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Abstract

Diabetic nephropathy (DN) is the leading cause of chronic kidney disease in the United States and 

is a major cause of cardiovascular disease and death. DN develops insidiously over a span of years 

before clinical manifestations, including microalbuminuria and declining glomerular filtration rate 

(GFR), are evident. During the clinically silent period, structural lesions develop, including 

glomerular basement membrane (GBM) thickening, mesangial expansion, and glomerulosclerosis. 

Once microalbuminuria is clinically apparent, structural lesions are often considerably advanced, 

and GFR decline may then proceed rapidly toward end-stage kidney disease. Given the current 

lack of sensitive biomarkers for detecting early DN, a shift in focus toward examining the cellular 

and molecular basis for the earliest structural change in DN, i.e., GBM thickening, may be 

warranted. Observed within one to two years following the onset of diabetes, GBM thickening 

precedes clinically evident albuminuria. In the mature glomerulus, the podocyte is likely key in 

modifying the GBM, synthesizing and assembling matrix components, both in physiological and 

pathological states. Podocytes also secrete matrix metalloproteinases, crucial mediators in 

extracellular matrix turnover. Studies have shown that the critical podocyte-GBM interface is 

disrupted in the diabetic milieu. Just as healthy podocytes are essential for maintaining the normal 

GBM structure and function, injured podocytes likely have a fundamental role in upsetting the 

balance between the GBM’s synthetic and degradative pathways. This article will explore the 

biological significance of GBM thickening in DN by reviewing what is known about the GBM’s 

formation, its maintenance during health, and its disruption in DN.
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DIABETIC NEPHROPATHY (DN) is a common complication of diabetes mellitus and is the leading 

cause of chronic kidney disease (CKD) in the United States (40). Considered a 
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glomerulopathy, DN is characterized by extracellular matrix (ECM) accumulation in 

glomeruli, the highly sophisticated organelles that selectively filter circulating blood. 

Despite widespread use of targeted therapies to lower glucose and to antagonize the renin-

angiotensin system (RAS), the prevalence of DN has remained stable (42). As demonstrated 

by clinical trials, multifactorial interventions can slow, but not stop, the progression of DN 

(56). Even mild disease is correlated with markedly increased risks of cardiovascular disease 

and death (5). Defining the mechanisms that underlie development and progression of DN is 

critical to improving outcomes of diabetic patients and to reducing the societal burden of 

CKD.

The natural history of DN, as defined in the 1980s based on longitudinal studies of type 1 

and type 2 diabetic patients, begins with an initial long clinically silent period during which 

the patient remains normoalbuminuric with a normal or high glomerular filtration rate 

(GFR). During this clinically silent phase, structural lesions develop, including glomerular 

basement membrane (GBM) thickening, mesangial expansion, and glomerulosclerosis. Once 

microalbuminuria is clinically apparent, structural lesions are often considerably advanced, 

and GFR decline may then proceed rapidly toward end-stage renal disease (ESRD) (117, 

118, 124). Indeed, treatment initiated after the onset of overt DN typically cannot arrest 

progression.

Because albuminuria and declining kidney function are insensitive biomarkers for detecting 

early DN (124), we have sought to examine the molecular basis for a structural lesion that 

occurs early in the natural history of DN, GBM thickening. GBM thickening is the earliest 

detectable feature of DN (132), observed within one to two years following the onset of 

diabetes, and precedes clinically evident albuminuria (133). Primarily due to expansion of 

the lamina densa, GBM thickening in diabetes is diffuse and quite uniform (Fig. 1B) (142). 

Thought to result from an imbalance between the synthesis and degradation of mostly 

normal ECM constituents, GBM thickening has been reported in patients in the preclinical 

stage of diabetes, so-called “prediabetes” (99). This phenomenon has also been found in 

experimental models: GBM thickening in the rhesus monkey is apparent before development 

of clinically overt diabetes, correlating this lesion with hyperinsulinemia or the prediabetic 

state (41).

In an effort to identify predictors of DN risk, Caramori et al. analyzed kidney biopsies from 

94 normoalbuminuric patients with long-standing type 1 diabetes. In the normoalbuminuric 

cohort, greater GBM width was the only renal structural parameter that independently 

predicted progression. GBM width in the range of the “progressors” (567.3 ± 104.1 nm 

compared with 459.5 ± 85.7 nm for the “nonprogressors”) increased the risk of progression 

from 17 to 33.3%. Despite long-standing diabetes, none of the type 1 diabetic patients with 

GBM width within the normal range progressed to proteinuria and/or ESRD (28).

We posit that alterations in normal GBM structure and function constitute a critical 

pathogenic feature of progressive DN. Expanding our understanding of the cellular and 

molecular events that lead to GBM thickening may aid in devising early intervention 

strategies to prevent the progression to irreversible DN. To that end, in this review, we will 

consider what is known about the GBM’s formation during development, maintenance in 
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health, and disruption in DN. We will end with exploring the possible biological significance 

of GBM thickening in early DN.

THE GBM: FORMATION AND STRUCTURE

The GBM is a specialized gel-like extracellular network within the glomerulus that lies 

between and supports two cell types: glomerular endothelial cells (GEnCs) on the inner 

capillary wall and visceral glomerular epithelial cells or “podocytes” on the outer surface 

(Fig. 1A) (25). The typical width of the GBM (~300–350 nm) is more than two times the 

thickness of most other human basement membranes due to fusion of two discrete basement 

membranes made by GEnCs and podocytes. Ultrastructurally, when examined using 

conventional tissue preparative methods, the highly cross-linked network of the GBM is 

organized into three layers: a central electron-dense lamina densa sandwiched between two 

layers of lower electron density, the lamina rara interna on the endothelial side, and the 

lamina rara externa on the epithelial side (150). Similar to all basement membranes, the 

GBM is composed of glycoproteins (laminins, type IV collagen, nidogen) and proteoglycans 

(agrin, perlecan, type XVIII collagen) (49, 136, 179). However, functionally, the GBM is 

distinct in that it facilitates continuous flow across the glomerular filtration barrier (GFB) 

while bearing hemodynamic stresses and supporting glomerular cells (75). Any alterations 

in its structure are due to changes in the cells it supports, i.e., GEnCs and podocytes.

GBM Formation During Development

The GBM is built via a collective effort of the underlying GEnCs and overlying podocytes 

(3). Coculture studies have shown that assembly and organization of the GBM’s ECM 

require cross talk between GEnCs and podocytes, likely mediated by a soluble factor 

released by podocytes (25). In the developing glomerular capillary loop, ultrastructural 

studies have identified a quadrilaminar organization of the GBM, with both a subendothelial 

and subepithelial basement membrane, each composed of its uniquely associated lamina rara 

and lamina densa, separated by a space between the two basal laminae (2, 107). As 

development progresses, the quadrilaminar structure matures into a trilaminar basement 

membrane, thought to occur by fusion of closely apposed basement membrane layers (2, 

107). Some studies have suggested that the observed laminae rarae may be artifacts of the 

fixation and rapid dehydration steps used in conventional processing of tissues for electron 

microscopy. In these studies, when the GBM is examined after fixation with glutaraldehyde 

followed by freeze substitution, the laminae rarae are not seen (31, 149). This remains an 

area of controversy (106), and applying newer techniques to this question may finally clarify 

the true in vivo substructure of the GBM.

The immature GBM consists of α1α2α1(IV)-collagen, synthesized by both podocytes and 

GEnCs in early comma and S-shaped stages of glomerulogenesis (113). As the GBM 

matures, there is protein isoform switching. Beginning at the capillary loop stage, podocytes 

alone appear to synthesize mature α3α4α5(IV)-collagen, replacing the α1α2α1(IV)-collagen 

network (4). Both cell types may be responsible for removal and replacement of the 

immature laminin-α1β1γ1 by the mature laminin-α5β2γ1 (160). After the mature GBM is 

fully assembled, the biosynthetic programs are downregulated (3).
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GBM: A Complex Scaffold of Structural and Regulatory Proteins

Nine major proteins have been found in the GBM. Similar to all basement membranes, the 

GBM is composed of networks of laminin and type IV collagen, nidogens, and heparan 

sulfate proteoglycans (HSPGs) (Fig. 2). Distinct from most basement membranes, including 

the contiguous Bowman’s capsule and tubular basement membranes (112), there is laminin 

and type IV collagen isoform switching in the GBM during glomerular development and 

maturation and, possibly, in specific glomerular diseases (3). The GBM’s unusual 

composition is due, presumably, to its unique functional properties (112).

The matrix of the GBM is a highly structured composite of interacting protein networks 

(169), recently reviewed in detail (3, 110). Laminin and type IV collagen self-polymerize 

into networks that are connected to each other and/or to cell-surface receptors by HSPGs and 

nidogen (196). In addition to structural proteins, the GBM contains regulators (e.g., 

proteases, growth factors). In a recent proteomic analysis of human glomerular ECM, 144 

structural and regulatory proteins were identified, with >50% of them expressed in the GBM 

(95). Overall, the matrix of the GBM is a unique, highly dynamic, and intricate scaffold of 

networking proteins (96).

Laminins—Laminin is a large (~800-kDa) heterotrimer of α-, β-, and γ-glycoprotein 

chains organized into a cruciform structure. Laminin-α5β2γ1 is the major isoform in the 

normal adult GBM, interacting with type IV collagen via nidogen (3). Mice lacking laminin-

β2 exhibit massive proteinuria and die at three to five weeks. Ultrastructurally, in the 

absence of laminin-β2, the GBM appears disorganized (129). Patients with laminin-β2 gene 

mutations develop Pierson’s syndrome, characterized by congenital nephrotic syndrome 

with variable ocular and neurological manifestations (103, 140, 197). In mice lacking 

laminin-α5, the GBM disintegrates, podocytes become clustered, and GEnCs and mesangial 

cells fail to establish capillary loops (114). Thus, laminin is an absolute requirement for 

basement membrane formation.

Collagens—Type IV collagen, the most abundant protein in the GBM, is secreted as a 

heterotrimer composed of three coiled a-chains. In the mature GBM, the composition of type 

IV collagen chains is α3α4α5. Grafting experiments, in vivo, have shown that podocytes, but 

not GEnCs, synthesize the α3α4α5(IV) network (4). Unlike the laminin network, the type IV 

collagen network is dispensable for basement membrane formation. In the absence of the 

α3α4α5(IV) network, there is a compensatory increase in the α1α2α1(IV) network. 

However, the compensation is incomplete, resulting in ultrastructural abnormalities, 

glomerular scarring, and kidney dysfunction (96). Compared with the α1α2α1(IV) network, 

the α3α4α5(IV) network may be more highly cross-linked and, therefore, more resistant to 

proteases, producing greater strength and stability in the GBM architecture (110).

Nidogens—Nidogen-1 and −2 (also known as entactin-1 and −2) were originally 

considered integral basement membrane proteins that bridged laminin and type IV collagen 

networks. However, in mice with knockout of either isoform, basement membrane formation 

and organ development are normal (123, 157). The double-knockout mice appear to develop 

functioning kidneys, with well-defined GBMs, suggesting that nidogen is dispensable for 
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GBM formation. However, simultaneous deletion of both nidogen-1 and −2 causes perinatal 

lethality due to pulmonary and cardiac failure (11). Nidogen may function to provide extra 

stability under situations of extreme stress (110).

Heparan Sulfate Proteoglycans—Proteoglycans consist of protein cores with 

covalently linked glycosaminoglycan (GAG) side chains. Frequently, these side chains are 

modified by sulfation, which, along with carboxyl residues (20), imparts a negative charge. 

Proteoglycans are thought to stabilize the basement membrane by binding laminin, type IV 

collagen, and nidogen (113) and to contribute to the gel-like properties of the ECM, 

potentially acting as “anticlogging” agents (81). The two most prominent HSPGs within the 

GBM are agrin and perlecan. Agrin, derived primarily from podocytes, is the most abundant 

HSPG at maturity (59, 60) and is present throughout the width of the adult GBM. Perlecan is 

exclusively present on the endothelial side of the GBM and in the mesangial matrix (61).

A third basement membrane HSPG is type XVIII collagen, a hybrid collagen-proteoglycan 

(158), which harbors a globular COOH-terminal noncollagenous (NC)-1 domain that 

contains the fragment endostatin (131). Endostatin, best known for strongly inhibiting 

angiogenesis and tumor growth by restricting endothelial cell proliferation (131) and 

migration (192), may be involved in diverse physiological processes (47). By immunogold 

labeling, type XVIII collagen has been localized to both the endothelial and epithelial sides 

of the GBM (179). A recent study suggests that type XVIII collagen has a polarized 

orientation in the GBM: the NH2-terminal collagen XVIII antibody shows staining on both 

the podocyte and endothelial edges, whereas the COOH-terminal antiendostatin antibody 

shows gold particle localization within the GBM (87). Indeed, the type XVIII collagen NC1 

domain has been shown to bind to perlecan in vivo (115, 156). Following type XVIII 

collagen total knockout or knockout of the epithelial promoter 2-derived longer variant, 

there is podocyte foot process effacement, suggesting that type XVIII collagen may play an 

important role in podocyte-GBM interaction (87).

Based on their known characteristics, HSPGs would be predicted to impede filtration of 

macromolecules by electrostatic repulsion and steric hindrance (127). Indeed, HSPGs 

originally were thought to provide the basis for charge selectivity in the GFB. More recently, 

this concept has been challenged (108, 111). A GBM lacking HSPGS may be more susceptible 

to increased transcapillary filtration pressure (155). In addition to providing mechanical 

stability, heparan sulfate moieties sequester heparin-binding growth factors, cytokines, and 

chemokines, thereby controlling their release and function (181).

THE GBM AND ITS ROLE IN THE GLOMERULAR FILTRATION BARRIER

The GFB, a highly specialized unit responsible for the selective ultrafiltration of blood, is 

composed of three layers: a fenestrated endothelium with its associated glycocalyx, the 

GBM, and the filtration slits formed by the interdigitating foot processes of podocytes (Fig. 

1A) (119). The GFB allows free permeability to water and small solutes, but prevents the 

loss of macromolecules and cells from the blood, producing a virtually protein-free primary 

filtrate. In humans, ~180 liters of primary urine are produced each day at capillary pressures 

far exceeding those of other organs. Because the interdependent layers of the GFB 
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continuously interact with each other, both mechanically and biochemically, changes in any 

of them can alter glomerular permeability (172).

The GBM’s Contribution to Size Selectivity

By scanning electron microscopy, the GBM is a highly ordered labyrinth of intersecting 

polygonal fibrils of varying thickness (4–10 nm), most tightly packed within the core (67, 

92). Although the GBM appears to be less selective than the cellular components (64), it is 

likely that the GBM plays an essential role in the size-selective properties of the GFB. In 

laminin-β2 knockout mice, the GBM’s disorganization precedes the onset of proteinuria, at a 

time when the podocytes ultrastructurally appear normal. Furthermore, in tracer studies, 

laminin-β2-deficient mice show increased GBM permeability, emphasizing that a correctly 

assembled GBM is vital for establishing the permselectivity of the GFB (75). Behaving 

more like a gel than a simple filter, the GBM’s size-selective characteristics may be 

determined by its diffusion properties (159), with the proteoglycan-containing layer acting 

as a viscous negatively charged screen in front of the lamina densa (127).

The GBM’S Contribution to Charge Selectivity

The charge selectivity of the GFB is highly controversial. For decades, the GFB had been 

considered to include both size- and charge-selective components (79, 80). Classic studies 

using tracers of comparable composition and size, but with varying degrees of positive or 

negative charge, led to the theory of “charge selectivity.” These studies showed that, with 

decreasing negative charge, the tracers penetrated into, or across, the GFB to a greater 

degree (22, 32). With their highly sulfated GAG side chains, HSPGs were thought to provide 

the negative charge that could function as the “charge-selective barrier” (121). However, 

recent genetic studies have challenged this long-accepted view. Podocyte-specific deletion of 

agrin results in a significant reduction in the GBM’s negative charge. However, alone or 

combined with knockout of perlecan, agrin deletion is not associated with permeability 

defects (57, 65). Similarly, podocyte-specific knockout of Ext1, a gene that encodes an 

enzyme subunit required for heparan sulfate biosynthesis, yields mild albuminuria that is not 

statistically different from that seen in control mice (35). Finally, in transgenic mice that 

widely express human heparanase, an endoglycosidase that strips heparan sulfate side chains 

from proteoglycans, there is a significant reduction in anionic charge in the GBM without 

accompanying permselectivity defects (182). These data challenge the premise that heparan 

sulfate plays a primary role in charge-selective filtration.

THE CRITICAL PODOCYTE-GBM INTERFACE

Podocyte-GBM adhesion is crucial for establishing and maintaining the structural and 

functional integrity of the GFB. The podocyte-GBM interface (Fig. 2) forms a signaling 

platform that greatly impacts multiple cell fate decisions, including shape, growth, 

differentiation, and survival. In addition, the ECM regulates cell-cell signaling by 

sequestering secreted growth factors and cytokines, acting as a reservoir for controlled 

release (96). In podocytes, the key cell-matrix adhesion receptor is integrin-α3β1, which 

connects laminin- α5β2γ1 in the GBM, via various adaptor proteins, to the intracellular actin 

cytoskeleton. Podocytes also express other cell-matrix adhesion receptors, including 
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integrins- α2β1 and -αvβ3, dystroglycan, syndecans-1 and −4 (146, 155), and type XVII 

collagen (69).

Integrins

The ECM communicates with cells through transmembrane cell-surface receptors termed 

integrins (71). Acting as more than simple anchoring points for cell attachment, integrins are 

crucially involved in the cellular control of ECM deposition (62). Integrins, heterodimeric 

glycoproteins composed of α- and β-subunits, lack kinase activity and rely on scaffolding 

proteins and downstream kinases for signal transduction, all of which interact within an 

adhesion complex (146). Interactions with other transmembrane proteins (e.g., tetraspanins) 

allow further refinement. Based on cell type and context, over 200 proteins may be recruited 

to adhesion complexes, highlighting that adhesion signaling may possibly affect many cell 

fate decisions (96).

Integrin-α3β,1 shows the greatest versatility, binding to collagen, laminin, fibronectin, 

nidogen, and epiligrin. In human glomeruli, α3β1 has been found on podocytes, mesangial 

cells, and GEnCs (151). As the most highly expressed integrin on the podocyte’s cell surface 

(6, 89), α3β1 is found on the basolateral aspect of foot processes and is likely key in 

mediating the podocyte’s binding to the underlying GBM via laminin-α5β2γ1 (14, 15, 88, 

162). In fact, integrin-α3β1 and its associated molecules form the podocyte’s principal 

adhesion complex, coupling GBM molecules to the podocyte’s actin cytoskeleton (155). 

This integration of the ECM and cytoskeleton provides physical reinforcement, enabling 

podocytes to withstand considerable mechanical stress (155).

Gene targeting studies have emphasized the importance of integrins in establishing and 

maintaining the glomerular capillary wall (3). Integrin-α3 knockout mice die shortly after 

birth with defects in kidney and lung branching morphogenesis. Glomeruli from these mice 

have abnormally large capillary loops, thickened and irregular GBMs, and absent podocyte 

foot processes (90). Similarly, podocyte-specific deletion of integrin-α3 causes severe 

proteinuria, massive edema, and ESRD by 6 wk of age, with ultrastructural changes 

including foot process effacement and GBM abnormalities (154). Likewise, children 

carrying deletion or homozygous missense mutations in integrin-α3 have proteinuria and 

atrophic glomeruli on biopsy (128). Podocyte-specific knockout of integrin-β1 results in 

proteinuria at birth, associated with morphological changes (GBM splitting, foot process 

effacement, podocyte depletion), followed by death at one to three weeks of age from ESRD 

(78,144). Thus, integrins appear to exert an active role in ECM assembly, regulating the 

GBM’s structure and permselectivity (168).

Dystroglycan

Dystroglycan is a heavily glycosylated cell receptor comprised of an extracellular a-subunit 

connected to a transmembrane α-subunit. Expressed at high levels, it is immunolocalized to 

the apical and basolateral surfaces of podocytes and their foot processes and acts as a 

receptor for laminin and agrin in the GBM (183). When dystroglycan is deleted from 

podocytes, or from the entire kidney, there are no discernible glomerular structural or 

functional phenotypes, and these mice do not exhibit an increased susceptibility to injury 
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(76). These findings suggest that integrins are likely the chief laminin-binding proteins in 

glomeruli or that integrins can fully substitute for the loss of dystroglycan (3).

Tetraspanins

On plasma membranes, tetraspanins form multimolecular complexes, called tetraspanin-

enriched microdomains, which incorporate other transmembrane proteins (e.g., integrins) 

(19, 66). In vivo, tetraspanin CD151 strongly binds integrin-α3β1 (195) at the base of 

podocyte foot processes (153, 163). Mutation of CD151 causes hereditary nephritis, 

characterized by focal GBM thickening and splitting (83). Global, and podocyte-specific, 

CD151-knockout mice develop GBM abnormalities, foot process effacement, proteinuria, 

and glomerulosclerosis (13, 153, 154). Likely, CD151 is involved in maintaining and/or 

reinforcing podocyte adhesion to laminin via integrin-α3β1. In vitro, podocytes without 

CD151 lose resistance to shear stress (153). Thus, the integrin-α3β1-CD151 complex 

promotes strong linkage of podocytes to the GBM, maintaining the GFB in high-pressure 

states (145).

Cell-Surface Proteoglycans

Podocytes express at least three types of cell-surface proteoglycans under physiological 

conditions: syndecan-1, syndecan-4, and glypican-1 (21, 30, 148). Syndecans are type 1 

transmembrane HSPGs that are important in modulating podocyte adhesion to the GBM. 

When podocytes are unable to assemble heparan sulfate to cell-surface proteoglycan core 

proteins, cell-matrix interactions are compromised (34, 35). A recent study by Sugar et al. 

found that podocyte-specific deletion of Wdeacetylase/Wsulfotransferase 1 (NDST1), a key 

enzyme in the sulfation of heparan sulfate GAGs, disrupts the podocyte’s ability to adhere 

and properly organize on the underlying GBM. The authors conclude that the lack of N- 

sulfation negatively affects the lateral aggregation of syndecan-4 (167). Further supporting 

syndecan-4’s role in podocyte- GBM interactions, syndecan-4 knockout mice develop GBM 

thickening and FSGS following unilateral nephrectomy (30).

Collagen Type XVII: A Collagenous Transmembrane Protein

Type XVII collagen (also known as BP180 or BPAG2) is best characterized as a 

hemidesmosomal adhesion component in skin and mucosa (55) and has been identified as an 

autoantigen in blistering skin diseases, most notably bullous pemphigoid (180). In skin and 

mucosa, collagen XVII is present at sites of cell-matrix and cell-cell interactions (10, 109, 

180). Bullous pemphigoid has been reported to occur in association with glomerular 

diseases, including anti-GBM disease and membranous nephropathy (68, 141, 152). 

Ultrastructurally, in normal human glomeruli, collagen XVII can be seen in podocyte foot 

processes and the adjacent lamina rara externa of the GBM (69). Interestingly, deletion of 

collagen XVII is associated with podocyte effacement and GBM splitting (69). Although the 

glomerular binding partners of collagen XVII are not known, its localization at the 

podocyte-GBM interface suggests that it indeed may also serve a function in cell-matrix 

interactions (69).
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BALANCING GBM MATRIX SYNTHESIS AND DEGRADATION: THE 

ESSENTIAL ROLE OF THE PODOCYTE

During glomerulogenesis, as glomerular capillaries expand to their final dimensions, newly 

synthesized segments of basement membrane material emerge underneath developing 

podocyte foot processes and are somehow integrated in the fused GBM (1). Once fully 

developed, the mature GBM appears to be a strikingly stable structure. Price and Spiro 

demonstrated that the in vivo loss of basement membrane protein radioactivity from adult rat 

GBM collagen occurs at a similar rate as that from tail tendon collagen, with a half-life of 

>100 days (147). Nevertheless, the mature GBM’s dense network of secreted extracellular 

constituents requires ongoing turnover, actively remodeling during times of injury and repair 

(137). In the mature glomerulus, the podocyte is likely key in modifying the GBM, 

synthesizing and assembling basement membrane components, both in physiological and 

pathological states (102). By tracking silver deposits, Walker showed that the GBM is 

generated, slowly but continuously, on the epithelial (podocyte) surface of the glomerular 

capillary and migrates inward toward the endothelial surface (184). In contrast to the very 

slow turnover rate of GBM collagen, GBM HSPGs turn over rapidly, with a half-life of 

hours (17). In fact, in normal rats, the half-life of GBM perlecan is less than three hours. It is 

suggested that the HSPGs may require continued renewal to prevent clogging of the GFB 

(8). An increased understanding of the cellular and molecular events that occur during early 

formation of the glomerular capillary wall may provide important clues into how 

postdevelopment active remodeling of the GBM takes place, especially as it relates to injury 

responses and activation of repair pathways.

In addition to their role in the synthesis and assembly of basement membrane components, 

podocytes also secrete matrix metalloproteinases (MMPs), zinc endopeptidases widely 

recognized as crucial mediators in ECM turnover (164). Thus, the ability of the podocyte to 

maintain normal GBM structure and function depends on a delicate balance between 

synthesizing and degrading pathways. In diabetes mellitus, the podocyte is an early target of 

injury. Given the vital role of the podocyte in maintaining the GBM, diabetes-induced 

podocyte injury or “podocytopathy” has the capacity seriously to threaten the integrity of the 

GBM.

DIABETIC PODOCYTOPATHY: AN EARLY FEATURE OF DN

Far from being fully understood, the mechanisms leading to diabetic podocyte injury are 

complex and involve interplay between hemodynamic and metabolic factors, including 

systemic and intraglomerular hypertension, vasoactive hormones, and inflammatory and 

prosclerotic cytokines. Recent reviews detailing the candidate pathways in the pathogenesis 

of diabetic podocytopathy (46, 165, 166, 198) underscore that diabetes may activate 

pathways involving cellular energy production, advanced glycation end products (AGEs), 

reactive oxygen species, cell cycle regulatory proteins, and ECM homeostasis (54, 82).

An extensive body of work supports the role of the local intrarenal RAS in disrupting normal 

glomerular autoregulation. Other mediators of defective autoregulation include prostanoids, 

nitric oxide, atrial natriuretic factor, growth hormone, glucagon, and insulin. The impaired 
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autoregulation leads to glomerular hyperperfusion and hyperfiltration, resulting in elevated 

intraglomerular pressure (82) and, ultimately, podocyte injury (198). In addition, the locally 

produced angiotensin II has nonhemodynamic actions, including activation of signaling 

pathways that lead to ECM remodeling, podocyte apoptosis, and local inflammatory 

response (46).

At the molecular level, the mammalian target of rapamycin (mTOR) has been recognized as 

an important mediator of diabetic podocyte injury. Podocyte-specific activation of mTOR 

complex 1, a kinase that senses nutrient availability, replicates many DN features, including 

podocyte injury/loss, GBM thickening, and proteinuria, in the absence of hyperglycemia 

(73). Similarly, podocyte-specific insulin receptor knockout produces DN-like lesions, 

including GBM thickening, again without systemic hyperglycemia (185). These models 

emphasize that diabetes is a generalized metabolic disorder, not just a state of chronic 

hyperglycemia, affecting multiple pathways activated by nutrient excess (172).

It is generally believed that podocytes are terminally differentiated and quiescent cells, with 

limited regenerative capacity in the face of injury (9, 101). Numerous studies support that 

podocyte injury, manifested as cell hypertrophy, foot process widening/effacement, and 

decreased podocyte number (i.e., podocytopenia), is an early feature of DN (133,161,165). 

Foot process widening/effacement is detectable early in DN, when patients are still 

normoalbuminuric (138). Furthermore, urinary excretion of nephrin, an important slit 

diaphragm protein, can be detected in ~1/3 of normoalbuminuric diabetic patients, indicating 

that early podocyte injury precedes the onset of microalbuminuria (135). Finally, 

podocytopenia contributes to the progression of DN in patients with both type 1 (161, 187) 

and type 2 (133) diabetes. Although the cellular and molecular mechanisms of 

podocytopenia have only been partially characterized (9), podocyte detachment represents 

one of the earliest features of DN and is a key pathogenic pathway underlying podocyte 

depletion and progression to glomerulosclerosis. Indeed, podocytes may detach from the 

GBM due to decreased expression of α3β1-integrin (33), and viable urinary podocytes have 

been detected in human and experimental DN (125, 126, 139). In addition to detachment, 

other mechanisms of podocytopenia include apoptosis, with glucose-induced oxidative stress 

being implicated as an important mediator (171), and hyperglycemia-induced autophagy (9).

GBM DISRUPTION IN DIABETES: THE ROLE OF THE INJURED PODOCYTE

In diabetes, an imbalance between synthesis, controlled by transcription and translation, and 

degradation, regulated by the interplay between MMPs and their inhibitors [tissue inhibitors 

of matrix metalloproteinases (TIMPs)], influences the accumulation of ECM proteins in the 

GBM (100). Regulating the majority of podocyte-expressed genes, the zinc fingers and 

homeoboxes family of transcriptional factors are likely of major importance in the 

pathogenesis of GBM thickening in DN (98). Furthermore, podocytes are not just passive 

targets but, instead, actively mediate continuing glomerular injury (36). Just as healthy 

podocytes are critical for maintaining the normal GBM structure and function, injured 

podocytes likely have a key role in upsetting the balance between the synthetic and 

degradative pathways of the GBM.
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Increased Matrix Production in DN

Podocytes synthesize GBM matrix molecules, including type IV collagen, laminin, nidogen, 

and agrin, and hyperglycemia is known to stimulate the transcription of matrix genes. In cell 

culture, upon exposure to high glucose, injured podocytes adopt a “promatrix phenotype,” 

with increased synthesis of new type IV collagen chains (12, 58, 72). In addition, there is 

strong in vivo evidence that GBM matrix production increases early after the onset of 

persistent hyperglycemia (24, 37, 105). Furthermore, hyperglycemia may induce expression 

of transforming growth factor-β (TGF-β). This increase in TGF-β can stimulate ECM 

synthesis by the podocyte itself in an autocrine manner. Other pathways implicated in 

hyperglycemia-induced ECM production by podocytes include the mitogen-activated protein 

kinase pathway and the 12-lipoxygenase pathway of arachidonic acid metabolism (198).

Dysregulated Matrix Turnover in DN

The GBM is continuously remodeled through the enzymatic actions of secreted proteases 

(155). The balance of MMPs and TIMPs determines ECM integrity. In the kidney, the spatial 

expression of MMPs and TIMPs is complex and has not been completely characterized. 

MMP-2, −3, −9, −13, and −14 and TIMP-1 are expressed in glomeruli (29). There is 

accumulating evidence that hyperglycemia and/or other metabolic derangements in diabetes 

not only enhance the synthesis of ECM proteins but also suppress ECM degradation. A 

number of animal studies have demonstrated a link between aberrant MMP expression and 

DN progression (29). Because podocytes both produce GBM components and secrete 

matrix-degrading proteinases, podocyte injury resulting in abnormal MMP expression may 

also critically play a role in GBM thickening in DN.

Matrix Metalloproteinases

The MMPs, synthesized as inactive zymogens, are activated via proteolytic cleavage of the 

propeptides by trypsin, plasmin, or other MMPs. Traditionally, MMPs are classified 

according to their structures and/or ECM substrate specificities. For example, the gelatinases 

(MMP2, MMP9) cleave denatured collagen (gelatin) and type IV collagen in basement 

membranes (175).

As recently reviewed (29, 177, 191), the evidence supporting a role for MMPs in the 

pathogenesis of DN is conflicting. Initially, MMPs were thought to be globally protective 

through their proteolytic potential. However, growing evidence indicates that MMPs are also 

involved in inflammation and tissue fibrosis in kidney disease. It is increasingly clear that 

MMPs cleave a wide variety of substrates, ranging from cell-surface receptors and adhesion 

molecules (e.g., cadherins, integrins) to growth factors and cytokines (e.g., TGF-β, fibroblast 

growth factor receptor 1). This extensive array of substrates enables MMPs not only to 

regulate ECM remodeling but also many cell behaviors, including proliferation, migration, 

differentiation, and apoptosis (175). Indeed, MMPs can both promote and inhibit 

inflammation. Degrading ECM proteins may be valuable to reduce matrix accumulation; 

however, degraded products of the ECM may not be biologically inactive. Thus, greater 

ECM degradation by MMPs may not always translate into diminished fibrosis in DN (175).
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Role of the gelatinases MMP2 and MMP9 in DN.

As a MMP subfamily, gelatinases MMP2 and MMP9 play an important role in ECM 

homeostasis and remodeling. However, conflicting results have been reported regarding their 

expression level and activity in DN. There are reports that MMP2 expression and activity are 

decreased in human and experimental DN (43, 63,170,190). Because MMP2 is responsible 

for degradation of type IV collagen and laminin, this reported decrease has been suggested 

to contribute to ECM accumulation and eventual glomerulosclerosis. However, more 

recently, studies indicate that the converse may be true: that MMP2 activity is higher in the 

serum and urine of type 1 diabetic patients, accompanied by increased expression and 

activity in kidneys (45, 176). MMP2 upregulation has also been reported in experimental 

DN (143). Whether this upregulation is protective or detrimental has been debated. A study 

using chronic blockade with a nonspecific MMP2 inhibitor in a diabetic rat model reported 

reduced proteinuria and attenuated structural changes. The authors concluded that blocking 

MMP2 may also block the downstream release of TGF-β from the large latent form bound 

to the ECM (188). However, others have proposed that MMP2 may play a protective role 

against progressive diabetic kidney injury. Diabetic MMP2 knockout mice exhibit increased 

serum blood urea nitrogen/creatinine, albuminuria, and renal structural injury, with enhanced 

ECM accumulation in glomeruli (173). Further studies are needed clearly to define the role 

of MMP2 in DN.

Despite earlier studies suggesting otherwise, there is increasing evidence that glomerular 

MMP9 expression and activity are enhanced in DN and that MMP9 suppression, either by 

genetic defect (97) or via pharmacological means (193, 194), results in attenuation of 

albuminuria, glomerular hyperfiltration, and structural abnormalities, including GBM 

thickening. Likewise, when podocytes in culture are incubated with diabetes-related 

cytokines (e.g., TGF-β1, tumor necrosis factor-a, vascular endothelial growth factor), MMP9 

activity is upregu- lated. This increased MMP9 activity is associated with podocyte 

dedifferentiation and enhanced synthesis of new ECM. Finally, DN patients have higher 

urinary MMP9 concentrations than healthy controls, and an upregulation of plasma MMP9 

is observed in diabetic patients before the onset of microalbuminuria (29). MMP9 may be 

key in self-propagating inflammation by producing collagen fragments that attract and 

stimulate neutrophils to release more MMP9. In addition, neutrophils coexpress MMP9 with 

neutrophil gelatinase-associated lipocalin (NGAL) (178), a factor recently hailed as a 

biomarker of kidney injury (116). Urinary excretion of NGAL increases in parallel with 

MMP9, and the interaction between NGAL and MMP9 may further prolong the activity of 

MMP9 (178). Thus, MMP9 has a pivotal, and likely maladaptive, role in the development of 

DN. Chronic MMP9 activation creates a less compact and progressively thickened GBM 

(97).

Interestingly, endostatin, the antiangiogenic type XVIII collagen fragment, directly inhibits 

the activation of pro-MMP2 and pro-MMP9 in vitro (86, 93, 130). Furthermore, the 

regulatory pathways between endostatin and MMPs appear to be bidirectional. In addition to 

the inhibitory role endostatin may play in the regulation of MMPs, MMPs may also be 

involved in the in vivo production of endostatin, generating endostatin fragments from 

proteolysis of type XVIII collagen (47, 51). Thus, it has become increasingly clear that 
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further studies are needed to define how the actions of endostatin and MMPs may intersect 

at the podocyte-GBM interface in the diabetic milieu.

Tissue Inhibitors of Matrix Metalloproteinases

MMPs are regulated by a family of endogenous inhibitors known as TIMPs. The four known 

TIMPs (1–4) have varying specificities for different MMPs but together can inhibit all of 

them (175). In diabetic patients, studies have found increased expression and activity of 

TIMP-1, −2, and −3, with urinary TIMP1 levels correlating with increased albuminuria (29). 

Suggesting an early compensatory role, TIMP3, the most highly expressed TIMP in the 

kidney (84), is upregulated in both experimental (16) and human (48, 189) DN. In diabetic 

mouse models, TIMP3 knockout results in significantly increased mean glomerular area, 

GBM thickening, and albuminuria (16, 52). Thus, loss of TIMP3 leads to exacerbation of 

diabetic kidney injury.

Other Mediators That Contribute to Decreased Matrix Turnover

Hyperglycemia can trigger AGE generation. These modified proteins may accumulate 

because of their decreased susceptibility to enzymatic hydrolysis by MMPs (122). 

Furthermore, glycation of ECM proteins stiffens the GBM (113). The podocyte appears to 

be a specific target of AGE actions, since receptors for AGE (RAGE) are highly expressed 

on podocytes (186). RAGE null mice have no kidney phenotype. However, diabetic RAGE 

null mice have decreased proteinuria and less GBM thickening and mesangial matrix 

expansion compared with that seen in diabetic wild-type mice (94). These results suggest 

that AGE/RAGE signaling contributes to diabetic podocyte injury (120).

GBM THICKENING AS A MANIFESTATION OF DIABETIC PODOCYTE 

INJURY

Since 1959, when Farquhar et al. described a biopsy series of seven diabetic patients with 

thickening of the basement membrane proper as one of the earliest manifestations of DN 

(50), the significance of GBM thickening in the pathogenesis of DN has been appreciated 

and investigated. Several quantitative and qualitative biochemical alterations of the GBM 

occur in DN. The GBM’s structure may be markedly altered by an imbalance between ECM 

synthesis and degradation, nonenzymatic glycosylation, change in spatial distribution of 

some components (e.g., type IV collagen) across the GBM (18, 44, 74), and nonspecific 

trapping of serum proteins (7). In the early stages of DN, there are also obvious changes in 

the podocyte-GBM interface. In experimental and human DN, decreased podocyte 

expression of α3β1-integrin has been described. Experimentally, loss of α3β1-integrin occurs 

within 1 mo of diabetes induction and is persistent (33, 85, 151). A significant alteration of 

the podocyte’s most important integrin, and particularly in the domain facing the GBM, 

likely interferes with normal ECM deposition, leading to marked changes in GBM structure 

and function (151).

There are conflicting data on the alterations of HSPGs by diabetes. Some studies have 

described increased enzymatic degradation of heparan sulfate in diabetic kidneys from 

patients and experimental models (134, 174). Furthermore, high ambient glucose increases 
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the expression of heparanase in podocytes (77). Studies have also shown decreases in the 

extent of sulfation in diabetic kidneys (23, 38, 39). A recent study proposes that 

undersulfation of heparan sulfate in diabetic kidneys may be due to changes in NDST1 level 

and/or activity (167). However, in other studies examining renal biopsies from patients with 

microalbuminuria and type 1 diabetes, glomerular staining for heparan sulfate was not 

different between control and diabetic specimens. Whether changes in heparan sulfate 

expression, structure, or sulfation play a role in the pathogenesis of DN remains unclear 

(198).

GBM THICKENING IN DIABETES: ADAPTIVE OR MALADAPTIVE?

Although metabolic perturbations are clear prerequisites of GBM thickening in diabetes, the 

pathogenesis of this process is incompletely understood (105). GBM thickening can occur in 

long-standing diabetes without concomitant albuminuria, suggesting that GBM structural 

changes are not the primary mechanism of albuminuria (26, 27, 53). In fact, in patients who 

develop DN, GBM thickening may precede the onset of albuminuria (133). Moreover, 

following pancreas transplantation in diabetic rats, the urinary excretion of albumin returns 

to normal.(104) This supports that the GBM, thickened by diabetes, may function normally 

in the animal “cured of hyperglycemia” (105) Thus, at the early stages of experimental and 

human DN, increased GFB permeability to protein cannot be explained by GBM thickening 

alone. In fact, it remains unclear what role GBM thickening plays in renal functional 

abnormalities. One could argue that GBM thickening in diabetes may be the injured 

podocyte’s response to stress, aimed at ensuring that the kidney meets its essential function 

of producing a relatively protein-free ultrafiltrate.

When podocytes are injured in diabetes, a primary component of the GFB, the podocyte, is 

structurally altered and functionally compromised. In response to the threat of filtration 

barrier malfunction, the podocyte may adapt by activating a series of cell signaling pathways 

that ultimately will increase synthesis of GBM components and lead to GBM thickening, 

thus preventing widespread leakiness of the filtration barrier. In the short term, the trade off 

for decreasing albumin leak via GBM thickening may be a loss of filtration capacity. Over 

time, with continued exposure to injurious stimuli, a process that began as adaptive may 

become maladaptive. Mechanical properties of the GBM matrix (i.e., stiffness, 

deformability) provide inputs into podocyte cell behavior (70). An undamaged GBM is 

necessary for proper adhesion and function of podocytes (119). Thus, GBM structural 

changes may reduce cell binding and promote podocyte detachment (91). Eventually, 

conditions that weaken the GBM or increase the transcapillary filtration pressure intensify 

the mechanical stress experienced by podocytes. Podocytes then respond by depositing 

additional GBM matrix in an attempt to resist the applied force and prevent further 

detachment. Inevitably, a vicious cycle ensues whereby the GBM becomes progressively 

disorganized, with subsequent barrier function failure, leading to disease progression (155).

CONCLUSION

GBM thickening is the earliest detectable morphological feature of DN and may be observed 

within one to two years following the onset of diabetes, preceding clinically evident 
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albuminuria. Affixed to the underlying GBM via transmembrane cell receptors, the podocyte 

is likely a key culprit in GBM thickening in diabetes, responsible for both increased matrix 

production and dysregulated degradation/turnover. Thus, GBM thickening in diabetes may 

be a manifestation of subtle podocyte injury, representing the injured cell’s response to stress 

and appearing even before cell detachment, apoptosis, and albuminuria. A more complete 

understanding of the signaling events that underlie GBM thickening in diabetes will permit 

intervention before GBM thickening becomes maladaptive, thereby blocking progression to 

clinically overt DN.
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Fig. 1. 
Ultrastrnctural images of the glomerular filtration barrier (GFB), normal vs. diabetic. A: 

electron micrograph of the normal GFB at maturity. The micrograph shows the capillary 

lumen supported by the fenestrated endothelium, glomerular basement membrane (GBM) 

proper, and interdigitating foot processes of the visceral glomerular epithelial cells or 

“podocytes.” B: electron micrograph of the diseased GFB in diabetes mellitus. There is a 

thickened GBM due to marked widening of the lamina densa, with prominent podocyte foot 

process effacement. Expansion of the mesangial matrix is also present.
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Fig. 2. 
Schematic representation of the critical podocyte-GBM interface. The podocyte-GBM 

interface forms a signaling platform that controls many cell fate decisions. The GBM matrix 

is composed of networks of laminin-α5β2γ1, α3α4α5(IV)-collagen, nidogens, and heparan 

sulfate proteoglycans, including agrin and perlecan. The key cell-matrix adhesion receptor is 

integrin-α3β1, which connects laminin-α5β2γ1 in the GBM, via various adaptor proteins, to 

the intracellular actin cytoskeleton. Tetraspanin CD151 strongly binds to integrin-α3β1, 

promoting strong linkage of podocytes to the GBM. Podocytes also express other cell-matrix 

adhesion receptors that modulate podocyte adhesion to the GBM, including integrin-αvβ3, 

dystroglycan, syndecan-1, and syndecan-4. Cell-matrix adhesion receptors on the 

endothelial surface of the GBM include syndecan-1, syndecan-4, integrin-αvβ3, and 

integrin-αvβ5.
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