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Antibiotic and pesticide resistance of pathogens are major and pressing worldwide issues. Resistance evolution is often considered

in simplified ecological contexts: treated versus nontreated environments. In contrast, antibiotic usually present important dose

gradients: from ecosystems to hospitals to polluted soils, in treated patients across tissues. However, we do not know whether

adaptation to low or high doses involves different phenotypic traits, and whether these traits trade-off with each other. In this

study, we investigated the occurrence of such fitness trade-offs along a dose gradient by evolving experimentally resistant lines of

Escherichia coli at different antibiotic concentrations for ∼400 generations. Our results reveal fast evolution toward specialization

following the first mutational step toward resistance, along with pervasive trade-offs among different evolution doses. We found

clear and regular fitness patterns of specialization, which converged rapidly from different initial starting points. These findings

are consistent with a simple fitness peak shift model as described by the classical evolutionary ecology theory of adaptation across

environmental gradients. We also found that the fitness costs of resistance tend to be compensated through time at low doses

whereas they increase through time at higher doses. This cost evolution follows a linear trend with the log-dose of antibiotic along

the gradient. These results suggest a general explanation for the variability of the fitness costs of resistance and their evolution.

Overall, these findings call for more realistic models of resistance management incorporating dose-specialization.
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The massive increase in use of antibiotics since 1950 has greatly

improved standards of living in our societies but has led to an

explosion in the number of resistant phenotypes in microorgan-

isms (World Health Organization 2014). Besides being naturally

excreted by microorganisms, antibiotics are also massively used

for medical, agronomical, veterinary, and industrial purposes. An-

tibiotics occur in concentration gradients (hereafter doses). Within

the body of treated animals or humans, the antibiotic molecules

are differentially absorbed, distributed, and eliminated, resulting

in large variations of doses (Levison and Levison 2009). These

gradients also occur in the environment as antibiotic molecules

easily diffuse over long distances and pollute soils and water

(Thiele-Bruhn 2003; Kümmerer 2009; Depledge 2011). Thus,

from hospitals to farms to rivers to soils, a very large panel of

antibiotic molecules is present at varying doses.

A central tenet of evolutionary ecology is that different eco-

logical conditions select for distinct adaptations, that is diverging

phenotypes. This view applies to gradual ecological changes. For

instance, the beak size and shape of Darwin finches evolved de-

pending on the size and the toughness of the seeds available in

their environment (Grant and Grant 1999). The ultimate cause of

this phenomenon is simply that different “solutions” are optimal

for different “problems.” This view is directly associated with

the idea that there are trade-offs to adapt to distinct ecological

conditions, for example it is not possible to simultaneously have

a small and large beak. Considering that different trait values
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are optimal in different environments is tantamount to assuming

fitness trade-offs across ecological conditions.

Evolution in heterogeneous environments in the presence

of trade-offs has been extensively studied and can lead to a di-

versity of outcomes, from coexistence of specialists to evolu-

tion of generalist strategies (Kassen 2002; Ravigne et al. 2009).

While trade-offs have been widely documented, they are not al-

ways found when investigated in natural populations (reviewed in

(Hereford 2009)). Apart from technical issues such as precision

of fitness measures, trade-offs may be undetectable because (i)

they are hidden by large variations in fitness caused by uncon-

ditionally deleterious or beneficial mutations, (ii) they are weak

due to having been attenuated by a long history of adaptation (the

environments considered are not outside the range of well tol-

erated conditions) (Gallet et al. 2014), (iii) environments do not

represent different “problems” of nature. Another difficulty is that

natural populations were most often exposed to a complex set of

ecological conditions in the past, which makes it difficult to link

observed adaptive traits with specific environmental conditions.

Experimental evolution using microbes in controlled conditions

has become essential to address these issues (Kassen 2002; Elena

and Lenski 2003; Bell 2008; Garland and Rose 2009; Jansen et al.

2013). With this approach, highly adapted phenotypes can be ob-

tained in response of defined selective pressures, which can be

used to reveal fitness trade-offs among various environments.

Several evolution experiments have measured such trade-offs

across different temperatures (e.g., Bull et al. 2000; Bennett and

Lenski 2007), luminosity levels (Reboud and Bell 1997), nutri-

ent sources (Cooper and Lenski 2000; Bataillon et al. 2011), and

pH (Hughes et al. 2007; Gallet et al. 2014). Measuring fitness

along an environmental gradient, rather than a set of unrelated

environments, is of particular interest because it allows for scan-

ning large environmental variation ranges with a quantified “dis-

tance” between conditions, estimating whether levels of adapta-

tion can be understood, and making predictions in reference to this

“distance.”

Trade-offs also play a major role in the evolution of antibi-

otic/pesticide resistance. They are classically measured by evalu-

ating the “fitness cost” of resistance alleles relative to a suscep-

tible allele in the absence of antibiotic (Lenski 1998; Andersson

and Levin 1999; Ward et al. 2009; Sousa et al. 2012). From

an evolutionary perspective, this cost is a crucial parameter for

management strategies (Bonhoeffer et al. 1997; Lenormand and

Raymond 1998; Andersson 2006; Hall et al. 2015). This classical

view, however, neglects trade-offs that may occur throughout dose

gradients rather than only between treated/nontreated conditions.

In fact, it is even often assumed (at least implicitly) that there are

no trade-offs to adapt to different (nonzero) doses of antibiotic or

pesticide. With this view, the presence of antibiotics determines a

single fitness peak and doses modulate the intensity of selection

around that peak. As a consequence, low dose environments (i.e.,

under the Minimum Inhibitory Concentration, MIC) have been

argued to strongly favor the emergence of high dose resistance in

natural conditions (Gullberg et al. 2011; Andersson and Hughes

2012). Such low doses could favor the emergence of resistance by

providing small fitness advantages to resistance phenotypes that

would (i) allow them to persist and remain available upon expo-

sure to a higher dose (reservoir effect) or (ii) allow the occurrence

of additional mutations conferring resistance levels that would

hardly be achieved in a single step (multiple hit effect). In this

view, mutations favorable at low doses confer some advantage at

higher doses (so that a multiple hit effect can occur) and high-

dose resistances are also favorable at low doses (so that a reservoir

effect occurs). It contrasts with the classical view of evolutionary

ecology where trade-offs are pervasive: different environments

correspond to different fitness peaks and select for different phe-

notypes (e.g., Darwin’s finches). Because of these different views,

it remains very unclear how adaptation proceeds along dose gra-

dients (Gullberg et al. 2011; Hermsen et al. 2012; Milesi et al.

2016). This issue is critical to understand long-term adaptation

at different antibiotic doses as well as determining the extent to

which reservoir and multiple hit effects are important. In this pa-

per, we use experimental evolution to study dose-specialization of

Escherichia coli to several doses of an antibiotic, nalidixic acid.

Methods
EXPERIMENTAL OVERVIEW

We experimentally evolved eight resistant lines of Escherichia

coli at five doses of nalidixic acid (Nal) (denoted “evolution doses”

or “ED”: 3, 8, 20, 100, or 200; all doses are given in µg/mL but

these units are not repeated below) for �400 generations in or-

der to “push” them close to their optimal phenotype. We started

with a susceptible reference strain, or “SRef” strain, correspond-

ing to the 10,000th (abbreviated 10 K) generation of Lenski’s

long-term adaptation experiment (E. coli strain REL4536). First,

we obtained a highly resistant reference strain (“RRef” strain) by

screening twice SRef for antibiotic resistance (first screen at Nal

20, second at Nal 200). We then evolved two series of strains at the

different Nal doses. In the first main series, six resistant lines per

ED (30 lines total) were initiated from independent resistant mu-

tants of SRef obtained after a screen at the same dose than the ED

(or a double screen for ED100 and ED200, see below). These lines

(hereafter “SRef lines”) provided a diversity of first mutational

step and evolved from the screen at a given Nal dose. In the second

series, two lines per ED (10 lines total) were initiated from the

RRef strain. These lines (hereafter “RRef-lines”) provided with

replicated evolution of the same initial resistant mutant (Fig. 1),

but they all started from a screen at high dose (Nal200). In addi-

tion to these lines adapting to different Nal doses, we included two
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Figure 1. Schematic experimental protocol. Mutants screen and experimental evolution in different doses of Nal (µg/mL) are represented

by the colored arrows. Six experimental lines were evolved in each nalidixic acid (Nal) dose from a random selection of resistant mutants

(SRef lines). Two lines additional lines per evolution dose (RRef lines) were evolved from a single resistant mutant screened at Nal200

termed RRef strain and also used as the competitor for fitness assays in presence of Nal. Down, the sequenced resistance mutation in

the gyrA gene at Tini as well as at Tfin (only SRef line 4 in Nal 3 changed between Tini and Tfin).

types of control lines evolving in absence of antibiotics. First, two

control lines (“control10K” lines) were initiated with the SRef

strain. SRef is well adapted to the laboratory conditions with no

antibiotics, so these controls were useful to determine the extent

to which the lines adapted to our lab conditions (rather than to the

antibiotics). Second, we initiated four lines with the initial strain of

Lenski’s experimental evolution (“control0K” lines). This strain

is not initially adapted to our lab conditions, so these controls

are useful to compare the adaptive trajectory in our conditions

with those of Lenski’s experiment. SRef and RRef lines were

initiated from SRef and RRef strains expressing fluorescent YFP

proteins. SRef strain (resp. RRef strain), expressing fluorescent

CFP proteins, was used as the reference competitor for fitness

assays in absence (resp. presence) of Nal (see below and Fig. 1).

We measured the relative fitness of all lines, after the screen (Tini)

and after 400 generations of evolution (Tfin) at six different Nal

doses (denoted “measure dose” or “MD”: 0, 3, 8, 20, 100, or 150).

Bacterial strains.

All lines were derived from the E. coli strain REL4536

(SRef), corresponding to the 10,000th generation of Lenski’s long-

term adaptation experiment to Davis minimal broth DM25 (Lenski

and Travisano 1994). SRef is susceptible to nalidixic acid (Nal)

with a Minimum Inhibitory Concentration (MIC) to Nal equal to

2.6. Cyan and yellow fluorescent proteins (CFP, YFP) genes were

previously introduced in SRef and REL606 (the ancestral strain

of Lenski’s LTEE) chromosomic DNA (Gallet et al. 2012).

Six SRef-YFP resistant mutants were randomly chosen from

each of three sets of single mutants, obtained in Harmand et al.

2017 using fluctuation assays at doses 3, 8, and 20, to initiate

experimental SRef lines at doses 3, 8, and 20 (Fig. 1). SRef

mutants resistant at Nal100 and 200 could not be obtained in one

fluctuation assay as the resistance mutation rate was too low at

these doses (at dose 20, this rate is already as low as 5.10−7).

They were obtained via an additional fluctuation assay (protocol

as in Harmand et al. 2017) at doses 100 and 200, respectively,

starting from 20 independent mutants obtained from the previous

screen at dose 20. We refer to them, here and below, as “double”

mutants for convenience, as they are very likely to carry two

mutations, but we cannot formally exclude that they carry more

mutations. Six “double” mutants obtained in this way initiated

the evolution lines at doses 100 and 200 (Fig. 1). An additional

“double” mutant screened at dose 200, the RRef strain, initiated

two evolution lines at each ED (resulting in 10 RRef lines). The

YFP gene was replaced by the CFP gene in the RRef initial

genotype (see methods in Gallet et al. 2012) to run competition

experiments (see after).

ANTIBIOTIC AND CULTURE MEDIA

Experimental evolution and competitions were performed in

DM250 medium, that is Davis minimal broth, as used in the

LTEE (composition as in Lenski 1988) but with 10 times more

glucose (0.25 g/L). The addition of glucose increases bacterial
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carrying capacity and allows for more accurate fluorescence mea-

surements, while leading to very similar fitness measures in the

LTEE (Cooper et al. 2001; Gallet et al. 2017). We thus assumed

that the SRef strain is already well adapted to DM250, so that

the antibiotic is the dominant selective pressure during the ex-

periment. This assumption was checked by monitoring fitness

variations of the control lines in absence of antibiotics. Fresh

medium DM250 supplemented with Nal was prepared weekly

and kept protected from light at 4°C. Our first dose of evolution

(3) was chosen just above the MIC (2.6), and the different doses

used span a wide range of concentrations (up to 80x the MIC).

We did not investigate adaptation to doses below the MIC because

(i) key issues lie in adaptation to above MIC doses, where resis-

tance matters, and (ii) it is not possible to screen a mutant below

the MIC, making the comparison impossible with other (above

MIC) doses, since the first step of experimental evolution would

necessarily differ.

EXPERIMENTAL EVOLUTION

The experimental evolution contained the 40 independent resis-

tant lines (30 SRef lines and 10 RRef lines) divided among the five

evolution doses and the six control lines (two initiated with the

SRef-CFP strain, two with the REL606-CFP strain and two with

the REL606-YFP strain) evolving at dose 0. All lines were dis-

tributed into four 24-wells lidded microplates with 1 mL medium

per well, with the six Nal concentrations allocated in each plate.

Inoculated wells were alternated with noninoculated wells fol-

lowing a checkered pattern, to control for contaminations. The

plates were incubated at 37°C, 200 rpm in a water-saturated at-

mosphere (sealed box). Every 24 h, 10 µL of the cultured lines

were transferred to new wells containing 1 mL of fresh medium

and incubated in the same conditions. The protocol was applied

for two months corresponding to �400 generations of evolution

after what the lines were stored as glycerol stocks.

SEQUENCING

All lines were sequenced at the gyrA gene at Tini and Tfin. This se-

quence covers most of the promoter and 32% of the gyrA gene and

its complete quinolone resistance-determining region (Hopkins

et al. 2005). PCR was performed on colonies, using the mix: 10 µL

of 2X Phusion Master Mix (ThermoFisher Scientific, Waltham,

MA), 1 µL of F-primer 5′-AGACAAACGAGTATATCAGGCA

[position in gyrA sequence: -120pb to -101pb], 1 µL of R-

primer 5′-TTTACCAGTTCCGCAATCTTCTC [position in gyrA

sequence: 823pb to 845pb], 8 µL sterile distilled water; and the

PCR program: 5’ 95°C, 35 cycles of [1’ 95°C,1’ 61°C, 2.5’ 72°C]

and 5’ 72°C). Sequencing was performed using Eurofins mwg

operon (Eurofins, Luxembourg). Mutations in gyrA gene were

identified by comparing the mutant sequences to that of the SRef

strain.

COMPETITION EXPERIMENTS

Competitions experiments were performed from glycerol stocks

at Tini and Tfin. The “fitness profile” of each line (YFP) across

the dose gradient was determined by competitions against the

RRef-CFP strain in DM250 at the five measure doses (3, 8, 20,

100, 150). Ecotoxicological measures such as MIC (minimum

inhibitory concentration) are often used to characterize resistance

evolution. However, competitive fitness is better suited in our con-

text, to quantify adaptation and the evolution of specialization. For

instance, two lineages with similar MIC can have very different

competitive abilities, below their common MIC. The measure

dose 150 was preferred to dose 200 because the latter exhibited

high growth inhibition of the RRef strain, such that fluorescence

measurements were close to the detection limit. The fitness costs

of resistance were measured from competitions in absence of Nal

(dose 0) against the strain SRef-CFP.

Competition assays were performed in the following proce-

dures. 1:1 volumic ratio competition mixes were prepared from

saturated cultures. Fluorescence signals of these mixes were mea-

sured on a Tecan Infinite 200 (Tecan, Männedorf, Swizerland)

prior to the competition (t0). Competitions were initiated by inoc-

ulating 2 µL of the competition mix into 200 µL of DM250 (and

a given dose of Nal). Fluorescence signals were measured again

after 24h of growth (t24) in the same conditions as the evolution

experiment (37°C, 250 rpm, water saturated atmosphere). Each

competition was repeated at least four times at different dates. We

assumed that fitness effects were transitive between genotypes

competing in the same dose. Deviation from transitivity as mea-

sured in Gallet et al. (2012) in a similar setting, are very small

(10−3 at most in these experiments).

The selection coefficient per generation associated with each

competition was estimated as:

s = 1

g

(
Log

(
nYFP

nCFP

)
t24

− Log

(
nYFP

nCFP

)
t0

)
(1)

with nYFP
nCFP

the ratio of frequencies of YFP and CFP cells estimated

from the ratio of YFP on CFP fluorescences in the mix using an

experimental calibration curve. The constant g = 6.64 was used

to scale the selection coefficients per generation. It approximates

the number of divisions, assuming full regrowth from a dilution

by 1/100 over a 24 h assay. “Fitness” was denoted as the selection

coefficient of a line relative to the RRef strain, and “fitness cost”

as the selection coefficient of a line relative to the SRef strain (for

measures in the absence of antibiotics).

STATISTICAL ANALYSIS

Fitness measures were analyzed in a linear-mixed model (lmer

in R 3.2.0, R Core Team) with fixed effects on lineID, MD (six

doses) and time (Tini and Tfin). Random effects included plate and
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date of the competition assay. The model was used to estimate

the fitness values at Tini and Tfin, the fitness changes between

Tini and Tfin (pairwise comparisons) of each line in each MD,

and their standard errors (performed with mvt adjustments with

the lsmeans R package), which are all represented in figures.

Polynomial fits of the fitness profiles of evolved lines (from the

fitness estimates at Tfin of the previous model) in each MD were

performed as functions of the log-ED of lines (nls function of the

R Stats package). The fits were done for the SRef lines alone or

for both the RRef and the SRef lines for the comparison of the

final fitness profiles of lines evolved in the same ED but initiated

from mutants screened at different doses.

Results
CONTROL LINES

As expected, fitness of control10K lines in MD0 did not vary

significantly over time (P value = 0.773) nor between replicates

(P value = 0.270) (Fig. S1). This result confirms that SRef is

already well adapted to the experimental conditions and in par-

ticular to the medium, which is the same as the DM25 used in

Lenski’s experiment but with 10 times more glucose. Hence vari-

ation in fitness during the experiment results predominantly from

adaptations to the presence of Nal. The relative fitness of CFP

SRef strain versus YFP SRef strain (cost of the fluorescent mark-

ers) was estimated at 0.033 ± 0.024 per generation. In contrast,

but as expected, the fitness of control0K lines shows a signifi-

cant increase through time (P value < 10−4) due to adaptation

to experimental conditions (Fig. 1). Three of the replicates of the

control0K lines were mutually not different (P values > 0.4). The

last replicate differed only slightly from the three others due to

a fitness jump at generation 400 (P value = 0.067). The global

fitness trajectory of the control0K lines is consistent with that ex-

pected from the similar 400 generations evolution in DM25 in the

LTEE (Lenski and Travisano 1994). These results confirm that

the tenfold increase in glucose in DM250 does not cause substan-

tial differences in evolutionary trajectories (see also Cooper et al.

2001; Gallet et al. 2017 on this observation).

RESISTANCE MUTATIONS IN THE gyrA GENE

In E. coli, the DNA gyrase is the target of Nal and many of the

known resistance mutations occur in the gyrA gene coding for the

GyrA subunit of this enzyme (Yoshida and Bogaki 1990; Hooper

1999; Harmand et al. 2017). Sequencing revealed that three dif-

ferent gyrA mutations (83Leu, 87Tyr, and 87Gly) and some non-

gyrA mutations (four lines) were initially sampled across the sets

of single resistant mutants screened at the doses 3, 8, and 20

(Fig. 1). Evolution lines at ED100 and 200 were initiated with

resistant mutants screened twice, and are most probably dou-

ble mutants (Fig. 1). In all cases, a maximum of one mutation

within the gyrA sequence was initially present (83Leu, 87Asn

[also present in RRef strain], 87Tyr or 119Glu).

Two SRef-lines evolving at ED200 (initiated from the gyrA

mutants 87Gly and 119Glu) went extinct early in the evolution

experiment. One of the SRef-lines evolving at ED20 proved to

be initially polymorphic for the gyrA resistance mutation. This

line was removed from later analysis in order to avoid confusion

in the data interpretation. One of the two RRef-lines evolving

at Nal3 was contaminated at one point and removed from the

experiment. In all other lines, no additional mutations than the

ones detected at Tini were found in the gyrA sequence at Tfin.

Among the four lines without gyrA mutations initially (hereafter

“non-gyrA” lines), only one line acquired a gyrA mutation (87Tyr)

during the evolution experiment.

EXPERIMENTAL EVOLUTION OF SPECIALIZATION

ACROSS DOSES

Figure 2 illustrates the fitness of evolved lines (SRef and RRef

lines) at generation 400 measured in the different Nal measure

doses. This fitness is evaluated against the same reference com-

petitor (RRef strain) for all lines. However, because fitness of this

RRef strain varies across different antibiotic doses, comparison

among lines are only straightforward within a given environment

(i.e., at a given measure dose). However, measures across environ-

ments are are comparable to within a constant, so that the shape

or location of fitness profiles and fitness ranks can be compared

across measure doses (i.e., across panels of Fig. 2). The first strik-

ing observation is that, except for the three lines that did not have

a gyrA mutation at generation 400 (red empty squares, more on

these below), all fitness profiles show a regular quadratic pattern

with log-ED. Fitted curves are shown on each panel and Table 1

provides corresponding estimates and their standard error. These

profiles demonstrate a strong pattern of specialization explaining

c.a. 80% of the fitness variation. At MD8, MD20, and MD100

the profile maximum falls close to the corresponding ED (see

also Table 1 SRef lines fit). It shows that the final fitness of a

line is largest when the difference between the measure dose and

its evolution dose is smallest. Lines best adapted to a dose were

those that evolved at that dose, the second best adapted were those

that evolved at a slightly different dose etc. This general pattern

is also observed but less strong at MD3 and MD150, where the

maximum is estimated at a dose of 11 and 99, respectively (see

Table 1 SRef lines fit). The second important observation is that

the fitness at generation 400 still depends on the first mutational

steps. In particular, the three SRef lines (out of four initially) that

do not have a gyrA mutation show a large fitness lag compared

to all other lines, at all MD. Given this large and consistent dif-

ference, these lines were not included in the fit of the average

fitness profiles among ED represented on Figure 2. Interestingly,

these lines did not acquire gyrA mutations after the initial screen,
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Figure 2. Fitness profiles of the SRef and RRef lines across evolution doses after the screen (within the grey area, only mutants screened

in one step are shown) and after 400 generations of experimental evolution (within the white area). The y-axis indicates the fitness

difference between SRef and RRef lines and the fitness of the RRef strain used as the competitor in all comparisons. Competitions were

performed at different measure doses. Each panel corresponds to one measure dose. Mean selection coefficients across replicates are

indicated with standard errors. Fitness measures were made for lines evolved at different doses (x-axis). Values of selection coefficients

are not comparable across measure doses (because the fitness of the RRef strain varies among measure doses) but fitness ranks are

meaningful. For better readability, points are slightly spread on the x-axis at each dose. Each dot corresponds to a different evolved line,

with the color corresponding to the evolution dose of that line (see legend) and the symbol to the identity of the initial mutation (different

gyrA resistance mutation or non-gyrA mutations are indicated in the figure legend). On each panel, a curve of the corresponding measure

dose color shows the fitted parabolic relationship between the log-evolution dose and the selection coefficients of the gyrA lines. The

dots placed on the horizontal gray dotted lines at MD8 and MD20 where set artificially at this threshold value for the readability of the

figure, as they have selection coefficients that were measured to be largely lower than this threshold. Representing their exact value

would expand the range of values on y-axis, which would significantly reduce readability for the bulk of the data.

despite that these mutations are frequent and provide a strong fit-

ness benefit. The effect of the first mutational step is also visible

on gyrA lines, but is very small. In several cases, lines with the

same initial gyrA mutation tend to group together for a given ED

and MD (see e.g., ED8 lines with 83Leu mutation at MD 20, 100,

and 150). Similarly, RRef lines (which all started from the same

highly resistant mutant), tend to group together as well. These ef-

fects remain, however, minor compared to the overall trend. Even

the RRef lines, which had a quite different starting point than

most lines, show a final pattern very consistent with the general

trend of SRef lines (Fig. 2 and Table 1 fit with or without RRef

Lines).

THE EMERGENCE OF DOSE SPECIALIZATION

Studying a large sample of mutants screened at different doses

in the same system showed that little dose specialization oc-

curred after a single mutational step (Harmand et al. 2017). In

agreement with this previous study, the fitness profiles of the

resistant mutants SRef across screen and measure doses do not

show a pattern of dose-specialization here (the fitness of the SRef

resistant mutants obtained from a single screen are shown in

Fig. 2, but see Harmand et al. 2017 for a comprehensive dataset).

Most of the dose-specialization occurred after acquisition of the

first resistance mutation. Figure 3 demonstrates the change in fit-

ness of each SRef line between the resistance screen (Tini) and
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Figure 3. Fitness change per resistant line after 400 generations

of evolution versus initial fitness in the measure dose correspond-

ing to the evolution dose (lines evolved at dose 200 were mea-

sured in dose 150, so were not included here). Symbols indicate

the gyrA mutations sequenced in each line while colors indicate

the dose at which they were selected and evolved. The best model

yields different intercepts for non-gyrA lines (open squares) and

gyrA lines (all other symbols, the corresponding model indicated

by the gray zone). Selection coefficients after the screen (x-axis)

correspond to the fitness differences with the RRef strain used as

the competitor in each case. Fitness change (y-axis) refers to the

difference of selection coefficients against the RRef strain after

evolution and after the screen for the same line. Dots and error

bars are mean values across replicates and the corrected standard

errors associated with these values.

generation 400 of evolution (Tfin) in the MD corresponding to its

ED. SRef lines evolved at ED200 are not shown as their fitness

were not measured at MD200 (see Methods). For all lines, the fit-

ness change was positive or not significantly different from zero

at the dose in which they evolved. Among gyrA lines, the trend

shows striking regularity independently of the evolution dose and

of the identity of the gyrA mutation carried initially (Fig. 3).

Over all these lines, in their respective ED, the fitness change

is negatively and linearly related to the initial fitness (Fig. 3,

P value < 10–4), with a slope close to –1. The trend is also

observed among non-gyrA lines but with a different intercept

(P-value = 0.002) and similar slope of about –1. This pattern is

expected when evolution corresponds to convergence to a fitness

peak, as it indicates that the fitness changes entirely compen-

sate initial maladaptation. This pattern excludes a strong role for

“chance” or transient “historical” effects (Travisano et al. 1995).

This “rule of declining adaptability” has been shown to hold em-

pirically and theoretically in some models of adaptation, notably

involving a single peak fitness landscape (MacLean et al. 2010;

Perfeito et al. 2014; Couce and Tenaillon 2015; Martin and Roques

2016), and while linearity is expected at all time, a slope equal to

–1 indicates that populations reached mutation–selection balance
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Figure 4. Fitness change of the RRef-lines compared with their

ancestor (the RRef strain). The RRef lines evolved during 400 gen-

erations in different Nal antibiotic in µg/mL doses (colors) at dif-

ferent measure doses (x-axis). Each dot represents the mean value

for a line across replicates associated with its standard error. Pos-

itive values indicate an adaptation to the measure dose whereas

negative values stand for a counter-adaptation.

around that peak (Martin and Roques 2016). Figure 2 shows the

fitness variation in each MD for all ED: this linear trend tends to

be conserved across all MD, but with an intercept that decreases

when the difference between the ED and the MD increases. The

observation that this pattern was similar across all evolution doses

is therefore consistent with the interpretation that all populations

approached closely their phenotypic optimum. This conclusion is

further corroborated by the observation that both SSref and RRef

strains converged to the same pattern across ED and MD, despite

starting from quite different starting points (Fig. 2). On average,

the lines that evolved at low ED (ED3, ED8, and ED20) have a

low fitness at Tini at high doses (ED100 and ED150) and show an

adaptation (or no change) in all MD, indicating that evolving at

low dose increases fitness at high dose. A different pattern is ob-

served for lines evolved at high doses. While they adapted to their

ED, they consistently and regularly “deadapted” to low doses.

FITNESS TRADE-OFFS ACROSS DOSES

The emergence of specialization is usually caused by the occur-

rence of fitness trade-offs across environments. With SRef lines,

it is not straightforward to observe these trade-offs since the lines

start with different fitness after the initial screen. In other words,

some are closer from their optimum than others. A convenient

way to have a clearer view of these trade-offs from the start is

to look more closely at the RRef lines. These lines all start from

the same genotype. Hence it is easier to see how adapting to one

dose impact fitness in other environments. The change in fitness

of the RRef lines over the course of the experiment is shown on

Figure 4. Here again, the fitness changes follow a regular pattern

according to the dose of antibiotic. Evolution at a given dose leads

to an increase in fitness at that dose, but to a decrease in fitness in

environments that are largely different from that ED. For instance,

the fitness of lines that adapted to high ED decreased at low dose

(and vice versa). These results suggest that there are strong fit-

ness trade-offs on the phenotypic traits related to the resistance

at low, intermediate and high Nal doses. This fitness variation

is most probably caused by the spread of beneficial mutations

that have deleterious effects in doses very different from the ED.

Some of these effects might be caused by deleterious mutations

hitchhiking along with these beneficial mutations, as can occur

with asexuality. However, in both case it requires that the effects

of mutations vary gradually among doses to lead to the regular

pattern of specialization. Fluoroquinolone antibiotics are known

to be mutagenic (Cook et al. 1966), at least in susceptible strains.

However, this possible mutagenicity cannot explain our results.

Specialization occurs similarly at all doses, and loss of fitness in

doses very different from the ED is not specific to strains adapting

at high ED (see e.g., ED 3, 8, 20 on Fig. 4).

EVOLUTION OF THE COSTS OF RESISTANCE

At Tini, all resistant mutants were costly (Fig. 5, right panel). Those

initial costs were similar among the different gyrA resistance

mutations of single-mutants (ED3, ED8, ED20) but higher for

non-gyrA mutations. They were also variable between single-

mutants and “double”-mutants of ED100 and ED200, even when

they carried the same gyrA mutation. The change in cost between

Tini and Tfin is negatively correlated with the ED (P-value <

10−6, left panel of Fig. 5 and MD0 on Fig. 4). Adaptation to high

ED led to an increase in the fitness cost of resistance. On the

contrary, adaptation to lower ED (ED3, ED8, ED20) eventually

led to smaller costs. At Tfin, the gyrA lines are increasingly costly

with higher ED (filled black circles on Figure 5 and Fig. 3 for

specification of the gyrA mutations). The non-gyrA lines (present

only at ED3) have generally higher costs than the gyrA lines (see

also Harmand et al. 2017), which leads to a higher mean cost at

ED3 than ED8 or 20, when all lines are pooled.

Discussion
In order to investigate the existence of fitness trade-offs along

dose gradients, we experimentally evolved resistant lines of E.

coli at different antibiotic doses. Our results showed that lines

diverged after 400 generations and rapidly specialized to their

evolution dose. This pattern of specialization was highly regular

across doses and achieved convergently by lines with different de-

gree of maladaptation. It was achieved symmetrically for different

starting points. In particular, highly resistant lines specialized at

lower dose, while experiencing a fitness decrease at high dose.

These patterns rule out the possibility that this pattern of dose-

specialization resulted from a transient dynamics. They reveal the

existence of pervasive fitness trade-offs in adaptation to different

doses of an antibiotic gradient.
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Figure 5. Evolution of the costs of resistance across Nal doses. Bars represent means ± SD among lines evolved at the same dose. Dots

are mean values of fitness change (left panel) or selection coefficient (right panel) for each different gyrA line while stars indicate the

non-gyrA lines. On the right panel, mean selection coefficients are plotted after the screen (in grey) and after the 400 generations of

evolution in antibiotic (in black) in the corresponding evolution dose. On the left panel, we see that the fitness costs are reduced when

evolving at low doses, but that they increase when evolving at high dose. On the right, we see that fitness costs are globally larger at

high evolution dose, but also that non-gyrA mutant at the lowest dose exhibit a very strong cost.

FITNESS LANDSCAPE ALONG A GRADIENT OF

ANTIBIOTIC DOSES

The occurrence of fitness trade-offs strongly supports the idea that

doses can be considered as different “environmental conditions”

or different selective constraints in terms of adaptation. Using

the well-known representative metaphor of adaptive fitness land-

scape, this means that the phenotypic position of the fitness peak

is changing along the dose-gradient. The fitness profiles of our

evolved lines also appear to be remarkably regular along the dose

gradient, suggesting that it should be possible to make predictions

for other, unused ED. The optimal MD very consistently tracks

the ED and fitness is monotonously decreasing from the optimum

as shown by quadratic relationships with log-dose of antibiotic

(Fig. 2). These results provide support in modeling adaptation

along ecological gradients using a gradual shift in phenotypic

optimum, as often proposed theoretically (e.g., Lynch and Lande

1993; Kirkpatrick and Barton 1997).

In a previous study (Harmand et al. 2017), we investigated

mutational and selective patterns of resistance from single resis-

tant mutants across the same antibiotic dose gradient. These mu-

tational patterns did not allow determination of whether different

doses corresponded to different phenotypic optima, selection in-

tensities around the same optimum, or both. Here, we show that

phenotypic optima vary among doses. This finding does not ex-

clude variations in the selection intensity across doses, but such

variation alone, without a variation in the position of the peak,

would not account for our data.

Finally, the net adaptive fitness change during our experi-

ment was predictable across the different lines: it scaled linearly

with initial maladaptation (Fig. 2). This pattern is known as the

“rule of declining adaptability” and is predicted by simple fit-

ness landscape models (Couce and Tenaillon 2015; Martin and

Roques 2016). Furthermore, the slope of this trend was close to

–1, consistent with the view that the different lines reached a

position close to their respective dose-specific optimum. Over-

all, this study suggests that evolution across antibiotic dose gra-

dients conforms closely to peak shift models. Further experi-

ments, with different antibiotics, and longer time scales, will be

very interesting to check the generality and robustness of this

conclusion.

CONSEQUENCES FOR THE EVOLUTION OF

RESISTANCE

From a practical point of view, the existence of different pheno-

typic optima regularly arranged along a dose-gradient has sev-

eral implications. Selection at low and intermediate doses can

indeed promote adaptive steps toward high resistance (consis-

tent with a reservoir effect). Furthermore, phenotypes evolved

at intermediate doses are better adapted to high doses than phe-

notypes evolved at low doses (consistent with a multiple hit ef-

fect). Additionally, long-term selection at low doses will not re-

sult in high fitness (meaning optimal phenotypes) at high doses,

and as a result, long-term selection at high doses will not se-

lect for high-fitness phenotypes at low doses. These conclu-

sions have important implications for understanding and mod-

eling the evolution of resistance in the field, under heterogeneous

conditions.
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To our knowledge, no previous study has clearly established

the pattern of dose-specialization along a gradient so far. First,

many studies have investigated the fitness of resistant mutants

from field samples (clinical isolates in the case of antibiotic re-

sistance, several examples reported in Davies and Davies 2010).

However, except in few cases (e.g., Labbe et al. 2005; Milesi

et al. 2016), the ecological context (and dose) in which those

mutations were selected for is usually unknown and potentially

complex. Simply knowing the fitness of a mutation in the en-

vironment where it was selected for is obviously insufficient to

conclude about trade-offs. The absence of well-controlled condi-

tions in the field makes field samples difficult to interpret. Sec-

ond, some experimental studies looked at short-term antibiotic

resistance evolution by screening mutants under controlled con-

ditions (Thulin et al. 2015; Harmand et al. 2017). In general, this

short-term evolution cannot easily reveal trade-offs across envi-

ronmental conditions, especially when the initial type is highly

maladapted (Bataillon et al. 2011; Martin and Lenormand 2015),

as it is the case for resistance when starting from a susceptible

wild-type. Last, studies that used long-term evolution of resistance

in laboratory conditions often focused on the evolution of the cost

of resistance, that is the trade-off between absence versus a given

dose of antibiotic (reviewed in Melnyk et al. 2015) and/or did

not assay directly fitness across doses (e.g., Gullberg et al. 2011;

Hughes and Andersson 2012). While it is clear that such studies

provide key insight for resistance management, studying fitness

variations across full gradients and in particular at low doses is

probably critical to understand long-term resistance evolution in

natura and to develop accurate management models.

Due to the occurrence of shifted optima across doses, the

long-term evolution of the cost of resistance largely differs across

evolution doses (Fig. 5). Previous studies have highlighted that

fitness costs are highly variable (e.g., depending on mechanisms)

and difficult to predict in a general way (Melnyk et al. 2015;

Vogwill and Maclean 2015). Our results show that taking into

account different dose-environments is a key element (see also

Westhoff et al. 2017). Because low dose optima are closer to dose

zero than high dose optima, the dynamics of cost evolution can

be radically different at a given dose. We found a negative cor-

relation between the fitness cost changes and the evolution dose

(Fig. 5 and ED0 in Fig. 4). At low doses, initial costs are quickly

compensated, suggesting that the first mutational step overshot

the phenotypic optimum at low ED. After compensation, they be-

come very small, as expected since selection intensity has to be

much lower around the ED0 optimum than around optima with

antibiotics. At higher doses, however, costs increase through time.

The presence of different optima across doses explains this pattern

and can thus provide a powerful conceptual framework to under-

stand the large variability of fitness costs observed previously in

long-term studies.

HISTORICAL CONTINGENCY OF ADAPTIVE

TRAJECTORIES

“Historical contingency” or “mutation-order” effects have been

widely discussed in the literature to describe the dependence of

adaptive trajectories on initial conditions (Elena and Lenski 2003;

Lenormand et al. 2009, 2016; Lobkovsky and Koonin 2012). Our

results show that the pattern of specialization is general among

gyrA lines but still dependent on the identity of the first gyrA

mutation after 400 generations of evolution. However, the good

alignment of the initial fitness versus the fitness change seems to

indicate that those lines progress toward the same optimum within

an ED. It is thus possible that the lines reach closer to the optimum

of their ED but still progress toward this optimum after the 400

generations of evolution. Alternatively, the non-gyrA lines seem

to progress toward a different point than the gyrA lines (there is a

large and significant “mutational module” effect on the regression

of the initial fitness versus the fitness change). After 400 gener-

ations of evolution at ED3, their fitness profiles are still largely

different to those of the gyrA lines indicating a strong historical

contingency between those “mutational modules” of resistance.

Contrary to the specialization pattern, this divergence in fitness

patterns between the gyrA and the non-gyrA lines was already

observed immediately after the first resistance screen and inter-

preted as the occurrence of selective covariances across traits in

Harmand et al. 2017. Together, the results of these two studies put

forward the gyrA and non-gyrA resistant lines as good candidates

to investigate the effects of historical contingency and selective

covariances on long-term adaptive trajectories.

Studies of resistance evolution (very broadly defined, that is

resistance to antibiotics, chemotherapy, insecticides, acaricides,

fungicides, herbicides etc) often overlook the possibility that dose

gradients may represent different phenotypic challenges, in addi-

tion to also representing different selection intensities. Our results

show that this simplification is not warranted. They show that the

evolution of resistance along antibiotic dose gradients is consistent

with classic evolutionary models of adaptation on ecological gra-

dients, where each environment corresponds to one fitness peak.

The observed patterns of adaptation and maladaptation are also

fully consistent with the occurrence of dose-dependent optima

and show pervasive trade-offs across doses. Hence, our findings

call for more realistic models of resistance evolution in hetero-

geneous dose conditions that include dose-specialization. Such

models are necessary to better evaluate the impact of low doses

of antibiotics that are today ecologically widespread.
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Fig. S1. Selection coefficients of control lines evolved in the absence of antibiotic in competition against the non-evolved wild-type 10K-YFP (or 10K-CFP
in the case of 0K-YFP lines).
Fig. S2. Fitness change of the SRef lines during 400 generations of evolution in different evolution doses (colors) versus their fitness just after the
screen of resistance in the different measure doses. Symbols indicate the gyrA mutations sequenced after evolution in each line while colors indicate the
dose at which they were screened and evolved. Error bars represent standard errors of the mean and the fitness change estimated in the statistical model.
Figure S2b
Figure S2c
Figure S2d
Figure S2e
Fig. S3. Costs of resistance of the SRel lines evolved for 400 generations at five evolution doses of antibiotic. Symbols indicate the mutation detected
in the gyrA sequence or the absence of mutation in the gyrA sequence while colors indicate the evolution dose. The dotted horizontal line at 0 corresponds
to an equal fitness with the susceptible ancestor 10K, while negative values correspond to a lower fitness of resistant lines. Error bars represent standard
errors among replicates.

2 3 2 EVOLUTION LETTERS JUNE 2018


