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Hypertriglyceridemia is a well-described metabolic disor-
der resulting in negative health outcomes (1). It is a risk 
factor for CVD (2, 3) and is associated with other metabolic 
disorders such as nonalcoholic fatty liver disease (4), meta-
bolic syndrome (5), and abdominal obesity (6). Circulat-
ing triacylglyceride (TG) concentration is commonly 
measured during routine clinical assessment using enzy-
matic methods. However, clinically measured TG is lim-
ited, as it represents the full FA spectrum within the TG 
fraction as a summary measure. There is increasing appre-
ciation for the importance of specific FA composition pro-
files in different plasma fractions on various health 
outcomes (7–10); however, there are relatively few studies 
that have explored the impact of the FA composition in the 
TG fraction (11, 12).

The interaction between TG and insulin sensitivity (IS) 
is complex and involves components of a feedback system 
(3). Greater resistance to insulin in both the liver and mus-
cle may result in greater production of TG and secretion of 
lipoproteins that transport TG (13). Likewise, greater TG 
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may contribute to metabolic dysfunction and lipotoxicity 
in various tissues, affecting IS, and thus continue the cycle 
(3). Given the complexity and temporal nature of the rela-
tionship, long-term studies with multiple data collection 
time points are paramount to better understanding the un-
derlying biology and subsequent risk.

Although several studies have documented prospective 
associations of hypertriglyceridemia with incident T2D (2, 
14, 15), only a limited number of longitudinal studies (11, 
12) have examined the relationship between TG and its 
composition with the pathophysiological factors underly-
ing T2D, particularly -cell function. Our objective was to 
examine the longitudinal role of the specific composition 
of the serum TG fraction on the oral glucose tolerance test 
(OGTT)-derived measures of IS and -cell function com-
pared with clinically measured TG in a Canadian popula-
tion at risk for T2D.

MATERIALS AND METHODS

Recruitment for the baseline visit of the Prospective Metabo-
lism and Islet Cell Evaluation (PROMISE) cohort took place 
between 2004 and 2006 in London and Toronto, Canada. Indi-
viduals were selected to participate if they met the eligibility cri-
teria of having one or more risk factors for T2D, including 
obesity, hypertension, family history of diabetes, and/or a history 
of gestational diabetes or birth of a macrosomic infant. A total of 
736 individuals attended the baseline visit. Subsequent examina-
tions occurred every 3 years, with data from three examination 
visits available for the present analysis (2004–2006, 2007–2009, 
and 2010–2013). The present study used data on participants 
who did not have T2D at baseline, who returned for one or more 
of the follow-up examinations, and who had samples available for 
FA measurements (n = 477; see the CONSORT diagram in sup-
plemental Figure S1). Metabolic characterization, anthropometric 
measurements, and questionnaires on lifestyle and sociodemo-
graphics were administered at each examination visit. Research 
ethics approval was obtained from Mount Sinai Hospital and the 
University of Western Ontario, and all participants provided writ-
ten informed consent. Data collection methods were standardized 
across the two centers, and research nurses were centrally trained.

Metabolic characterization
After 8–12 h of overnight fasting, participants completed a 75 g 

OGTT at each examination visit, with blood samples taken at fast-
ing, 30 min, and 2 h postglucose load. Samples were subsequently 
processed and frozen at 70°C. Alanine aminotransferase (ALT) 
was measured using standard laboratory procedures. Cholesterol, 
HDL, and clinically measured TG were measured using Roche 
Modular’s enzymatic colorimetric tests (Mississauga, ON). Both 
insulin and glucose were measured from OGTT blood samples at 
fasting, 30 min, and 2 h time points. Specific insulin was measured 
with the Elecsys 1010 (Roche Diagnostics, Basel, Switzerland) im-
munoassay analyzer and electrochemiluminescence immunoas-
say, which shows 0.05% cross-reactivity to intact human proinsulin 
and the Des 31,32 circulating split form (Linco Res., Inc) and has 
a coefficient of variation (CV) of 9.3%. Glucose was determined 
using an enzymatic hexokinase method (Roche Modular, Roche 
Diagnostics) with a detection range of 0.11–41.6 mmol/l, an in-
terassay CV of <1.1%, and an intraassay CV of < 1.9%. All assays 
were performed at the Banting and Best Diabetes Centre Core 
Lab at Mt. Sinai Hospital.

Triacylglyceride FA (TGFA) composition was quantified using 
stored fasting serum samples from the baseline visit, which had 
been frozen at 70°C for 4–6 years and had not been exposed to 
any freeze–thaw cycles. Serum FAs have been documented to be 
stable at these temperatures for up to 10 years (16). A known 
amount of triheptadecanoin (17:0; Nu-Chek Prep, Inc., Elysian, 
MN) was added as an internal standard prior to extracting total 
lipids according to the method of Folch et al. (17). Each serum 
lipid fraction (NEFAs, cholesteryl ester, phospholipid, and TG) 
was isolated using TLC. FA methyl esters were separated and 
quantified using a Varian-430 gas chromatograph (Varian, Lake 
Forest, CA) equipped with a Varian Factor Four capillary column 
and a flame ionization detector. FA concentrations (nmol/ml) 
were calculated by proportional comparison of gas chromatogra-
phy peak areas to that of the internal standards (18). There were 
22 FAs measured in the TGFA fraction. Findings for other lipid 
fractions in this cohort are reported separately (see ref. 9 for the 
phospholipid and cholesteryl ester fraction and ref. 10 for the 
NEFA fraction analysis).

Anthropometrics and sociodemographics
Height, weight, and waist circumference (WC) were measured 

at all clinic examinations using standard procedures. WC was 
measured at the natural waist, defined as the narrowest part of the 
torso between the umbilicus and the xiphoid process. BMI was 
calculated by dividing weight (kilograms) by height (meters) 
squared. Questionnaires administered at each examination deter-
mined sociodemographics. A version of the Modifiable Activity 
Questionnaire (MAQ) (19) determined estimated physical activ-
ity. The MAQ collects information on leisure and occupational 
activity, including intensity, frequency, and duration, over the 
past year. Each reported activity from the MAQ was weighted by 
its metabolic intensity, allowing for the estimation of metabolic 
equivalents of tasks (METs) hours per week (19).

Variable calculation and statistical analysis
IS and -cell function indices were computed using the OGTT 

glucose and insulin data. IS was assessed using the IS Index (ISI) 
(20) and homeostatic model of assessment 2–percent sensitivity 
(HOMA2-%S) (21) using the HOMA2 Calculator. HOMA largely 
reflects hepatic IS, whereas ISI reflects whole-body IS (22). Beta-
cell function was assessed using the Insulinogenic Index (23) over 
HOMA-IR (24) (IGI/IR) and the Insulin Secretion-Sensitivity In-
dex-2 (ISSI-2) (25). IGI/IR is a measure of the early phase of insu-
lin secretion, whereas ISSI-2 is analogous to the disposition index 
(but is calculated using OGTT values). Each index has been vali-
dated against gold-standard measures (20, 24–26).
The primary outcome variables for this analysis were HOMA2-

%S, ISI, IGI/IR, and ISSI-2, which were log-transformed for the 
statistical modeling. The primary predictor variables for this anal-
ysis were 22 individual TGFAs included as either mol% of the total 
fraction or as a concentration (nmol/ml). Clinically measured 
TG was also included as a primary predictor to allow us to test the 
hypothesis that specific TGFAs better predicted outcomes com-
pared with clinical TG. Pearson correlation coefficients were com-
puted to assess the relationships of individual TGFAs with other 
continuous variables. Within-TGFA composition correlations 
were also computed and subsequently analyzed using hierarchical 
clustering.

Generalized estimating equation (GEE) models (27) were used 
in the primary analysis to determine the longitudinal associations 
between the outcome variables and the predictor variables. The 
predictor variables were scaled (mean-centered and standard-
ized). Given the longitudinal design, an autoregressive of order 1 
working correlation matrix was specified in the GEE model. 
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Covariates to adjust for were selected based on the previous litera-
ture, from directed acyclic graph (DAG) (28) recommendations 
and from quasilikelihood information criteria. DAGs are used to 
identify the minimum adjustment necessary for a model by using 
the causal pathways to algorithmically identify potential con-
founding and colliding variables (see ref. 28 for more details 
about using DAGs). The DAG structures to understand potential 
confounding, shown in supplemental Figs. S2 and S3, were pro-
cessed by the DAGitty software (29, 30) to generate the recom-
mended adjustments. These DAG structures were developed 
based on hypothesized causal pathways between each variable, 
which were then input into the DAGitty software. The output 
from DAGitty was used, in conjunction with the other methods, to 
help inform the final model.

The final GEE model (M6; seen in supplemental Table S1) was 
adjusted for years since baseline, WC, baseline age, ethnicity, sex, 
ALT, MET, and total NEFA. The variables TGFA, total NEFA, sex, 
ethnicity, and baseline age were classified as time-independent 
(held constant), as they were measured only at the baseline visit or 
do not change throughout the study, whereas the outcome variables 
and remaining covariates were set as time-dependent. After transfor-
mations, the GEE estimates were interpreted as an expected percent 
difference in the outcome variable for every SD increase in the pre-
dictor variable, given the covariates are held constant (including 
time). We also tested for an interaction with sex, ethnicity, or time 
by the predictor term for each outcome variable.

Although GEE accounts for the longitudinal design of the data, 
this approach is limited in that it cannot analyze the inherent mul-
tivariate nature of the composition of the TGFA fraction. There-
fore, to confirm the GEE results in a multivariate environment 
(i.e., all TGFAs analyzed collectively), partial least squares (PLS) 
regression was used to identify the patterns of TGFA composition 
against IS and -cell function as outcome variables. Briefly, PLS is 
a technique that extracts latent structures (clusters) underlying a 
set of predictor variables conditional on a response variable(s) 
(i.e., the outcome variables). How accurately the clusters within 
the TGFA composition predict metabolic function is determined 
by using cross-validation on the PLS models.

A more detailed explanation of these statistical techniques  
and on the analysis process can be found in the supplemental 

methods for our paper in the NEFA fraction (10). All analyses 
were performed using R (Version 3.4.4) (31), along with the R 
packages geepack (Version 1.2.1) for GEE (32) and pls (Version 
2.6.0) for PLS. The R code and extra analyses for this manuscript 
are available at https://doi.org/10.6084/m9.figshare.5143438. Re-
sults were considered statistically significant at P < 0.05, after ad-
justing for multiple testing using the Benjamini–Hochberg (BH) 
false discovery rate (33). STROBE was used as a guideline for re-
porting (34).

RESULTS

Basic characteristics of the PROMISE cohort
Table 1 shows basic characteristics of the PROMISE co-

hort. The mean follow-up time was 5.6 (1.0) years, where 
88.5% of participants attended all three visits. There were 
349 (73.2%) females and 336 (70.4%) who reported Euro-
pean ancestry, with a mean age in years of 50.0 (9.8) and a 
mean BMI of 31.1 (6.5) kg/m2. As expected from the study’s 
eligibility criteria, the majority of participants, n = 305 
(65.3%), had a family history of diabetes. Between the base-
line visit and the 6 year visit in this sample, IS and -cell 
function measures had a significant median decline of be-
tween 14% and 21% (P < 0.001 from GEE; n = 357–470).

Figure 1 shows the composition of each FA in the TG 
fraction (see supplemental Table S2 for the raw values). 
Three TGFAs contributed 82.4% to the total TG concen-
tration: 18:1 n-9 (37.8%); 16:0 (26.6%); and, 18:2 n-6 
(18.0%). Figure 2 shows a heatmap of the correlation of 
individual TGFAs as concentrations with the outcome vari-
ables and several basic characteristics. As expected, nearly 
all TGFAs had very strong positive correlations (r = 0.34–
0.92) with clinically measured TG and moderate positive 
correlations with WC (r = 0.31–0.36). There were also mod-
erate negative correlations with HDL (r = 0.53 to 0.31). 

TABLE  1.  Basic characteristics of PROMISE participants at each of the three clinic visits 

Measure Baseline 3 Year 6 Year

HOMA2-%S 88.8 (54.2–136.7) 76.8 (49.1–121.8) 73.7 (49.5–110.1)
ISI 13.6 (8.7–21.8) 11.6 (6.9–19.1) 11.7 (7.5–17.6)
IGI/IR 7.1 (4.2–10.6) 5.6 (3.6–9.8) 5.6 (3.4–9.2)
ISSI-2 727.5 (570.0–922.5) 611.2 (493.0–836.4) 624.8 (470.0–813.8)
ALT (U/l) 29.6 (16.0) 28.4 (19.6) 25.8 (16.9)
TG (mmol/l) 1.5 (0.8) 1.4 (0.8) 1.4 (0.7)
Chol (mmol/l) 5.2 (0.9) 5.1 (1.0) 5.1 (0.9)
HDL (mmol/l) 1.4 (0.4) 1.3 (0.4) 1.4 (0.4)
TGFA (nmol/ml) 3,137.5 (1,686.6)
NEFA (nmol/ml) 383.1 (116.3)
MET 46.1 (61.4) 48.2 (60.4) 43.7 (56.7)
Age (years) 50.0 (9.8) 53.2 (9.8) 56.2 (9.6)
BMI (kg/m2) 31.1 (6.5) 31.4 (6.5) 31.1 (6.6)
WC (cm) 98.5 (15.5) 99.2 (15.7) 100.5 (15.8)
Ethnicity
  European 336 (70%)
  Latino/a 59 (12%)
  Other 50 (10%)
  South Asian 32 (7%)
Sex
  Female 349 (73%)
  Male 128 (27%)

Values are median (interquartile range), mean (SD), or n (percent). Chol, cholesterol.
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For the outcome variables, the correlations for the IS mea-
sures were generally higher (HOMA2-%S: r = 0.47 to 
0.32, ISI: r = 0.47 to 0.31) than for the -cell function 
measures (all r < 0.30). For correlations of individual TGFAs 
using mol% with the basic participant characteristics, as 
shown in Fig. 3, differences in correlations between FAs 
were most evident for 14:0, 14:1n-7, 16:0, and 16:1n-7 that 
had a moderate positive correlation with clinical TG (r = 
0.42–0.52), whereas all other FAs had a negative associa-
tion (r = 0.5 to 0.34). In particular, those FAs with the 
negative associations with clinical TG were all the very-long-
chain PUFAs (e.g., 20:4n-6 and 20:5n-3). As seen in Fig. 4, 
four FAs (14:0, 16:0, 14:1n-7, and 16:1n-7) clustered to-
gether, each highly positively correlated with each other 
and negatively correlated with all other FAs.

GEE models
Results from the unadjusted GEE model are shown in Fig. 5 

and for the adjusted GEE model in Fig. 6. The majority of 

associations with -cell function measures were attenuated 
after full model adjustment, whereas nearly all associations 
with IS remained significant for both mol% and nmol/ml 
results. Subsequent analysis revealed that the attenuation 
with -cell function was due primarily to adjustment for WC.

In analyses using concentration values, nearly all TGFAs 
had a strong negative association on HOMA2-%S and ISI 
(estimates of percent difference ranging from 13.5 to 
4.2 and 14.8 to 4.5, respectively), and a few had strong 
negative associations with IGI/IR and ISSI-2 (estimates 
ranging from 8.4 to 6.0 and 4.6 to 3.7, respectively). 
In analyses using TGFA mol% values, four TGFAs (14:0, 
16:0, 14:1n-7, and 16:1n-7) had negative associations with 
HOMA2-%S and ISI (estimates between 11.9 to 6.1 and 
12.8 to 6.4, respectively, lower IS for every SD increase 
in the TGFA), whereas several more TGFAs had positive 
associations with HOMA2-%S and ISI (20:0, 18:1n-9, 20:1n-9, 
22:1n-9, 18:2n-6, 20:2n-6, 20:4n-6, and 22:5n-3) estimating 
between 4.3–14.4% and 5.9–15.9%, respectively, higher IS 

Fig.  1.  Distribution of the composition of TGFAs in the baseline visit of PROMISE participants (2004–2006). Boxplots represent the me-
dian and interquartile range of the FA values.
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for every SD increase in the TGFA. One TGFA, 20:2n-6, 
had a very strong positive association with the IS measures, 
with a 14.4–9.3% higher IS for every SD increase. Both clin-
ically measured TG and total TGFA concentration had very 
strong negative associations with all outcome variables.

Although there were a few significant interactions by 
time in unadjusted models, after inclusion of covariates in 
the model, these interactions were attenuated (data not 
shown). There were no significant interactions by sex or 
ethnicity for any of the TGFAs (data not shown). Results of 
the sensitivity analyses identifying WC as the covariate that 
attenuated the -cell function associations from the unad-
justed model are shown in supplemental Fig. S4. A tabular 
presentation of the GEE results is shown in supplemental 
Table S3 for unadjusted models and supplemental Table 
S4 for adjusted models.

Clustering of TGFAs by metabolic measures
The PLS analysis corroborated the findings from the 

GEE models. The PLS results conditioned on IS as the 

outcome showed a clustering of the FAs 14:0, 14:1n-7, 16:0, 
and 16:1n-7 as mol% (Fig. 7). These TGFAs loaded strongly 
and negatively on HOMA2-%S and ISI in the first compo-
nent, suggesting that this cluster of TGFAs tracks together 
with lower IS. The TGFAs 20:2n-6, 20:5n-3, 22:5n-3, and 
22:6n-3 loaded positively on both IS measures. No other 
TGFAs loaded strongly. In the second component, 18:1n-9 
and 18:1n-7 loaded positively, but not strongly, whereas 
20:5n-3 and 22:6n-3 loaded strongly and negatively with 
both HOMA2-%S and ISI; however, this component only 
explained <10% of the variance. The PLS model for IS had 
good predictive ability, with a high correlation between the 
predicted outcome values against the observed values 
(HOMA2-%S: r = 0.46, P < 0.001; ISI: r = 0.39, P < 0.001).

The -cell function PLS results showed a similar cluster-
ing of FAs; however, there was a lower correlation (al-
though significant at P < 0.001) between the predicted 
values and the observed values (r = 0.25–0.24), suggesting 
that TGFA composition poorly predicts -cell function. 
Given the low predictability, only the IS measures are 

Fig.  2.  Pearson correlation heatmap of TGFAs (nmol/ml) with continuous basic and metabolic characteristics of PROMISE participants from 
the baseline visit (2004–2006). Darker orange represents a positive correlation; darker blue represents a negative correlation. Chol., cholesterol.
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presented. We used the extracted PLS scores as the predic-
tor variable in the GEE models and found negative associa-
tions of the first component on all outcome variables, with 
the strongest association being with the IS variables (esti-
mate of 10.4, all P < 0.001; using PLS scores constrained by 
ISI). See supplemental Fig. S5 for a plot of the loadings of 
each TGFA on the two components.

DISCUSSION

In the present study, we found that in a Canadian cohort 
at risk for T2D, several specific TGFAs and groups of TGFAs 
were strongly associated with IS and moderately associated 
with -cell function. In particular, the TGFAs myristic acid 
(14:0), 7-tetradecenoic acid (14:1n-7), palmitic acid (16:0), 
and palmitoleic acid (16:1n-7) all strongly and negatively 
associated with lower IS. Although most TGFAs were not 
associated with -cell function, three FAs, palmitic acid 

(16:0), cis-vaccenic acid (18:1n-7), and eicosadienoic acid 
(20:2n-6), were associated negatively and positively, respec-
tively, with measures of -cell function. Using PLS, we also 
found that four TGFAs (14:0, 14:1n-7, 16:0, and 16:1n-7) 
clustered together and that this cluster strongly predicted 
lower IS.

To our knowledge, no longitudinal study to date has ex-
amined the role of the composition of the TGFA fraction 
on detailed OGTT-derived metabolic measures. Two large 
prospective studies have been published that similarly ex-
amined TGFA composition and T2D outcomes. Rhee et al. 
presented a nested case-control analysis (n = 189 cases and 
n = 189 controls) within the Framingham offspring cohort 
(11), which found that subjects with a TGFA composition 
characterized by a lower carbon chain and fewer double 
bonds (e.g., 14:0 or 16:0) had a higher risk for T2D after 12 
years, whereas those with a profile characterized by higher 
carbon chain and more double-bond TGFAs had a lower 
risk for T2D. A similar pattern of TGFAs was also associated 

Fig.  3.  Pearson correlation heatmap of TGFAs (mol%) with continuous basic and metabolic characteristics of PROMISE participants from 
the baseline visit (2004–2006). Darker orange represents a positive correlation; darker blue represents a negative correlation. Chol., 
cholesterol.
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with HOMA-IR cross-sectionally at the baseline visit. In ad-
dition, Lankinen et al. reported on a prospective cohort of 
males in Finland (12), for which TGFA data were available 
for 831 participants after 6 years of follow-up. In their co-
hort, OGTT data were only available at the 6 year visit. In 
the cross-sectional analysis, they found that most saturated 
FAs had negative associations with IS and -cell function, 
whereas linoleic acid (18:2n-6), docosapentaenoic acid 
(22:5n-3), eicosapentaenoic acid (20:5n-3), and arachi-
donic acid (20:4n-6) had positive associations with IS. The 
magnitude of the associations were larger for the IS results 
compared with the -cell function results, similar to what 
we observed. Our study extends these findings by using 
multiple measurements of metabolic function and as well 
as multivariate statistical approaches that allowed us to 
identify clusters of TGFAs. In another, much smaller study 
(n = 16) of mostly females (35), the authors reported  
a positive correlation between total esterified (of which  
TG make up the majority) 16:0, 16:1n-7, and 18:1n-9 with 

HOMA-IR, findings which were largely similar to the pres-
ent analysis.

There are a few possible explanations for these findings. 
Circulating TGFAs derive from three sources: adipose li-
polysis, dietary fat, and de novo lipogenesis (DNL). Dietary 
carbohydrates and fat can influence DNL activity (36–38). 
Determining the specific source of TGFA is extremely dif-
ficult to ascertain outside of highly controlled experimen-
tal settings. Many previous studies that have examined 
DNL as the source have used markers of estimated DNL, 
such as the ratio between 18:2n-6 to 16:0 or 16:1n-7 to 16:0 
(12, 39, 40). However, there are limitations to using these 
ratios, as the FAs used in their calculation can also be ob-
tained from the diet, in addition to being created through 
DNL (39). An experimental feeding trial (n = 24) was con-
ducted to identify the FAs that most accurately reflected 
DNL as potential biomarkers (41). The study found that 
palmitoleic acid (16:1n-7), directly measured DNL using 
isotopes, and liver fat were all highly correlated with each 

Fig.  4.  Pearson correlation heatmap of TGFAs in the PROMISE participants from the baseline visit (2004–2006). The correlations of FAs 
grouped using hierarchical cluster analysis; FA along the x and y axes are ordered according to this analysis. Darker orange represents a posi-
tive correlation; darker blue represents a negative correlation.
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other (r > 0.50), suggesting that 16:1n-7 may be a good bio-
marker for hepatic DNL. In another small (n = 14) feeding 
trial, meal type (high-fat vs low-fat) was tested to determine 
its effect on DNL and TGFA composition (42). The au-
thors reported that 14:0, 16:0, 16:1, and 18:2 were higher in 
the low-fat (high-carbohydrate) group. In another recent 
overfeeding trial, 1,000 kcal of saturated fat, unsaturated 
fat, or carbohydrates over 3 weeks was given to 38 over-
weight individuals (38) to test changes in liver fat and he-
patic DNL. At the end of the study, the carbohydrate group 
had higher DNL activity as well as an increase in liver fat, 
although the saturated fat group had the highest increase 
in liver fat. This link between carbohydrate intake and 
DNL activity has been well documented (1, 3, 4, 37, 39, 43, 
44).

In our findings, the four FAs were highly positively cor-
related among each other and negatively or neutrally with 
all other TGFAs, in addition to clustering together on their 

negative association with IS. This may suggest that greater 
DNL activity is the source of these TGFAs. Several studies 
have shown a link between higher estimated DNL activity 
and an increased risk for metabolic dysfunction (8, 12, 40, 
45). How DNL may influence metabolic dysfunction is not 
well understood. Possible reasons may be that higher DNL 
produces more of certain FAs or that higher DNL increases 
circulating TG, which itself is well documented to contrib-
ute to metabolic dysfunction and which we found in our 
study as a high positive correlation between the four TGFA 
and clinical TG.

Regardless of the exact source of these FAs, our results, 
in addition to the available scientific evidence, emphasize 
the importance of the FA composition on metabolic health, 
as individual FAs can have specific physiological functions. 
For instance, a higher concentration of circulating 14 and 
16 carbon FAs may expose tissues to greater lipotoxicity, 
for instance, from palmitic acid (16:0), which is well known 

Fig.  5.  Time-adjusted GEE models of the association of the TGFAs (mol% and nmol/ml) and total clinically measured TG with IS and  
-cell function outcomes using the 6 year longitudinal data from the PROMISE cohort. The x-axis values represent a percent difference in 
the outcome per SD increase in the FA. P values were adjusted for the BH false discovery rate, with the largest dot representing a significant 
(P < 0.05) association. 
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to have harmful effects on tissues (46, 47). Our study ex-
tends these findings by showing that TGFAs with 14 to 16 
carbons clustered together and this pattern strongly associ-
ated with lower IS. Although some of these FAs also had  
a significant association with -cell function, the magni-
tude of associations were more modest compared with 
those for IS.

The direction of association between TGFAs and IS is 
unclear from previous cross-sectional studies due to the 
physiological feedback mechanisms involved. For example, 
although higher TGFAs may promote muscle insulin resis-
tance, the reverse may also be true (48). As we found no 
interaction by time of TGFAs on IS, this study cannot deter-
mine the exact role of the feedback mechanism. However, 
by combining the lack of a time interaction and the consis-
tent negative association in models without the time inter-
action, these results at least suggest that the feedback 
mechanism may not be strongly influential and that TGFAs 

may predict IS at least over a 6 year period. Given the com-
plex biological mechanisms and feedback loops involved, 
disentangling whether IS influences TGFAs more strongly 
than TGFAs influences IS will require more complex re-
search designs and analyses.

Given the close biological relationship between circulat-
ing NEFAs and TG, NEFA may act as a confounding factor 
and was thus adjusted for. In our published analysis of the 
NEFA fraction (10), we found that higher total NEFAs, but 
not the specific composition, associated with lower -cell 
function. This is in contrast to the TGFA findings that the 
specific composition does differentially associate with IS 
and -cell function, adjusting for total NEFAs. There was 
no difference in results in models that did not include 
NEFA as a confounder (data not shown). This difference 
in results between NEFA and TGFA suggests that TGFA 
may independently and strongly influence the pathophysi-
ology of T2D, when compared with other lipid fraction 

Fig.  6.  Fully-adjusted GEE models of the association of the TGFAs (mol% and nmol/ml) and total clinically measured TG with IS and -cell 
function outcomes using the 6 year longitudinal data from the PROMISE cohort. Variables controlled for were follow-up time, WC, baseline 
age, ethnicity, sex, ALT, physical activity, and total NEFA. The x-axis values represent a percent difference in the outcome per SD increase in 
the FA. P values were adjusted for the BH false discovery rate, with the largest dot representing a significant (P < 0.05) association. 
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compositions, including the phospholipid and cholesteryl 
ester fractions (9). This may be due to TG being biologi-
cally destined for uptake by nonhepatic tissue, as they are 
found mainly in VLDLs, at least during fasting. This is in 
contrast to NEFAs that are mostly taken up by the liver and 
used in TG production (49).

Our study has potential limitations that need to be con-
sidered when interpreting the results. First, this is an observa-
tional cohort, and as such, there may be some residual 
confounding we were not able to control for or were unaware 
of. However, we have taken extensive, empirically based 

precautions in identifying potential confounders and me-
diators through the use of the DAG modeling, relying on 
previous literature, and through information criteria model 
fit comparison methods. Only fasting TGFAs were quanti-
fied and only at the baseline visit. TGFA composition can 
fluctuate substantially throughout the day, so in order to 
control for this, PROMISE participants came for the clinic 
visit in the morning and fasted. There is some evidence to 
suggest that fasting TG is better able to discriminate diabe-
tes cases compared with a postprandial state (11). Because 
TGFAs were only measured at the baseline visit, we cannot 
investigate whether there are concomitant changes in TGFAs 
and the metabolic measures over time. However, to opti-
mally use GEE to analyze the data and for interpretation, we 
used the model to infer that a given value of TGFA could 
predict values of IS or -cell function over a 6 year period. 
This, in our view, is a strength of our analysis, as it reduces 
the chance of reverse causality given the tight integration of 
the glucose and FA metabolism pathways, as well as maxi-
mizes the specific usage of the GEE modeling.
PLS is a well-established technique for constructing pre-

dictive models of high-dimensionality data structures (i.e., 
FA composition); however, a limitation is that the initial 
models analyzed through PLS and the final computed 
scores are not able to control for potential confounders and 
other effect modifiers. PLS is also not able to handle longi-
tudinal data, so only the baseline visit was used in the PLS 
analysis, although we analyzed the extracted scores using 
the GEE modeling to overcome this limitation and observed 
concordant results between the PLS and GEE analyses.

Our study has several notable strengths, including the 
longitudinal design and the use of advanced statistical tech-
niques for data analysis. These statistical techniques take 
advantage of the longitudinal data to allow appropriate in-
vestigation of temporal relationships and are able to han-
dle the multidimensional nature of the data. Finally, our 
cohort contains highly detailed and comprehensive vari-
able measurements for the FAs and outcomes, which were 
collected at each visit.

CONCLUSION

In conclusion, we found that a TGFA composition con-
taining higher proportions of 14:0, 14:1n-7, 16:0, and 
16:1n-7 associated strongly with lower IS and (more moder-
ately) with lower -cell function. We also found that most 
other TGFAs (e.g., 20:0, most omega 6 and 9 TGFAs, and 
20:5n-3) associated positively with IS. Only a few TGFAs as-
sociated positively and consistently with -cell function 
(e.g., 18:1n-7 and 20:2n-6). These results provide more in-
sight into how individual TGFAs contribute to the patho-
genesis of T2D while reinforcing the importance and value 
of clinically measured total TG as an indicator of metabolic 
health.
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variance of 50%. FAs between these lines represent variables that 
strongly explain the underlying structure of the data.
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