure 4. 
Data from the human ‘swarm’: Heat map of mean absolute heading difference (deg) between 

the central participant nearest the center of the swarm (at [0,0], heading upward) and each 

neighbor, averaged over 6 min of data (three 2-min trials, initial interpersonal distance of 

2m) (cell=0.5×0.5m). Reprinted from Rio, et al. (2017)
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Figure 5. 
Metric and topological neighborhoods. On the metric hypothesis, the participant is 

influenced by all neighbors within a fixed radius (shaded region); on the topological 

hypothesis, the participant is influenced by a fixed number of nearest neighbors (dotted red 

lines). (a) High density condition: Both metric and topological neighborhoods contain 

perturbed (red) and unperturbed (black) neighbors. (b) Low density condition: The metric 

neighborhood contains fewer unperturbed neighbors (gray) than before, so the metric 

hypothesis predicts a greater response to the perturbed neighbors (red). But the nearest 

neighbors remain the same, so the topological hypothesis predicts the same response to the 

perturbed neighbors.
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Figure 6. 
Neighborhood model. The participant’s response is a weighted average of neighbors i, where 

the weight decays gradually with distance to the nearest neighbor (dNN) up to 11m, and 

more rapidly within the crowd (di-dNN), creating a flexible neighborhood with a soft radius 

(r=4m).

Warren Page 15

Curr Dir Psychol Sci. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Simulation of a sample trajectory from the human ‘swarm’. (a) Path in space (dots at 1s 

intervals). (b) Time series of speed. (c) Time series of heading. Solid red curve corresponds 

to participant, dashed blue curve to model agent, black curves to neighbors in the 

neighborhood that were input to model. Simulations were performed on ten 10s segments of 

swarm data that had continuous tracking of ≥8 neighbors.
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