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ABSTRACT Long-term effects of inorganic and organic fertilization on nitrifica-
tion activity (NA) and the abundances and community structures of ammonia-
oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) were investigated
in an acidic Ultisol. Seven treatments applied annually for 27 years comprised no
fertilization (control), inorganic NPK fertilizer (N), inorganic NPK fertilizer plus
lime (CaCO3) (NL), inorganic NPK fertilizer plus peanut straw (NPS), inorganic NPK
fertilizer plus rice straw (NRS), inorganic NPK fertilizer plus radish (NR), and inor-
ganic NPK fertilizer plus pig manure (NPM). In nonfertilized soil, the abundance
of AOA was 1 order of magnitude higher than that of AOB. Fertilization reduced
the abundance of AOA but increased that of AOB, especially in the NL treatment.
The AOA communities in the control and the N treatments were dominated
by the Nitrososphaera and B1 clades but shifted to clade A in the NL and NPM
treatments. Nitrosospira cluster 8a was found to be the most dominant AOB in
all treatments. NA was primarily regulated by soil properties, especially soil pH,
and the interaction with AOB abundance explained up to 73% of the variance in
NA. When NL soils with neutral pH were excluded from the analysis, AOB abun-
dance, especially the relative abundance of Nitrosospira cluster 8a, was positively
associated with NA. In contrast, there was no association between AOA abun-
dance and NA. Overall, our data suggest that Nitrosospira cluster 8a of AOB
played an important role in the nitrification process in acidic soil following long-
term inorganic and organic fertilization.

IMPORTANCE The nitrification process is an important step in the nitrogen (N) cy-
cle, affecting N availability and N losses to the wider environment. Ammonia oxida-
tion, which is the first and rate-limiting step of nitrification, was widely accepted to
be mainly regulated by AOA in acidic soils. However, in this study, nitrification activ-
ity was correlated with the abundance of AOB rather than that of AOA in acidic Ulti-
sols. Nitrosospira cluster 8a, a phylotype of AOB which preferred warm temperatures,
and low soil pH played a predominant role in the nitrification process in the test Ul-
tisols. Our results also showed that long-term application of lime or pig manure
rather than plant residues altered the community structure of AOA and AOB. Taken
together, our findings contribute new knowledge to the understanding of the nitrifi-
cation process and ammonia oxidizers in subtropical acidic Ultisol under long-term
inorganic and organic fertilization.
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In order to increase crop yields to meet the food demands of an increasing popula-
tion, increasing amounts of synthetic fertilizers, including nitrogen (N), have been

applied to agroecosystems and have had adverse environmental consequences (1). The
process of nitrification is a critical step in the N cycle that affects plant uptake of soil
inorganic N, nitrate (NO3

�) leaching, and nitrous oxide (N2O) emissions (2). It was
previously thought that ammonia (NH3) oxidation, which is the first and rate-limiting
step of nitrification, was mediated by ammonia-oxidizing bacteria (AOB) and ammonia-
oxidizing archaea (AOA) (3, 4) in the soil. However, recently, complete ammonia
oxidizers (comammox) were also discovered; they can complete nitrification in one step
on their own (5).

The population sizes of AOA in a range of agricultural soils have been found to be
larger than those of AOB, especially in acidic soils (6–8). Generally, AOA showed
stronger resistance to low soil pH and higher nitrification activity (NA) in acidic soils (7),
whereas in neutral and alkaline agricultural soils, nitrification is dominated by AOB (6,
9). Numerous studies have shown that nitrification activity in acidic soils is positively
correlated with AOA abundance (7, 10), and changes of AOA communities could
significantly affect nitrification activity (7, 11, 12). However, recent studies of acidic
upland soils have found that AOB are associated with potential nitrification rates (13)
and act as metabolically active ammonia oxidizers (14–16). Such evidence could
indicate that the assumption of AOA dominating nitrification in acidic soils may not
hold true for all soil types and that the role of AOB in nitrification in acidic soils should
be reevaluated.

The community composition of AOA and AOB plays a key role in the regulation of
nitrification activity (7, 11). For example, AOA clade B was found to be actively linked
to NH3 oxidation in Arctic soils, while clade A showed little or no nitrification activity
(17). Using 13CO2-DNA stable isotope probing, Wang et al. (18) found that the clades
Nitrososphaera and Nitrosospira cluster 3 were the most active AOA and AOB phylo-
types, respectively, in an acidic Ultisol. The community structures of both AOA and AOB
were strongly shaped by soil variables, especially soil pH and substrate (NH3) availability
(6, 19, 20). AOA clade B and the AOB Nitrosospira cluster 2 have been found to be well
adapted to low-pH soils, while the AOB Nitrosomonas preferred neutral or alkaline soils
(17, 21). Other soil properties, such as temperature (22), salinity (23), organic carbon (C)
concentration (24), and moisture content (25), have also been found to influence the
abundance and composition of soil ammonia-oxidizing communities.

Long-term fertilizer application has been shown to affect AOA and AOB abundances
and community structures in different soil ecosystems (26, 27). For example, two
long-term studies reported that the application of inorganic fertilizer enhanced AOB
abundance in grassland soils after 44 years of fertilization (26) and in calcareous
agricultural soils after 31 years of fertilization (28), whereas the application of organic
fertilizer promoted the abundance of AOA. In contrast, Peng et al. (29) found that
although AOA and AOB community compositions were altered by 35 years of fertilizer
application to a salt marsh, abundances remained stable.

Despite the widespread distribution of Ultisols and their importance in biogeo-
chemical processes (30), studies of the effects of long-term fertilizer application on AOA
and AOB community compositions and roles in nitrification in subtropical Ultisols are
limited (21). Therefore, we evaluated the long-term effects of the application of
inorganic and organic fertilizer to a subtropical acidic Ultisol on the abundances and
community compositions of AOA and AOB and nitrification to test the hypotheses that
nitrification in Ultisols is primarily regulated by AOA and that long-term fertilizer
application increases nitrification activities of AOA and AOB and elevates the relative
importance of AOB.

RESULTS
Soil nitrification activity. Long-term fertilization increased nitrification activity

from 0.94 mg N kg�1 dry weight of soil (dws) day�1 in the control treatment to 1.06 to
5.35 mg N kg�1 dws day�1 in the fertilized treatments (Fig. 1). Nitrification activity was
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highest in the inorganic NPK fertilizer plus lime (CaCO3) (NL) treatment, which was
significantly higher than those in the other treatments (P � 0.05). The application of
organic materials in addition to NPK (N) did not increase nitrification activity (Fig. 1).
Nitrification activity was correlated with soil pH that ranged from 4.96 to 6.59 (R �

0.942; P � 0.001) (Table 1; see also Table S1 in the supplemental material).
Abundances of AOA and AOB. The AOA and AOB amoA gene abundances ranged

from 4.08 � 107 to 6.15 � 107 copies g�1 dws and from 4.94 � 106 to 17.15 � 106

copies g�1 dws, respectively (Fig. 2). Fertilizer application reduced the AOA amoA gene
abundance in the NL, inorganic NPK fertilizer plus rice straw (NRS), and inorganic NPK
fertilizer plus pig manure (NPM) treatments (P � 0.05), and all fertilizer treatments
increased the AOB amoA gene abundance (P � 0.05). The abundance of amoA genes
for AOA was positively correlated with soil NO3

�-N (P � 0.01) and negatively associated
with soil pH and available potassium (AK) (P � 0.01). In contrast, the abundance of
amoA genes for AOB was negatively correlated with soil NO3

�-N and dissolved organic
nitrogen (DON) (P � 0.05) and positively associated with soil pH and AK (P � 0.01).

Community diversity and composition of AOA and AOB. After quality filtering,
totals of 998,950 and 1,226,551 high-quality sequences were obtained for AOA and
AOB, with minima of 28,389 and 30,073 sequences per sample, respectively. There were
differences in AOA and AOB community diversity among the treatments (P � 0.05) (see
Fig. S1 in the supplemental material), where AOA diversity was lowest in the NL and
NPM treatments and highest in the N, inorganic NPK fertilizer plus peanut straw (NPS),
NRS, and inorganic NPK fertilizer plus radish (NR) treatments. In contrast, AOB commu-
nity diversity was highest in the NL and NPM treatments (Fig. S1).

Canonical correspondence analysis (CCA) and linear redundancy analysis (RDA)
showed that both AOA and AOB communities formed four clusters: control, NL, NPM,
and a composite of the other treatments (N, NPS, NRS, and NR) (Fig. 3). AOA and AOB
communities in the NL treatment were related to higher soil pH, while the communities
in the NPM treatment were associated with soil organic carbon (SOC), dissolved organic
carbon (DOC), available phosphorus (AP), and soil total nitrogen (TN). The multivariate
regression tree (MRT) analysis of dominant operational taxonomic units (OTUs) (relative
abundance of �0.1%) showed that the community composition of AOA and AOB was
primarily shaped by soil pH (Fig. S2). Mantel tests confirmed that soil pH was the
primary influencing factor in AOA and AOB communities (P � 0.001) (Table 2).

FIG 1 Soil nitrification activity in the different treatments. Vertical bars represent standard errors of the
means (SEMs) (n � 3). Different letters denote significant differences between treatments (P � 0.05).
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Sequences of dominant AOA and AOB amoA OTUs (relative abundance of �0.1%)
were taxonomically classified into different phylotypes across the treatments (Fig. 4).
Phylogenetic analysis of AOA communities showed that the dominant amoA OTU
sequences were exclusively from the Nitrososphaera cluster (group I.1b lineage) and
were distributed across nine robust phylogenetic clades (Fig. 4a and Fig. S3). In
untreated soil (control), the Nitrososphaera and B1 clades represented 57.94% and
39.61% of AOA amoA sequences, respectively, and long-term fertilization reduced these
proportions to 3.21 to 50.76% and 0.90 to 27.97%, respectively (P � 0.05), with the
lowest proportions being recorded for the NL (3.21% and 0.90%, respectively) and NPM
(17.28% and 4.12%, respectively) treatments. In contrast, the application of liming (NL)
and pig manure (NPM) increased the proportions of clade A from 0.81% in the control
soil to 76.80% and 69.23%, respectively (P � 0.001). The Nitrososphaera and B1 clades
were negatively correlated with soil pH (P � 0.001), whereas clade A was positively
associated (Table S2).

The dominant detected AOB amoA OTUs were exclusively affiliated with the
Nitrosospira-like genus and grouped into Nitrosospira clusters 3a.1, 3a.2, 3c, 8a, and 8b;
no AOB sequence was affiliated with the Nitrosomonas genus (Fig. 4b and Fig. S4).
Nitrosospira clusters 8a and 3a.2 dominated the unfertilized control soil, accounting for
62.56% and 37.43%, respectively. Long-term fertilization decreased the relative abun-
dance of Nitrosospira cluster 3a.2 to 11.29 to 31.56% (P � 0.05), and the relative
abundance of Nitrosospira cluster 3a.1 increased from 0.01% in the control soil to

FIG 2 Abundances of amoA genes of ammonia-oxidizing archaea (AOA) (a) and ammonia-oxidizing
bacteria (AOB) (b) in the treatments. Vertical bars represent SEMs (n � 3). Different letters denote
significant differences between treatments (P � 0.05).
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36.33% in the NL soil (P � 0.001) with an increase in soil pH. The relative abundance
of Nitrosospira cluster 8a increased from 62.56% in the control treatment to 66.13 to
87.44% in fertilization treatments, except for NL, in which it decreased to 33.35%, and
was negatively correlated with soil pH (Table S3). The relative abundance of Nitrosospira

FIG 3 Canonical correlation analysis (CCA) of AOA (a) and redundancy analysis (RDA) of AOB (b)
communities in the treatments. The positions and lengths of the arrows indicate the directions and
strengths, respectively, of the effects of soil variables on the communities.

TABLE 2 Mantel test correlations between community structure of ammonia-oxidizing
archaea or ammonia-oxidizing bacteria and soil physicochemical propertiesa

Soil variable

AOA AOB

R P R P

Soil pH 0.896 0.001 0.901 0.001
SOC 0.261 0.036 0.111 0.196
DOC 0.208 0.092 �0.002 0.374
TN 0.200 0.044 0.185 0.054
DON 0.110 0.209 0.058 0.250
NH4

�-N 0.060 0.280 0.023 0.379
NO3

�-N 0.406 0.002 0.435 0.001
AP 0.289 0.042 0.018 0.393
AK 0.147 0.140 0.098 0.228
DCo 0.278 0.046 0.026 0.386
aValues in boldface type indicate significant effects (P � 0.05).
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cluster 3c was highest in the NPM treatment (P � 0.001) and was positively correlated
with SOC, DOC, AP, and TN but negatively associated with DCo (effective diffusion
coefficient of oxygen) (P � 0.001).

Factors affecting nitrification activity. Variance partitioning was used to evaluate
the relative contributions of different groups of variables to the variation of nitrification
activity. The soil physicochemical properties and the abundances of AOA and AOB were
separated into three groups of explanatory variables and used to explain each fraction
of nitrification activity. Soil properties and their interaction with the AOB amoA gene
abundance were found to explain up to 73% of the variance in nitrification activity (Fig.
5), and nitrification activity was positively associated with AOB amoA gene abundance
(P � 0.001) (Fig. 6) and negatively associated with AOA amoA gene abundance (P �

0.005) (Fig. 6). When the NL treatment with neutral soil pH (6.59) was excluded from the
analysis, nitrification activity continued to be positively associated with AOB amoA gene

FIG 4 Community compositions of AOA (a) and AOB (b) based on amoA gene sequences in the treatments. Error
bars represent SEMs (n � 3).
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abundance (P � 0.007) (see Fig. S5 in the supplemental material), but there was a lack
of an association with AOA amoA gene abundance; among the AOB communities, there
was a positive association with Nitrosospira cluster 8a (Fig. 7).

DISCUSSION
Effect of fertilizer on AOA and AOB. We found that the abundance of amoA genes

for AOA was 1 order of magnitude higher than that for AOB in unfertilized soil,
supporting previous reports of much higher abundances of AOA than their bacterial
counterparts in acidic soils (6, 8, 18). The availability of ammonia (NH3) in acidic soils is
generally low, due to the strong ionization of NH3 to NH4

�, and subsequently decreases

FIG 5 Percent variation in nitrification activity partitioned into soil physicochemical properties (S),
abundance of AOA amoA genes (A), and abundance of AOB amoA genes (B). (a) Model scheme; (b)
analysis.

FIG 6 Association between nitrification activity and AOA (a) and AOB (b) amoA gene abundances in the
treatments. The shaded area indicates the 95% confidence interval of the regression models.
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NH3 diffusion into microbial cells (31). However, genomic analysis suggested that AOA
genes putatively encode pH homeostasis and high-affinity NH3 acquisition systems (32)
and thus could play a crucial role in nitrification in acidic soils where pH and NH3

availability are particularly low (21). In contrast, AOB, which were also adapted to low soil
pH (21), had a far lower substrate affinity than that of AOA (33), which suggests that AOA
outcompeted AOB for substrates in the control soil. Our experiment showed that
the long-term application of liming (NL) reduced AOA abundance, possibly because
the increased soil pH reduced the competitive ability of AOA in soils (6, 34). In
contrast, the abundance of AOB has been found to increase with soil pH (8, 34, 35).
Intriguingly, the application of organic materials in our experiment had no apparent
effect on the abundance of AOA compared to N, despite previous work showing
benefits to AOA of mineralization of manure or plant residues in the absence of the
addition of inorganic fertilizer (28, 36, 37). The reasons for this lack of an effect of
organic fertilizer on AOA abundance may be due to the possible suppression of
AOA growth in the treatments with N and N plus organic material due to high
concentrations of NH4

� immediately after fertilization (38, 39), which overrode the
possible stimulation effect induced by organic material amendment, or higher rates
of turnover of the labile fraction of amended organic materials in our experimental
soils due to higher temperature and precipitation than in previous studies (28, 36).
The labile fraction of amended organic materials may have been quickly mineral-
ized before soil ammonia decreased to a low level following fertilization; however,
the remaining recalcitrant fraction of the organic material may not have stimulated
AOA growth (37) under low levels of ammonia.

As has been reported in previous studies (6, 40), we found that pH was the primary
driver for the shift of AOA community structure. Although the soil pH varied from 4.96
to 6.59, AOA sequences were within the Nitrososphaera cluster, which was recognized
as a neutrophilic or alkaline, rather than acidic, archaeon (40). The Nitrososphaera
cluster has been found to be metabolically active in acidic Ultisols using a DNA-SIP
technique (18) and dominant in fertilized acidic soils (8). In this study, we found that
dominant members of AOA were from the clades Nitrososphaera and B1 in the more
acidic control soil and from clade A in the higher-pH NL and NPM soils, indicating the
possibility of the occurrence of the Nitrososphaera cluster in neutrophilic or acidic soils,
depending on its specific sublineages. Our results suggested that the phylogeny and
characteristics of the Nitrososphaera cluster were more complicated than previously
understood, so we suggest that phylogenetic analysis of AOA communities should

FIG 7 Association between nitrification activity and relative abundance of Nitrosospira cluster 8a in the
treatments, excluding NL. The shaded area indicates the 95% confidence interval of the regression
models.
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focus on the sublineages of the Nitrososphaera cluster in soils, where they are known
to be dominant ammonia oxidizers (8, 17).

Previous studies have suggested that NH4
� is the main factor affecting AOB

composition (20); however, in our study, Mantel tests showed that soil pH rather than
NH4

� shaped AOB communities. The weak effect of NH4
� on AOB community structure

in this study may be due to the particularly low NH4
� content (�0.7 mg N kg�1) caused

by intensive crop uptake and/or N losses in summer (41). We found that Nitrosospira
was exclusively dominant in the AOB communities, probably because Nitrosospira
generally outcompeted Nitrosomonas, which was previously reported for acidic soils (8,
21, 42). In contrast to previous studies that found that Nitrosospira cluster 2 dominated
in acidic soils (21, 43), we found a dominance of Nitrosospira cluster 8a. Generally,
Nitrosospira cluster 2 is restricted to cold temperate soils (44), whereas Nitrosospira
cluster 8a, which is also referred to as clusters 10 and 11 (45, 46), tends to be dominant
(relative abundance of �90%) in soils that experience long periods of warm temper-
atures (47), with optimum growth temperatures of 31°C to 33°C (48), and is active in
extremely acidic soils (49). It is likely that low soil pH and, more importantly, long
periods of warm temperatures at this subtropical study site selected for Nitrosospira
cluster 8a rather than cluster 2. We found that the long-term application of lime
increased the relative abundance of Nitrosospira cluster 3a.1, reflecting the known
preference for neutral and alkaline soils (19, 21). Likewise, Pommerening-Röser and
Koops (50) found that the optimum pH for Nitrosospira cluster 3a.1 was 6.0 under urea
addition, and Zhang et al. (51) noted a preference for lower-altitude soils with higher
temperatures in the Mount Everest region. It appears that high annual temperatures
may have enhanced the suitability of the neutral soil pH of the NL treatment soil for
Nitrosospira cluster 3a.1. In contrast, we found that the abundance of Nitrosospira
cluster 3c increased with the application of pig manure, which also led to the high
levels of SOC. Since cluster 3c has been found to be dominant in an upland Ultisol with
an SOC content of �13.6 g C kg�1 (9) and a Mollisol with an SOC content of �22.8 g
C kg�1 (52), we postulate that this cluster responded to the high SOC content.

Contribution of AOA and AOB to nitrification activity. We used the increase in

the rate of the soil NO3
� concentration to assess nitrification activity (18), and soil pH

and substrate availability (usually NH3) have been suggested to be the two key factors
affecting nitrification activity in acidic soils (21, 53). We found that the application of
lime increased the abundance of AOB and substantially enhanced nitrification activity.
While this increase in nitrification activity may be a result of reduced ionization of NH3

to NH4
� and a rise in the associated substrate availability under the increased-pH

conditions and increased abundance of AOB, maximum rates of nitrification by AOB
have been shown to be 20-fold higher than those by AOA (33).

Previous studies have suggested that nitrification in acidic soils is primarily affected
by AOA (7, 10, 54). However, in contrast to previous findings that showed that
nitrification rates in acidic soils were closely correlated with AOA abundance (21), we
found a negative and a lack of association between AOA abundance and nitrification
activity with all treatments and with all treatments except NL (neutral soil pH), respec-
tively. This may be due to a dominance of AOA-mediated nitrification processes in
previous studies of fertilizer addition that benefited AOA abundance as a result of
reduced soil pH (6). For example, AOA played a key role in nitrification in 50-year-old
tea orchard soil that received 450 kg N ha�1 year�1 and led to a reduction in the soil
pH from 5.16 to 4.01 (7, 55). In that study, long-term fertilization slightly increased the
soil pH due to the addition of P fertilizer as calcium magnesium phosphate (56), and we
found that the dominant AOA clades shifted from the Nitrososphaera and B1 clades in
the control and N treatments to clade A in the NL and NPM treatments. Alves et al. (17)
noted that the Nitrososphaera and B1 clades were actively linked to NH3 oxidation, and
in contrast, clade A elicited little or no nitrification activity. Our results suggest that AOA
may have played a minor role in nitrification in the experimental Ultisol, and the
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contribution of AOA to nitrification activity may have been reduced in the NL and NPM
soils.

The abundance of AOB in our study was more closely coupled with nitrification
activity than AOA, differing from most previous findings for acidic soils (27, 57).
Although similar correlations have been reported for some acidic soils (13, 58), Li et al.
(21) argued that those studies used atypical acidic soils (pH �6), as were used in our
study. However, when the NL soil (neutral pH) was excluded from the analysis, AOB
abundance remained weakly correlated with nitrification activity, indicating that nitri-
fication was primarily affected by AOB in soils under long-term N fertilization. It is likely
that the increased substrate availability by long-term fertilization favored AOB, due to
its much lower substrate affinity than that of AOA (33). He et al. (59) suggested that
AOA may play more-important roles in ammonia oxidation than AOB from acid soils,
due to the reduced availability of ammonia, and they highlighted that a wide range of
AOB members could also contribute to nitrification in acidic environments and that
more investigations were required. Using DNA-SIP, Wang et al. (18) found that AOA
played a key role in nitrification under long-term fertilization in Ultisols; however, they
also suggested that DNA-SIP relied on cell proliferation, and it is likely that AOB
conducted ammonia oxidation without cell division and that RNA-SIP might be more
helpful. Furthermore, the correlation of Nitrosospira cluster 8a with nitrification activity
is weakly positive and at best suggests an association when NL treatment was excluded
from the analysis, indicating that cluster 8a may play a key role in nitrification in acidic
Ultisols. This study suggests that a specific phylotype of AOB has been associated with
nitrification activity in acidic Ultisols, and it is possibly supported by Nitrosospira cluster
8a being the dominant AOB phylotype in the test soil and favored by warm temper-
atures and low soil pH in the study soils. Thus, Nitrosospira cluster 8a may play a key role
in nitrification in tropical and subtropical acidic Ultisols. DNA/RNA-SIP experiments
would be helpful to directly identify the active player in nitrification in further inves-
tigations.

Overall, our results show that the abundance of AOA was higher than that of AOB
in the unfertilized control soil; however, long-term fertilization, especially the applica-
tion of lime, reduced AOA abundance and increased AOB abundance. The dominant
members of the AOA were the Nitrososphaera and B1 clades for all treatments, except
for NL and NPM, in which clade A was dominant. In contrast, Nitrosospira cluster 8a was
the dominant phylotype of AOB in the treatments, while the addition of lime and pig
manure increased the relative abundances of Nitrosospira clusters 3a.1 and 3c, respec-
tively. Nitrification activity was primarily regulated by the interaction of soil pH and AOB
abundance in fertilized soils. When NL treatment was excluded from the analysis,
nitrification activity was weakly positive and at best correlated with Nitrosospira cluster
8a. Our findings indicated that AOB rather than AOA played a key role in nitrification
in the test Ultisols.

MATERIALS AND METHODS
Study site and soil sampling. The field experiment was established in April 1988 at the Yingtan

Red Soil Ecology Experimental Station, Chinese Academy of Sciences, Yujiang, China (28°15=20	N,
116°55=30	E), in a cropping system of continuous summer peanut followed by winter fallow. The area has
a typical subtropical monsoon climate, with an annual average temperature of 17.6°C and precipitation
of 1,795 mm. The soil, derived from quaternary red clay, is classified as a Typic Plinthudult (Ultisol) based
on U.S. Department of Agriculture soil taxonomy, comprising 25.6% sand, 33.2% silt, and 41.2% clay.

Three replicates of seven treatments were arranged in a randomized block design in 34.6-m2 plots,
where the treatments consisted of no fertilizer (control), inorganic NPK fertilizer (N), inorganic NPK
fertilizer plus lime (CaCO3) (NL), inorganic NPK fertilizer plus peanut straw (NPS), inorganic NPK fertilizer
plus rice straw (NRS), inorganic NPK fertilizer plus radish residues (NR), and inorganic NPK fertilizer plus
pig manure (NPM). Annual application of NPK fertilizer in the N treatment comprised 120 kg N ha�1 as
urea, 30 kg P ha�1 as calcium magnesium phosphate, and 90 kg K ha�1 as potassium chloride. In the NPS,
NRS, NR, and NPM treatments, 30% of the inorganic N fertilizer was replaced by organic N. Pig manure
was stockpiled on a concrete slab for 3 months before application. All fertilizer treatments received the
same total N, P, and K; however, as the amounts of P and K in the organic material were generally smaller
than the prescribed doses, the organic fertilizer was supplemented accordingly with calcium magnesium
phosphate and potassium chloride, depending on the P and K contents of the organic materials. For NL,
1,500 kg ha�1 CaCO3 was applied annually. Prior to seed drilling, fertilizers were spread evenly onto the
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soil surface by hand and immediately incorporated into the top 20 cm of soil by plowing. Each year on
10 April, peanut (cv. Ganhua 5) was sown manually by placing two seeds per hole to give 20-cm plant
spacing in rows 30 cm apart. Field management practices were the same for all treatments during the
experimental period.

On 13 December 2015, 10 tillage layer (0 to 20 cm) soil samples were collected at random from each
plot by using a 10-cm-diameter auger and mixed to form a single, composite sample. Samples were
transported to the laboratory in a constant-temperature box containing ice, within 2 days. Visible stones
and plant residues were carefully removed by using forceps, and soil was gently separated along natural
breakpoints, passed through an 8-mm sieve, and then divided into three subsamples, which were air
dried for physicochemical analysis, stored at 4°C to measure nitrification activity for no more than 3 days,
and sieved to �2 mm and immediately stored at �80°C for subsequent DNA extraction.

Analysis of physicochemical properties. Soil pH was measured by using a glass electrode with a
1:5 soil-to-water ratio. Concentrations of soil organic C (SOC) and total N (TN) were determined by using
the wet oxidation redox titration and micro-Kjeldahl methods, respectively. Dissolved organic C (DOC)
was extracted by incubating 10 g fresh soil (on an oven-dried basis) with 50 ml of deionized water for
30 min, followed by shaking (end-over-end) at 25°C, and the samples were then centrifuged at 10,000
rpm for 10 min at 4°C. The supernatant was filtered through a 0.45-�m membrane filter (Whatman,
Clifton, NJ, USA), and the DOC content was quantified by using a Shimadzu C analyzer (TOC Vcph;
Shimadzu, Kyoto, Japan). NH4

�-N, NO3
�-N, and dissolved total N (DTN) were extracted by using 2 M KCl;

the content was measured by using a continuous-flow analyzer (San��; Skalar, Holland); and dissolved
organic N (DON) was calculated as DTN � NH4

�-N � NO3
�-N. Soil available K (AK) was extracted by using

1 M ammonium acetate and measured by using flame photometry (catalog no. FP640; INASA, China). Soil
available P (AP) was extracted by using 0.0125 M H2SO4 in 0.05 M HCl, and its concentration was
determined by using the molybdenum blue method.

Six undisturbed soil cores collected by using a 100-cm3 cylinder were sampled from each plot and
used to measure water retention curves with a ceramic pressure plate in a pressure chamber at
equilibrium matrix potentials of �0.1, �0.2, �1, �3.5, �6, �10, �33, �50, �100, �200, �500, and
�1,500 kPa. The effective diffusion coefficient of oxygen in the soil (DCo) (square meters per second) was
calculated as DCo � 1⁄N2 � |Dao � Qa

p � KH � Dwo � Qw
p | (60), where N is soil porosity; Dao is the free

diffusion coefficient of oxygen in air at 20°C (1.8 � 10�5 m2 s�1); KH is Henry’s equilibrium constant at
20°C (0.03); Dwo is the free diffusion coefficient of oxygen in water at 20°C (2.2 � 10�9 m2 s�1); Qa and
Qw are the proportions of soil porosity occupied by air and water, respectively (Qa � Qw � 1); and p is
the power constant (3.4). Soil porosity (N) was calculated as N � 1 � �/�0, where � is soil bulk density
(grams per cubic centimeter) and �0 is soil particle density (grams per cubic centimeter). The proportion
of soil porosity occupied by water (Qw) was calculated as Qw � � � w/N, where w is the soil gravimetric
moisture content (cubic centimeter per gram).

Soil physicochemical properties are presented in Table 1.
Nitrification activity. Nitrification activity (NA) was determined according to a modified version of

the method used by Ma et al. (61), where 20 g fresh soil (on an oven-dried basis) was placed into a 125-ml
glass jar, to which 50 mg N kg�1 as (NH4)2SO4 was added, and soil moisture was adjusted to a 60%
water-holding capacity with deionized water. The jars were incubated in darkness at 25°C, and 0, 1, 4, and
10 days after the addition of the substrate, three replicates for each treatment were destructively
sampled to determine the nitrate concentration, where soil nitrate was extracted by using 2.0 M KCl and
measured with a continuous-flow analyzer (San��; Skalar, Holland). NA was calculated as the linear
accumulation of nitrate over the incubation period.

DNA extraction and real-time quantitative PCR. Soil DNA was extracted from 0.5 g fresh soil (on
an oven-dried basis) by using the Fast DNA spin kit for soil (MP Biomedicals, CA, USA) and subsequently
purified by using a PowerClean DNA cleanup kit (Mobio, CA, USA) according to the manufacturer’s
protocols. The quality and concentration of the extracted DNA were measured by using gel electrophoresis
(0.8% agarose) and a spectrophotometer (NanoDrop Technologies), and the DNA was stored at �20°C prior
to additional analyses.

Real-time quantitative PCR (qPCR) to identify and quantify archaeal and bacterial amoA genes was done
by using a CFX96 optical real-time detection system (Bio-Rad Laboratories Inc., Hercules, CA, USA). A standard
curve was generated by using plasmid DNA from one representative clone containing each target gene. Each
reaction mixture (25 �l) comprised 12.5 �l SYBR qPCR master mix (Vazyme), 0.25 �l of each primer, and 1 �l
of the DNA template containing approximately 1 to 10 ng of DNA. A negative control was always run with
sterilized distilled water as the template instead of a DNA sample. A serial dilution of the DNA template was
also used to determine whether the PCR had been inhibited during amplification. Details of gene-specific
primers and thermal conditions are presented in Table 3. Amplifications resulted in single peaks, and
efficiencies were 90.1 to 101.7%, with R2 values of between 0.992 and 0.999.

High-throughput sequencing and bioinformatics analysis. We used primer sets Arch-amoA26F/
Arch-amoA417R (62) and amoA-1F/amoA-2R (63) for AOA and AOB amoA gene amplification, respectively,
where the PCR program and reaction composition of AOA and AOB were described previously by Park et al.
(62) and Lin et al. (64), respectively. A unique sample-identifying barcode was added to the forward primer
in PCR amplification, triplicate PCR amplifications were conducted and pooled for each sample, and PCR
products were subsequently purified by using a Qiagen gel extraction kit. Sequencing libraries were gener-
ated by using the TruSeq Nano DNA LT library prep kit (Illumina, USA) according to the manufacturer’s
recommendations, and library quality was assessed on the Qubit 2.0 fluorometer (Thermo Scientific) and
Agilent Bioanalyzer 2100 systems. Finally, high-throughput sequencing of AOA and AOB amoA genes was
carried out by using Illumina MiSeq, and 300-bp paired-end reads were generated.
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Pairs of reads were merged in FLASH version 1.2.7 (65), where forward and reverse reads had
overlapping base lengths of �10 bp and base mismatches were prevented. Sequence data were
processed by using Quantitative Insights into Microbial Ecology (QIIME) v1.8.0 (66), and low-quality
sequences that had quality scores of �20, contained ambiguous nucleotides, or did not match the
primer or barcode were removed. Barcode and primer sequences were deleted after sample sequences
were sorted according to the barcodes. Next, the sequences were compared with sequences in the
reference database (67) by using the UCHIME algorithm to detect chimera sequences that were
subsequently removed. The remaining high-quality sequences at 97% similarity were assigned to the
same OTUs by using Uparse v7.0.1001 software (68), and the most abundant sequence from each OTU
was selected as its representative sequence. The representative OTUs were taxonomically classified from
the construction of neighbor-joining phylogenetic trees in MEGA 6 using representative sequences of the
AOA or AOB amoA genes, together with taxonomically determined reference sequences from GenBank.
We used nomenclature for AOA amoA clusters as defined by Alves et al. (17) and Zhang et al. (8) and for
AOB amoA clusters as defined by Avrahami et al. (69) and He et al. (9). Heterogeneity in the number of
sequences per sample was removed by rarefying sequences prior to calculation of Chao1 (70) and
Shannon (71) diversity indices in QIIME.

Data analysis and statistics. Variances in nitrification activity, amoA gene copy numbers, alpha
diversity, and relative abundances of AOA and AOB clades were tested by using one-way analysis of
variance (ANOVA) in SPSS 18.0 for Windows (SPSS Inc., Chicago, IL, USA). All data were checked for
normality and homogeneity of variance (Levene’s test) prior to testing for treatment differences; data
were ln transformed to meet the assumptions of the ANOVA where necessary. Least-significant-
differences (LSD) tests at a P value of 0.05 were used to test for differences among treatments.
Associations between soil physicochemical variables, AOA or AOB amoA gene copy numbers, and
nitrification activity were tested by using Pearson’s correlation coefficient.

The following analyses were computed in R (version 3.4.1). A multivariate regression tree (MRT)
was built to identify the most important abiotic factors for AOA and AOB community compositions
using the mvpart package (72). Correlations between soil physicochemical variables and AOA or AOB
community composition were calculated in the vegan package (73) by using a Mantel test. As best-fit
models, unimodal canonical correspondence analysis (CCA) and linear redundancy analysis (RDA)
were conducted for AOA and AOB communities, respectively, and only environmental variables with
a VIF of �20 were selected for analysis. Variance partitioning of nitrification activity was analyzed by
using the varpart function in the vegan package, as described previously by Domeignoz-Horta et al.
(74).

Accession number(s). Sequences have been deposited in the DNA Data Bank of Japan under
accession no. DRA006528 and DRA006529.
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