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ABSTRACT Harmful algal blooms (HABs) are serious ecological disasters in coastal
areas, significantly influencing biogeochemical cycles driven by bacteria. The shifts in
microbial communities during HABs have been widely investigated, but the assem-
bly mechanisms of microbial communities during HABs are poorly understood. Here,
using 16S rRNA gene amplicon sequencing, we analyzed the microbial communities
during an early-spring diatom bloom, in order to investigate the dynamics of micro-
bial assembly processes. Rhodobacteraceae, Flavobacteriaceae, and Microbacteriaceae
were the main bacterial families during the bloom. The 30 most abundant opera-
tional taxonomic units (OTUs) segregated into 4 clusters according to specific bloom
stages, exhibiting clear successional patterns during the bloom process. The succes-
sion of microbial communities correlated with changes in the dynamics of algal spe-
cies. Based on the �-nearest taxon distance, we constructed a simulation model,
which demonstrated that the assembly of microbial communities shifted from
strong heterogenous selection in the early stage of the bloom to stochasticity in the
middle stage and then to strong homogeneous selection in the late and after-bloom
stages. These successions were driven mainly by chlorophyll a contents, which were
affected mainly by Skeletonema costatum. Moreover, functional prediction of micro-
bial communities showed that microbial metabolic functions were significantly re-
lated to nitrogen metabolism. In summary, our results clearly suggested a dominant
role of determinacy in microbial community assembly in HABs and will facilitate
deeper understanding of the ecological processes shaping microbial communities
during the algal bloom process.

IMPORTANCE Harmful algal blooms (HABs) significantly influence biogeochemical
cycles driven by bacteria. The shifts in microbial communities during HABs have
been studied intensively, but the assembly mechanisms of microbial communities
during HABs are poorly understood, with limited investigation of the balance of de-
terministic and stochastic processes in shaping microbial communities in HABs. In
this study, the dynamics and assembly of microbial communities in an early-spring
diatom bloom process were investigated. Our data both confirm previously observed
general microbial successional patterns and show new detailed mechanisms for mi-
crobial assembly in HABs. These results will facilitate deeper understanding of the
ecological processes shaping microbial communities in HABs. In addition, predictions
of metabolic potential in this study will facilitate understanding of the influence of
HABs on nitrogen metabolism in marine environments.
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Phytoplankton blooms (e.g., diatoms, haptophytes, and autotrophic dinoflagellates)
account for a significant fraction of marine primary productivity. Diatoms alone are

estimated to contribute 20% to 40% of global carbon fixation (1). Harmful algal blooms
(HABs) induced by diatoms in the open ocean or in coastal areas can be a serious
problem for aquaculture and fisheries (2). Extensive efforts have been made to reveal
the factors that trigger HABs, as it is crucial to understand their dynamics and thus
control them. The occurrence and development of HABs have been explained by a
complex combination of environmental conditions and microbial factors (1). Because of
their roles in biogeochemical cycling during phytoplankton blooms, prokaryotes are
now considered significant factors influencing the development of HABs (3).

Bacterial communities are considered a fundamental component of marine ecosys-
tems, and they are a major driver of nutrient cycles in coastal waters. Moreover, bacteria
have extensive interactions with phytoplankton (4, 5), and these interactions may
influence microbial community compositions (MCCs). Bacterial clades, responding sen-
sitively to phytoplankton blooms, belong to Gammaproteobacteria, Flavobacteriia (phy-
lum Bacteroidetes), and the Roseobacter clade (6). This response is not so specific and
includes distinct clades of taxa that bloom one after another. Study of the MCCs in
mosaic phytoplankton blooms showed that Alphaproteobacteria, Gammaproteobacte-
ria, and Flavobacteria represented the majority of the bacterial communities (7). SAR11
and the Roseobacter clade, within the class Alphaproteobacteria, are of particular
importance for the turnover of dissolved organic matter (DOM) in the bloom (7). This
trophic connection leads to synchronized blooms of bacteria during phytoplankton
blooms (8, 9). Studies of the variation of MCCs during the HAB process have been
widely reported, but few studies have revealed MCC assembly mechanisms during the
bloom process.

Elucidating the processes regulating MCCs would make a significant contribution
toward a comprehensive understanding of bacterial dynamics. It is well recognized that
determinacy and stochasticity are two major types of assembly processes influencing
MCCs (10, 11). The deterministic process involves selection from the abiotic environ-
ment and species interactions (12). In contrast, the stochastic process is induced by
unpredictable disturbances, probabilistic dispersal of microbes, and random birth and
death events (13). Although deterministic and stochastic processes have been found in
animal and plant communities, studies of these two processes in microbial communi-
ties have been reported only in recent years (12, 14). Based on current findings, the
deterministic process may either sort species adapted to a given environment or
exclude species that may otherwise enhance ecosystem function (15). The balance of
the stochastic process has a significant role in defining the assembly of microbial
communities (16). Deterministic and stochastic processes have been widely discussed
in relation to various ecological processes, but little is known about their roles in the
assembly of microbial communities during natural HAB processes.

Xiangshan Bay, located in Zhejiang Province of China, is one of the most important
aquaculture bases with poor water exchange ability. Thousands of fish cages, combined
with the input of residual feed and fish excretion, lead to severe eutrophication in this
semienclosed harbor (17). Consequently, HABs occur frequently, resulting in MCC
disturbances (9). An algal bloom is a strong environmental filtering process that affects
MCCs, but the assembly mechanisms of microbial communities during the bloom
process need to be elucidated. In the present study, we investigated microbial com-
munities during a diatom bloom process in Xiangshan Bay. We sought to elucidate (i)
the composition and succession patterns of microbial communities during the HAB
process and (ii) changes in the relative influences of stochastic and deterministic
processes in the assembly of microbial communities during distinct bloom stages. We
also evaluated the predicted metabolic functions of microbial communities during the
HAB process, which few studies have reported previously. We think that the results of
this study will facilitate understanding of the importance of bacterial roles in the fate
of HABs and the mechanisms for the microbial assembly process during HABs.
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RESULTS
Bloom characteristics. The sudden early-spring bloom in Xiangshan Bay was

induced by Skeletonema costatum and Guinardia delicatula. Chlorophyll a (Chl a)
contents reached 40 �g/liter in the early stage (ES) (Fig. 1B). Cell densities of S. costatum
and G. delicatula ranged from 5.7 � 106 to 8.1 � 106 cells/liter in the ES; the dominant
algal species changed from S. costatum to G. delicatula during this stage. After the ES,
the abundance of S. costatum decreased dramatically, but the G. delicatula cell density
reached its maximum in the middle stage (MS), contributing to the large contents of
Chl a. In the late stage (LS), the abundance of S. costatum was 2.1 � 105 cells/liter,
which was 30 times lower than that in the ES. The contents of Chl a were mainly
accompanied by the occurrence of S. costatum. In the after-bloom (AB) stage, the
concentration of Chl a decreased to 0.98 �g/liter and we could not precisely quantify
S. costatum and G. delicatula; therefore, the abundance data are missing.

Microbial �-diversity. We observed clear differences in richness and phylogenetic
diversity at distinct bloom stages, gradually decreasing from the ES to the AB stage (see
Fig. S1 in the supplemental material). There were no remarkable changes in the

FIG 1 Map of Xiangshan Bay, indicating the sampling sites (A), and the abundance of algal species (B).
ES1 and ES2 indicate samples from 10 February 2017 and 15 February, respectively, and MS1 and MS2
indicate samples from 19 February and 23 February. LS indicates samples from 27 February. AB indicates
samples from 8 March. ES1 and ES2 were integrated into the ES of the bloom according to the Chl a
contents, and MS1 and MS2 were integrated into the MS of the bloom. The map was created using Surfer
13 (Golden Software).
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Shannon index and evenness during the whole bloom process. Richness and phyloge-
netic diversity showed the strongest positive correlations with Chl a contents (r � 0.426
[P � 0.05] and r � 0.494 [P � 0.01], respectively), followed by dissolved oxygen (DO)
(r � 0.386 [P � 0.05] and r � 0.430 [P � 0.05], respectively). Richness and phylogenetic
diversity showed the strongest negative correlations with salinity (r � �0.491 [P �

0.01] and r � �0.531 [P � 0.01], respectively), ammonium (r � �0.467 [P � 0.05] and
r � �0.475 [P � 0.01], respectively), and water temperature (r � �0.423 [P � 0.05] and
r � �0.465 [P � 0.05], respectively) (Table S1). The environmental variables were not
correlated with the Shannon index and evenness. These results indicated that richness
and phylogenetic diversity were susceptible indices during algal bloom processes.

MCCs during the bloom process. The dominant bacterial classes were Alphapro-
teobacteria (relative abundance, 32.9%), Flavobacteriia (28.8%), Gammaproteobacteria
(18.6%), Actinobacteria (8.2%), Betaproteobacteria (3.7%), and Verrucomicrobiae (1.9%),
which constituted 94.1% of the total number of sequences (Fig. 2A). Furthermore,
Rhodobacteraceae (23.8%), Flavobacteriaceae (20.4%), Microbacteriaceae (8.1%), Cryo-
morphaceae (8.1%), Surface1 (SAR11) (6.6%), Oceanospirillaceae (5.7%), SAR86 (3.9%),
Verrucomicrobiaceae (1.8%), and Puniceicoccaceae (1.2%) were the main bacterial fam-
ilies, accounting for 79.6% of the total number of sequences (Fig. 2B).

FIG 2 Relative abundances of microbial lineages at the class (relative abundance of �0.5%) (A) and
family (relative abundance of �5%) (B) levels during the diatom bloom process.

Zhang et al. Applied and Environmental Microbiology

September 2018 Volume 84 Issue 18 e01000-18 aem.asm.org 4

http://aem.asm.org


MCCs changed greatly during the bloom process (Fig. 2). Rhodobacteraceae was the
most abundant taxon (average relative abundance, 37.1%) in the ES but decreased
significantly in the AB stage (15.2% abundance). Compared with the bloom stages (ES,
MS, and LS), the proportions of SAR11 (from 2.9% to 17.9%), Comamonadaceae (from
0.11% to 6.4%), SAR86 (from 1.7% to 7.3%), and Vibrionaceae (from 0.03% to 1.6%)
increased significantly at the AB stage. Oceanospirillaceae and Verrucomicrobiaceae
reached maximum abundance in the MS. Flavobacteriaceae had relatively stable abun-
dance throughout the bloom process. In addition, the 30 most abundant operational
taxonomic units (OTUs) were affiliated mainly with Rhodobacteraceae, Flavobacteri-
aceae, Oceanospirillaceae, Verrucomicrobiaceae, and SAR11 (Fig. 3). With only these
OTUs involved in the random forest analysis, the overall out-of-bag (OOB) error was
only 3.45% (Table S2), with 100% classification accuracy in the MS, the LS, and the AB
stage, suggesting that the 30 most abundant OTUs could indicate the distinct algal
bloom stages precisely. The cluster of columns in the heatmap (Fig. 3) revealed
approximately 4 clusters according to the bloom stages, exhibiting clear successional
patterns during the bloom process.

We also investigated the correlation of the 30 most abundant OTUs with the
abundance of S. costatum. Fourteen of the 30 most abundant OTUs were strongly
correlated with S. costatum (Fig. S2). Five OTUs showed significant (P � 0.001) positive
correlations with S. costatum, i.e., OTU12736 (R2 � 0.827), OTU7254 (R2 � 0.696),
OTU5946 (R2 � 0.678), OTU10900 (R2 � 0.646), and OTU12316 (R2 � 0.450). Negative
linear correlations with S. costatum were observed for OTU2635 (R2 � 0.598 [P �

0.001]), OTU4140 (R2 � 0.418 [P � 0.001]), OTU3566 (R2 � 0.373 [P � 0.01]), OTU10614
(R2 � 0.306 [P � 0.01]), OTU8289 (R2 � 0.305 [P � 0.01]), and OTU6302 (R2 � 0.240 [P �

0.05]). Three OTUs (OTU1301, OTU5613, and OTU10568) showed negative nonlinear
correlations with S. costatum. In summary, 9 of the 30 most abundant OTUs were closely
associated with the decline of S. costatum, which indicated that those OTUs might
inhibit the growth of S. costatum or promote its death during the algal bloom process.

FIG 3 Abundance of the 30 most abundant OTUs in 4 bloom stages. Samples from the same stage clustered together. Microbial abundance was scaled with
log transformation in the heatmap.
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Successional patterns of microbial communities during the bloom process. The
nonmetric multidimensional scaling (NMDS) plot showed that samples clustered to-
gether according to distinct bloom stages (Fig. 4A), suggesting that there were varia-
tions in community structure over the bloom stages. Permutational multivariate analysis
of variance (PERMANOVA) revealed that the structures of the microbial communities varied
significantly (R2 � 0.527 [P � 0.0001]) among distinct bloom stages (Table 1), which
indicated that the succession of microbial communities was induced mainly by the
diatom bloom. Moreover, there were significant correlations between microbial com-
munities and all environmental variables (Table 1; also see Fig. S3 in the supplemental
material), as evidenced by Mantel tests and PERMANOVA (Table 1). In addition, the
succession of microbial communities occurred mainly along the NMDS1 axis, which was
significantly correlated with the Chl a content (R2 � 0.478 [P � 0.01]) (Fig. 4B).
Therefore, even if this sudden algal bloom occurred during dramatic environmental
changes, the dynamics of algal species might be a key factor driving the succession of
microbial communities.

Community assembly processes in successive stages. The �-nearest taxon index
(�NTI) was used to provide deep insight into the potential roles of deterministic or

FIG 4 NMDS ordinations of microbial community dissimilarity in the bloom process (A), and correlation between Chl a contents and
NMDS1 (B). Colors correspond to different sampling stages, indicating the succession of microbial communities together with NMDS1.

TABLE 1 PERMANOVA (Adonis) analysis based on Bray-Curtis dissimilarity with 999
permutations and simple Mantel tests for correlations between environmental variables
(Euclidean distance) and �-diversity of microbial communities (Bray-Curtis dissimilarity)
with 999 permutations

Variablea � (Mantel test) R2 (Adonis)

Bloom stage 0.527
DO 0.593 0.261
pH 0.591 0.275
Phosphate level 0.454 0.234
Salinity 0.450 0.210
Nitrate level 0.430 0.203
Nitrite level 0.382 0.233
Chl a content 0.367 0.202
Ammonium level 0.366 0.183
Temperature 0.364 0.237
COD 0.353 0.205
Silicate level 0.279 0.178
aDO, dissolved oxygen; COD, chemical oxygen demand. All P values were �0.01.
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stochastic factors in phylogenetic community succession of microbial communities.
Based on the analysis of phylogenetic turnover, �NTI values were greater than 2 in the
ES (Fig. 5A). After that, �NTI values decreased significantly throughout the bloom
process. In the MS, most �NTI values ranged from �2 to 2, suggesting a role of
stochasticity. In the LS and the AB stage, almost all of the �NTI values were lower than
�2, indicating a deterministic process. These results revealed that �NTI distributions
progressively shifted along the bloom stages, and the mechanisms driving the succes-
sion of microbial communities might have been different.

Based on the pattern of �NTI values and on environmental heterogeneity in
different bloom stages, we assembled microbial communities at 4 bloom stages in a
simulation model (Fig. 6). Environmental heterogeneity was the highest in the ES,
indicating that selection by environmental variables ruled the deterministic process. In
the MS, there was a transition from selection of heterogenous variables to stochasticity,
as environmental heterogeneity decreased significantly. In the LS and the AB stage,
environmental heterogeneity continuously decreased, and the deterministic assembly
process of the microbial communities was induced mainly by homogeneous selection.

FIG 5 Patterns of distribution of �NTI values across bloom stages (A), and effect of algal biomass (indicated by Chl a contents) on the
distribution of �NTI values (B). In panel A, horizontal dashed lines indicate lower and upper significance thresholds at �2 and 2,
respectively; the asterisks denote the �NTI average in each group.

FIG 6 Simulation model of the successional pattern of microbial communities based on �NTI distribu-
tions. Ecological selection is weak from �2 to 2 (green area), while selection is strong toward positive and
negative values on the y axis, resulting from strong variable selection (VS) and homogeneous selection
(HS), respectively. The boxplot shows the environmental heterogeneity in each bloom stage. The bar plot
shows the abundance of 2 harmful algal species. The prebloom stage, without bloom disturbance, may
have ecological selection similar to that of the AB stage.
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The distribution of �NTI values changed in the simulation, corresponding closely to the
shifts in Chl a contents (Mantel � � 0.264 [P � 0.004]) (Table 2 and Fig. 5B) and silicate
levels (Mantel � � 0.202 [P � 0.003]). The simulation showed that assembly of microbial
communities shifted from strong heterogenous selection (�NTI of �2, in the ES) to
stochasticity (��NTI� of �2, in the MS) and then to strong homogeneous selection (�NTI
of less than �2, in the LS and the AB stage), accompanied mainly by the dynamics of
algal species.

Predicted metabolic potential during the bloom process. The nearest sequenced
taxon index (NSTI) values ranged from 0.056 to 0.113; the mean value was 0.090 �

0.013 for all samples (see Data Set S2 in the supplemental material). The Bray-Curtis
distance-based redundancy analysis (db-RDA) showed a clear shift in the composition
of functional gene families throughout the 4 bloom stages (Fig. S4). The most frequent
predicted functions were amino acid metabolism (12.2%), membrane transport (11.4%),
carbohydrate metabolism (10.4%), replication and repair (7.1%), and energy metabo-
lism (5.8%) (Fig. S5).

Nutrient levels, including nitrate, nitrite, ammonium, phosphate, and silicate levels,
were positively correlated with predicted metabolic potential in the MS and LS,
indicating greater relative potential of nitrogen metabolic dynamics than in the other
stages (Fig. S4 and Table S3). Therefore, gene families of nitrogen metabolism were
investigated in detail (Fig. 7). Seventeen genes segregated into 4 clusters according to

TABLE 2 Simple Mantel tests for correlations between environmental variables (Euclidean
distance) and �NTI distance matrix for microbial communities with 999 permutations

Variablea � (Mantel test) P

Chl a content 0.264 0.004
Silicate level 0.202 0.003
Salinity 0.179 0.038
DO 0.137 0.068
pH 0.129 0.096
COD 0.104 0.125
Nitrate level 0.044 0.251
Temperature �0.006 0.462
Ammonium level �0.016 0.509
Phosphate level �0.045 0.604
Nitrite level �0.137 0.894
aDO, dissolved oxygen; COD, chemical oxygen demand.

FIG 7 Relative abundances of nitrogen metabolism-related genes during the bloom process, as predicted by PICRUSt. The predicted genes could be segregated
into 4 clusters in a row according to their functions.
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their predicted abundance (Fig. 7). Cluster I included mainly NO/N2O-reducing-related
genes (norB, norC, and nosZ). Cluster II included mainly nitrogen-fixation-related genes
(nifK, nifH, and nifD), which were particularly frequent in most samples from the ES.
Cluster III genes, including nitrite-reducing-related genes (nirB and nirD), had greater
relative abundance than genes in other clusters. Genes in cluster IV (napB, narG_nar-
Z_nxrA, narl_narV, and narH_narY_nxrB) were related to nitrate reduction.

Regarding the contributions of bacterial families to the selected genes (Fig. S6),
genes in cluster I were predicted mainly to occur in Flavobacteriaceae (�43.9% of
contributions), which contributed only to this cluster. The high prevalence of cluster II
genes in the ES was attributed mainly to Puniceicoccaceae (Verrucomicrobia; �49.1% of
contributions). The predicted source of cluster III genes was primarily the Rhodobacte-
raceae family (�54.4% of contributions). The predicted sources of cluster IV genes were
Comamonadaceae (�49.8% of contributions) and Halomonadaceae (47.8% of contribu-
tions in napB). The taxonomic metagenomic contributions identified here revealed that
each of the gene clusters was contributed mainly by a single bacterial family.

DISCUSSION
Microbial �-diversity variations during the bloom process. Microbial �-diversity

decreased significantly during the diatom bloom process (see Fig. S1 in the supple-
mental material), as observed previously in Xiangshan Bay (9). Factors correlated with
bacterial richness and growth would be expected to determine the microbial succes-
sion. Chl a is one of those factors, which can be used to estimate phytoplankton
biomass directly (18). The spatial and temporal distributions of Chl a are closely related
to marine bacterial abundance (19, 20). Moreover, a microcosm study found that the
presence of phytoplankton could affect bacterial richness and production significantly
(21). In line with these studies, we found that microbial �-diversity was strongly
influenced by diatom biomass (Table S1). Here we also showed that the dominant algal
species shifted during the bloom process (Fig. 1B), which may also affect microbial
�-diversity, because distinct algal species could release DOM, facilitating differential
bacterial growth (22).

We should note that environmental variables, including salinity and water temper-
ature, were related to microbial �-diversity. During this early-spring bloom, the water
temperature increased significantly from the ES to the AB stage, which would evidently
affect bacterial abundance (19). Salinity is generally associated with dramatic changes
in bacterial abundance and community composition (23, 24). Consequently, microbial
�-diversity was influenced mainly by bloom disturbances, together with water temper-
ature and salinity.

MCCs associated with the diatom bloom. Members of the Alphaproteobacteria/
Gammaproteobacteria and Flavobacteria constituted the major parts of MCCs in this
early-spring bloom (Fig. 2A). Flavobacteriaceae and Rhodobacteraceae were the most
dominant bacteria during the bloom process (Fig. 2B). The relative abundances of these
taxa were similar to those in previously reported HABs in the Xiangshan Bay (9) and in
other locations (21, 25). Flavobacteriaceae, which can utilize a broad range of biopoly-
mers (particularly polysaccharides and proteins) (7), are known for their ability to thrive
under bloom conditions in temperate waters, as well as in polar systems (7, 25). The
relative abundance of Flavobacteria in the present study was stable, possibly as a result
of eutrophication and input of organic matter from aquaculture in Xiangshan. Marine
Rhodobacteraceae taxa are major vitamin suppliers for B12-auxotrophic prokaryotes and
for eukaryotic primary producers (e.g., diatoms, dinoflagellates, and brown algae) (26,
27). Interestingly, about 90% of Rhodobacterales species possess the complete vitamin
B12 synthesis pathways (28), indicating that Rhodobacterales might directly support the
diatom bloom by supplying vitamins. Hence, a decrease in Rhodobacteraceae abun-
dance during the bloom process might promote the decline in diatoms.

The bacterial taxa SAR11 and SAR86 are oligotrophic bacterial clades whose abun-
dance may increase with diatom biomass and with Chl a contents (29, 30). Increases in
Vibrio abundance have been associated with algal blooms and, in some cases, with
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specific species of algae (31). High Vibrio abundance may occur in diatom-dominated
phytoplankton assemblages (32). Moreover, Vibrio abundance was related to water
temperature (31). Therefore, diatom blooms and water temperature may contribute to
the progression of Vibrio. Oceanospirillaceae was tightly linked to DOM (33), so that
DOM derived from algae would significantly influence their growth. Verrucomicrobi-
aceae were also enriched in this bloom, because members of this taxon could use
diverse glucoside hydrolases to degrade polysaccharides during the bloom process
(34).

According to an analysis of the 30 most abundant OTUs, the abundance of Rhodo-
bacteraceae was closely linked to that of S. costatum, or the decrease in Rhodobacter-
aceae was unfavorable for the growth of S. costatum. Nine OTUs with negative
correlations with S. costatum belong to Oceanospirillaceae and Flavobacteriaceae. Mem-
bers of Oceanospirillaceae and Flavobacteriaceae have long been reported to have
algicidal activity (35, 36), which may inhibit the growth of S. costatum. Therefore, our
results indicate that some dominant bacterial members may change the course of
diatom blooms, according to the interactions between bacteria and diatoms.

Linking of microbial community variations with diatom blooms. Algal blooms
could drive the variations in MCCs significantly, because DOM, allelochemical matter,
and other growth factors derived from algal species could strongly influence bacteria
growing in alga-related circumstances. Our results revealed that samples could cluster
into the corresponding bloom stages (Fig. 3 and 4A; also see Fig. S3), and the diatom
bloom could explain the largest MCC variations (Table 1), indicating that MCC variations
were closely associated with bloom dynamics. Among the environmental variables
analyzed, DO and pH were major abiotic factors governing the dynamics of microbial
community structures (Table 1; also see Fig. S3). DO and pH are closely linked to algal
growth, due to photosynthesis and the respiration of algal cells. Previous studies
proved that DO and pH are major factors affecting microbial community structures in
various ecosystems (37, 38). Taken together, our results demonstrated that diatom
bloom dynamics would significantly determine the MCCs in Xiangshan Bay.

MCCs varied dramatically over the whole process, which supported the idea of
strong temporal shifts in microbial assemblages, and clustered according to bloom
stages, which suggested a potential repeatable bloom succession. The cluster of the 30
most abundant OTUs and random forest analysis revealed that MCCs shifted precisely
with bloom dynamics (Fig. 3; also see Table S2). Moreover, random forest classification
achieved a high level of prediction accuracy with the 30 most abundant OTUs (Table
S2), suggesting the great bloom-indicating ability of these OTUs. This result has evident
ecological significance for improving the accuracy of the forecast model for HABs. There
are many heuristic models capable of simulating various aspects of HABs (39), but most
of them have a relatively low level of forecast accuracy. The input parameters in these
models are mainly physiochemical variables and not biological factors (e.g., bacteria or
algae) that are inherent factors in HABs (2). Therefore, bacteria with bloom-indicating
abilities should be integrated into forecast models to improve their accuracy in the
future.

Relative roles of deterministic versus stochastic processes. Variations in the
importance of deterministic and stochastic assembly processes are prevalent in natural
ecosystems (12, 14, 40). To the best of our knowledge, the present study is somewhat
novel in estimating the relative strengths of deterministic and stochastic processes in
defining microbial communities across whole HABs. Our results revealed that diatom
biomass was the most important factor driving microbial assembly throughout the HAB
(Table 2 and Fig. 5B), but there might have been other factors driving microbial
assembly in specific bloom stages.

According to �NTI values (Fig. 5A) and the simulation model (Fig. 6), we observed
a greater influence of determinacy in the initial successional stages. This result is
consistent with previous studies that reported microbial primary successions in various
ecosystems (14, 16, 40). The high level of determinacy in the ES may be the result of
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eutrophication. The nutrient loads from catchments and excessive aquaculture activi-
ties exacerbate the degree of eutrophication in Xiangshan Bay (41). Consequently,
strong selective forces imposed by high nutrient inputs may drive succession of the
microbial communities in the initial or prebloom stages. In the MS, stochasticity mainly
drove bacterial assembly. We inferred that physiochemical conditions are not as
extreme as in the ES, because environmental heterogeneity decreased significantly. In
contrast to conditions in other bloom stages, there was a strong wind on the MS
sampling day, which would promote the immigration of bacteria by strong waves.
Thus, random dispersal could have been an important ecological factor in the MS. In the
LS and the AB stage, the deterministic process again governed bacterial assembly, but
it was induced mainly by environmental homogeneity (Fig. 6). In the LS, many of the
S. costatum organisms were lysed, and DOM derived from this algal species was
released into the seawater, leading to strong homogeneous selection (5). In the AB
stage, we observed an evident increase in temperature, which might also be an
important factor driving MCCs, as reported previously (42). We inferred that the
influence of the rapidly rising temperatures might override the effects of other envi-
ronmental variables, inducing homogeneous selection at the AB stage.

Although our analyses explained the MCC successional patterns in the whole HAB,
the repeatability in Xiangshan Bay and other algal bloom processes still needs to be
tested. Nonetheless, the present data helped to elucidate the relative magnitude of
forces driving MCCs, which are crucial components of both natural and agricultural
ecosystems. In the future, more samples will be integrated into this model to test its
repeatability and to improve its accuracy.

Predicted metabolic potential in the diatom bloom. Evidence for variation in
MCCs in HABs has been widely reported, but few studies focused on the metabolic
potential of the microbial communities. To gain more insights into the metabolic
potential of bacteria in the HAB process, PICRUSt was used to predict the metagenome
of each bloom stage. The NSTI values (see Data Set S2 in the supplemental material)
were either similar to or lower than the mean NSTI value reported for bacterial
communities in samples collected from various environments (43–45). Therefore, we
inferred that our predicted metabolic potential is supported by the microbial genomic
reference database.

The present study revealed that the metabolic functions of microbial communities
were significantly related to nitrogen (Table S3 and Fig. S4), and distinct bacterial
families contributed to the different metabolic potentials (Fig. 7; also see Fig. S6), which
may be induced by the nitrogen nutrient levels. Cluster I consisted mainly of genes
encoding nitric oxide and nitrous oxide reductases. This metabolic potential might be
due to the family Flavobacteriaceae (46). The metabolic potential in cluster II was
related to nitrogen fixation, with Puniceicoccaceae (phylum Verrucomicrobia) being the
main contributor. A novel bacterium of the family Puniceicoccaceae, with nitrogen-
fixing ability, was found last year (47). In addition, nitrogen fixation by heterotrophic
bacterial communities could be significantly stimulated by high nutrient loads (48);
therefore, there may be a relatively greater nitrogen fixation potential in the ES, in
comparison to other stages (Fig. 7). Rhodobacteraceae, the main clade in cluster III, is an
important denitrifying family (49) related to nitrite reduction. Members of Coma-
monadaceae and Halomonadaceae in cluster IV have been observed to catalyze the
reduction of nitrate (50, 51). These results indicated that nitrogen metabolism is
mediated by a diverse group of bacteria, even though some of them are not the most
abundant taxa. Moreover, anthropogenic and agricultural activities resulted in large
nitrate amounts entering Xiangshan Bay, and HABs may significantly influence the
removal of nitrate from the ecosystem.

In the present study, we studied the microbial metabolic function potential in the
HAB process, based on 16S rRNA gene sequencing and PICRUSt, and we realized that
there might be some bias in this method. Gene ontology in the PICRUSt script is based
on the GreenGenes v13.5 database, which is not as accurate as the newest SILVA
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database. Moreover, the annotation is implemented based on well-characterized
human-pathogenic species, which may not be suitable for environmental samples. A
more accurate input metagenome would require a newer database and more anno-
tated species from environmental samples. In addition, quantitative data, such as
absolute bacterial abundance, and functional genes should be integrated. Therefore,
more reliable analytical techniques, including quantitative PCR, metagenomic sequenc-
ing, and metatranscriptomic sequencing, will be applied to study metabolic function
potential in future work.

Overall, microbial communities in this early-spring bloom exhibited changes in
diversity and composition during the bloom process. In particular, the 30 most abun-
dant OTUs responded significantly to the algal bloom, exhibiting clear successional
patterns in distinct stages. Moreover, our exploration of the diatom bloom in the
Xiangshan Bay also provided novel insights about the relative roles of the deterministic
and stochastic processes in driving microbial community structures. Both ecological
processes played important roles in the assembly of microbial communities, but the
deterministic process was of greater importance during the bloom process. In addition,
metabolic potential prediction suggested that the outbreak of diatoms might have a
significant impact on the denitrification process. In the future, detailed information
about the interaction between microbial communities and phytoplankton, as well as
metabolic functional characteristics, is essential to better understand the mechanisms
influencing the formation of HABs.

MATERIALS AND METHODS
Sample collection. Samples were collected in February and March 2017 from 5 stations in Xiangshan

Bay during the diatom bloom process, in the ES, MS, LS, and AB stage (Fig. 1). For the ES, samples were
collected on 10 February and 15 February. For the MS, samples were collected on 19 February and 23
February. For the LS and the AB stage, samples were collected on 27 February and 8 March, respectively.
Twenty-nine water samples were collected from the surface layer (0.5 m deep), using a 5-liter water
sampler. For phytoplankton quantification, 1 liter of each water sample was fixed with 1% Lugol’s
solution. After filtration with a 100-�m mesh, approximately 600 ml of seawater was filtered using
0.2-�m filters (47-mm-diameter polycarbonate; Millipore, USA); the filters were then stored at �80°C
prior to DNA extraction. To prevent contamination between samples, the water sampler and filtration
systems were washed carefully with sterile water before water collection and filtration.

After homogenization by gentle shaking, phytoplankton samples were characterized and enumer-
ated using a counting chamber with a light microscope (Axioplan; Carl Zeiss, Jena, Germany). Water
temperature, salinity, and pH were measured on board. DO, Chl a, chemical oxygen demand (COD),
phosphate, silicate, nitrate, nitrite, and ammonium levels were measured using standard methods (52).

DNA extraction and PCR amplification. DNA extraction was performed using the Power Soil DNA
isolation kit (Mo Bio, USA), according to the manufacturer’s instructions. DNA concentrations were
quantified using a Nanodrop 2000 instrument (Thermo Fisher Scientific, Wilmington, DE, USA). The V4
hypervariable region of the 16S rRNA gene was amplified in triplicate PCRs (20-�l reaction volume, with
5� FastPfu buffer, 2.5 mM deoxynucleoside triphosphates [dNTPs], 5 �M combined primers, and FastPfu
polymerase), using 10 ng DNA template and the primer pair 515f and 806r (53). PCR cycling conditions
were as follows: denaturation at 95°C for 3 min, 27 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 45
s, and a final extension at 72°C for 10 min. Triplicate PCR amplicons were mixed after purification using
a TaKaRa purification kit (TaKaRa, Japan). Libraries were then generated using the TruSeq DNA sample
preparation kit for Illumina (Illumina, San Diego, CA, USA), following the manufacturer’s instructions. The
libraries were sequenced using a MiSeq platform (Illumina) in a paired-end 250-bp sequence read run at
MajorBio Co. Ltd. (Shanghai, China).

Data processing. QIIME v1.9 (54) and USEARCH v6.1 (55) pipelines were used to perform quality
control and to cluster sequences into OTUs. Overlapping reads were merged using FLASH, with default
parameters (56). Raw sequences were demultiplexed and filtered to remove low-quality sequences using
QIIME. Chimeras were detected and removed with USEARCH using the SILVA 128 database (57). OTUs
were clustered at 97% sequence similarity using UCLUST (58). Taxonomic assignments were achieved by
UCLUST with the SILVA 128 reference database. OTUs affiliated with chloroplast, mitochondrion, unas-
signed, and unclassified sequences and singletons were removed from the data set before downstream
analysis. The numbers of final clean reads in each sample ranged from 16,618 to 82,467 reads, yielding
a total of 3,529 OTUs (see Data Set S1 in the supplemental material).

Statistical analyses. For estimation of �-diversity, sequences in each sample were normalized at
the lowest sequence depth and rarefied at 16,610 reads per sample. The different �-diversity
estimations (richness, Shannon index, phylogenetic diversity, and evenness) were calculated using
QIIME and visualized using the ggplot2 package (59). The relationships between �-diversity indices
and environmental variables were calculated by Spearman’s rank correlation using the psych
package (60). The MCCs were analyzed at the class (relative abundance of �0.5%) and family
(relative abundance of �5%) levels. The 30 most abundant OTUs were selected for study of the shifts
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in MCCs at distinct bloom stages, and the abundance of each OTU was scaled by color in a heat map
using the pheatmap package (61). Random forest analysis was performed to test whether the 30
most abundant OTUs could predict the distinct bloom stages using the randomForest package (62).
To track the successional trajectories of microbial communities in the bloom process, �-diversity was
calculated using the Bray-Curtis distance and visualized by a two-dimensional NMDS plot. The
db-RDA (63) was calculated using the capscale function in vegan (64), to explore the effects of
environmental variables on MCCs. Mantel tests (65) and PERMANOVA (66) were used to verify the
explanation of environmental variables in the succession of MCCs. To determine environmental
heterogeneity, the homogeneity of multivariate dispersions, applied to the environmental variables
(67), was calculated using the betadisper function in vegan. All of the environmental variables were
standardized before the calculation of environmental heterogeneity. All statistical analyses were
performed with R statistical software (https://www.r-project.org).

Analysis of assembly processes of microbial communities. The phylogenetic turnover (phyloge-
netic �-diversity) was quantified using the �NTI (12). Based on the random shuffling of OTU labels across
the tips of the phylogeny, the �NTI was computed as the number of standard deviations that observed
�-mean nearest taxon distance (�MNTD) values deviated from the mean of the null distribution (999 null
replicates) (12, 68). The absolute magnitude of the �NTI reflects the influence of the deterministic process
(��NTI� of �2); the greater the magnitude is, the greater the influence of the deterministic process is.
Values of ��NTI� of �2 indicate that the stochastic process may play an important role in structuring
microbial communities during the bloom process.

Metagenomic prediction of microbial communities. Functional metagenomes during the bloom
stages were predicted from clean reads from 16S rRNA sequencing using PICRUSt (43). Briefly, OTUs were
picked based on the closed reference OTU-picking method, at 97% sequence similarity, against the
GreenGenes v13.5 database in QIIME. The OTU table was submitted to local PICRUSt v1.1.2 for
metagenome prediction, which then created the final metagenomic functional predictions based on
KEGG pathways, at classification levels 2 and 3. To ensure the accuracy of metagenomic predictions, the
NSTI value, which indicates the distance of the 16S rRNA-sequenced microbes from the genome-
sequenced microbes, was calculated. Lower NSTI values reflect a shorter distance between our se-
quenced microbes and the genome-sequenced microbes in the reference database (43).

A db-RDA was used to estimate the relationships between metabolic gene ontologies (Bray-Curtis
distances from predicted gene abundance) and environmental variables, including nitrate, nitrite,
ammonium, phosphate, and silicate levels. The genes predicted to be associated with nitrogen
metabolism were clustered (genes with total abundance of �7,000 copies in all samples were
discarded) and visualized using the pheatmap package in R (61). The contribution of OTUs to
nitrogen metabolism-related genes was computed using metagenome_contributions.py in PICRUSt.
Bacterial families with contributions to nitrogen metabolism of �1% were selected and graphed.

Accession number(s). Raw sequences were submitted to the NCBI Sequence Read Archive with the
accession number SRP130859.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/AEM
.01000-18.

SUPPLEMENTAL FILE 1, PDF file, 1.0 MB.
SUPPLEMENTAL FILE 2, XLS file, 0.1 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.1 MB.

ACKNOWLEDGMENTS
This work was funded by the National Natural Science Foundation of China (grant

41706132), the Zhejiang Provincial Natural Science Foundation of China (grant
LQ17D060001), the Natural Science Foundation of Ningbo (grant 2016A610094), the
Open Fund of Key Laboratory of Integrated Marine Monitoring and Applied Technol-
ogies for Harmful Algal Blooms, State Oceanic Administration (grant MATHAB201708),
and the K. C. Wong Magna Fund of Ningbo University.

REFERENCES
1. Teeling H, Fuchs BM, Bennke CM, Kruger K, Chafee M, Kappelmann L,

Reintjes G, Waldmann J, Quast C, Glockner FO, Lucas J, Wichels A, Gerdts
G, Wiltshire KH, Amann RI. 2016. Recurring patterns in bacterioplankton
dynamics during coastal spring algae blooms. Elife 5:e11888. https://doi
.org/10.7554/eLife.11888.

2. Anderson DM, Cembella AD, Hallegraeff GM. 2012. Progress in under-
standing harmful algal blooms: paradigm shifts and new technologies
for research, monitoring, and management. Annu Rev Mar Sci
4:143–176. https://doi.org/10.1146/annurev-marine-120308-081121.

3. Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke

CM, Kassabgy M, Huang S, Mann AJ, Waldmann J. 2012. Substrate-
controlled succession of marine bacterioplankton populations in-
duced by a phytoplankton bloom. Science 336:608 – 611. https://doi
.org/10.1126/science.1218344.

4. Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR,
Morales RL, Berthiaume CT, Parker MS, Djunaedi B, Ingalls AE, Parsek MR,
Moran MA, Armbrust EV. 2015. Interaction and signalling between a
cosmopolitan phytoplankton and associated bacteria. Nature 522:
98 –101. https://doi.org/10.1038/nature14488.

5. Taylor JD, Cottingham SD, Billinge J, Cunliffe M. 2014. Seasonal microbial

Microbial Community Assembly in a Diatom Bloom Applied and Environmental Microbiology

September 2018 Volume 84 Issue 18 e01000-18 aem.asm.org 13

https://www.r-project.org
https://www.ncbi.nlm.nih.gov/sra/?term=SRP130859
https://doi.org/10.1128/AEM.01000-18
https://doi.org/10.1128/AEM.01000-18
https://doi.org/10.7554/eLife.11888
https://doi.org/10.7554/eLife.11888
https://doi.org/10.1146/annurev-marine-120308-081121
https://doi.org/10.1126/science.1218344
https://doi.org/10.1126/science.1218344
https://doi.org/10.1038/nature14488
http://aem.asm.org


community dynamics correlate with phytoplankton-derived polysaccha-
rides in surface coastal waters. ISME J 8:245–248. https://doi.org/10
.1038/ismej.2013.178.

6. Wemheuer B, Gullert S, Billerbeck S, Giebel HA, Voget S, Simon M, Daniel
R. 2014. Impact of a phytoplankton bloom on the diversity of the active
bacterial community in the southern North Sea as revealed by meta-
transcriptomic approaches. FEMS Microbiol Ecol 87:378 –389. https://doi
.org/10.1111/1574-6941.12230.

7. Landa M, Blain S, Christaki U, Monchy S, Obernosterer I. 2016. Shifts in
bacterial community composition associated with increased carbon cy-
cling in a mosaic of phytoplankton blooms. ISME J 10:39 –50. https://doi
.org/10.1038/ismej.2015.105.

8. Berry MA, Davis TW, Cory RM, Duhaime MB, Johengen TH, Kling GW,
Marino JA, Den Uyl PA, Gossiaux D, Dick GJ, Denef VJ. 2017. Cyanobac-
terial harmful algal blooms are a biological disturbance to western Lake
Erie bacterial communities. Environ Microbiol 19:1149 –1162. https://doi
.org/10.1111/1462-2920.13640.

9. Chen H, Zhang H, Xiong J, Wang K, Zhu J, Zhu X, Zhou X, Zhang D. 2016.
Successional trajectories of bacterioplankton community over the com-
plete cycle of a sudden phytoplankton bloom in the Xiangshan Bay, East
China Sea. Environ Pollut 219:750 –759. https://doi.org/10.1016/j.envpol
.2016.07.035.

10. Albright MBN, Martiny JBH. 2018. Dispersal alters bacterial diversity and
composition in a natural community. ISME J 12:296 –299. https://doi.org/
10.1038/ismej.2017.161.

11. Teurlincx S, Velthuis M, Seroka D, Govaert L, van Donk E, Van de Waal DB,
Declerck SAJ. 2017. Species sorting and stoichiometric plasticity control
community C:P ratio of first-order aquatic consumers. Ecol Lett 20:
751–760. https://doi.org/10.1111/ele.12773.

12. Stegen JC, Lin X, Konopka AE, Fredrickson JK. 2012. Stochastic and
deterministic assembly processes in subsurface microbial communities.
ISME J 6:1653–1664. https://doi.org/10.1038/ismej.2012.22.

13. Chase JM, Myers JA. 2011. Disentangling the importance of ecological
niches from stochastic processes across scales. Philos Trans R Soc Lond
B Biol Sci 366:2351–2363. https://doi.org/10.1098/rstb.2011.0063.

14. Wang J, Shen J, Wu Y, Tu C, Soininen J, Stegen JC, He J, Liu X, Zhang L,
Zhang E. 2013. Phylogenetic beta diversity in bacterial assemblages
across ecosystems: deterministic versus stochastic processes. ISME J
7:1310 –1321. https://doi.org/10.1038/ismej.2013.30.

15. Graham EB, Knelman JE, Andreas S, Steven S, Marc B, Anthony Y, Beman
JM, Guy A, Laurent P, James P. 2016. Microbes as engines of ecosystem
function: When does community structure enhance predictions of eco-
system processes? Front Microbiol 7:214. https://doi.org/10.3389/fmicb
.2016.00214.

16. Morrison-Whittle P, Goddard MR. 2015. Quantifying the relative roles of
selective and neutral processes in defining eukaryotic microbial com-
munities. ISME J 9:2003–2011. https://doi.org/10.1038/ismej.2015.18.

17. Huo Y, Wu H, Chai Z, Xu S, Han F, Dong L, He P. 2012. Bioremediation
efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture
system with Pseudosciaena crocea in Xiangshan Harbor, China. Aquaculture
326-329:99–105. https://doi.org/10.1016/j.aquaculture.2011.11.002.

18. Bird DF, Kalff J. 1984. Empirical relationships between bacterial abun-
dance and chlorophyll concentration in fresh and marine waters. Can J
Fish Aquat Sci 41:1015–1023. https://doi.org/10.1139/f84-118.

19. Pinhassi J, Hagström Å. 2000. Seasonal succession in marine bacterioplank-
ton. Aquat Microb Ecol 21:245–256. https://doi.org/10.3354/ame021245.

20. Suzuki MT, Preston CM, Chavez FP, DeLong EF. 2001. Quantitative
mapping of bacterioplankton populations in seawater: field tests across
an upwelling plume in Monterey Bay. Aquat Microb Ecol 24:117–127.
https://doi.org/10.3354/ame024117.

21. Pinhassi J, Sala MM, Havskum H, Peters F, Guadayol O, Malits A, Marrase
C. 2004. Changes in bacterioplankton composition under different phy-
toplankton regimens. Appl Environ Microbiol 70:6753– 6766. https://doi
.org/10.1128/AEM.70.11.6753-6766.2004.

22. Eigemann F, Hilt S, Salka I, Grossart HP. 2013. Bacterial community
composition associated with freshwater algae: species specificity vs.
dependency on environmental conditions and source community. FEMS
Microbiol Ecol 83:650 – 663. https://doi.org/10.1111/1574-6941.12022.

23. Okie JG, Van Horn DJ, Storch D, Barrett JE, Gooseff MN, Kopsova L,
Takacs-Vesbach CD. 2015. Niche and metabolic principles explain pat-
terns of diversity and distribution: theory and a case study with soil
bacterial communities. Proc R Soc B 282:20142630. https://doi.org/10
.1098/rspb.2014.2630.

24. Héry M, Volant A, Garing C, Luquot L, Elbaz PF, Gouze P. 2014. Diversity

and geochemical structuring of bacterial communities along a salinity
gradient in a carbonate aquifer subject to seawater intrusion. FEMS
Microbiol Ecol 90:922–934. https://doi.org/10.1111/1574-6941.12445.

25. Buchan A, LeCleir GR, Gulvik CA, Gonzalez JM. 2014. Master recyclers:
features and functions of bacteria associated with phytoplankton
blooms.NatRevMicrobiol12:686 – 698.https://doi.org/10.1038/nrmicro
3326.

26. Croft MT, Lawrence AD, Raux-Deery E, Warren Amp MJ, Smith AG. 2005.
Algae acquire vitamin B12 through a symbiotic relationship with bacte-
ria. Nature 438:90 –93. https://doi.org/10.1038/nature04056.

27. Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG. 2011.
Insights into the evolution of vitamin B12 auxotrophy from sequenced
algal genomes. Mol Biol Evol 28:2921–2933. https://doi.org/10.1093/
molbev/msr124.

28. Sañudo-Wilhelmy S, Gómez-Consarnau L, Suffridge C, Webb E. 2014. The
role of B vitamins in marine biogeochemistry. Annu Rev Mar Sci
6:339 –367. https://doi.org/10.1146/annurev-marine-120710-100912.

29. Eiler A, Hayakawa DH, Church MJ, Karl DM, Rappé MS. 2009. Dynamics of
the SAR11 bacterioplankton lineage in relation to environmental condi-
tions in the oligotrophic North Pacific subtropical gyre. Environ Micro-
biol 11:2291–2300. https://doi.org/10.1111/j.1462-2920.2009.01954.x.

30. West NJ, Lepère C, Manes CLDO, Catala P, Scanlan DJ, Lebaron P. 2016.
Distinct spatial patterns of SAR11, SAR86, and Actinobacteria diversity
along a transect in the ultra-oligotrophic South Pacific Ocean. Front
Microbiol 7:234. https://doi.org/10.3389/fmicb.2016.00234.

31. Turner J, Good B, Cole D, Lipp E. 2009. Plankton composition and environ-
mental factors contribute to Vibrio seasonality. ISME J 3:1082–1092. https://
doi.org/10.1038/ismej.2009.50.

32. Asplund ME, Rehnstam-Holm AS, Atnur V, Raghunath P, Saravanan V,
Härnström K, Collin B, Karunasagar I, Godhe A. 2011. Water column
dynamics of Vibrio in relation to phytoplankton community composition
and environmental conditions in a tropical coastal area. Environ Micro-
biol 13:2738 –2751. https://doi.org/10.1111/j.1462-2920.2011.02545.x.

33. Landa M, Kirchman DL, Cottrell MT, Obernosterer I, Blain S. 2013.
Changes in bacterial diversity in response to dissolved organic matter
supply in a continuous culture experiment. Aquat Microb Ecol 69:
157–168. https://doi.org/10.3354/ame01632.

34. Andersson AF, Riemann L, Bertilsson S. 2010. Pyrosequencing reveals
contrasting seasonal dynamics of taxa within Baltic Sea bacterioplank-
ton communities. ISME J 4:171–181. https://doi.org/10.1038/ismej.2009
.108.

35. Kristyanto S, Chaudhary DK, Lee S-S, Kim J. 2017. Characterization of
Marinomonas algicida sp. nov., a novel algicidal marine bacterium iso-
lated from seawater. Int J Syst Evol Microbiol 67:4777– 4784. https://doi
.org/10.1099/ijsem.0.002374.

36. Pokrzywinski KL, Place AR, Warner ME, Coyne KJ. 2012. Investigation of
the algicidal exudate produced by Shewanella sp. IRI-160 and its effect
on dinoflagellates. Harmful Algae 19:23–29. https://doi.org/10.1016/j.hal
.2012.05.002.

37. Liu J, Fu B, Yang H, Zhao M, He B, Zhang XH. 2015. Phylogenetic shifts
of bacterioplankton community composition along the Pearl Estuary:
the potential impact of hypoxia and nutrients. Front Microbiol 6:64.
https://doi.org/10.3389/fmicb.2015.00064.

38. Lauber C, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-based
assessment of soil pH as a predictor of soil bacterial community struc-
ture at the continental scale. Appl Environ Microbiol 75:5111–5120.
https://doi.org/10.1128/AEM.00335-09.

39. Stumpf RP, Tomlinson MC, Calkins JA, Kirkpatrick B, Fisher K, Nierenberg
K, Currier R, Wynne TT. 2009. Skill assessment for an operational algal
bloom forecast system. J Mar Syst 76:151–161. https://doi.org/10.1016/
j.jmarsys.2008.05.016.

40. Zhao D, Cao X, Huang R, Zeng J, Shen F, Xu H, Wang S, He X, Yu Z. 2017.
The heterogeneity of composition and assembly processes of the mi-
crobial community between different nutrient loading lake zones in
Taihu Lake. Appl Microbiol Biotechnol 101:5913–5923. https://doi.org/
10.1007/s00253-017-8327-0.

41. Jiang ZB, Chen QZ, Zeng JN, Liao YB, Shou L, Liu J. 2012. Phytoplankton
community distribution in relation to environmental parameters in three
aquaculture systems in a Chinese subtropical eutrophic bay. Mar Ecol
Prog 446:73– 89. https://doi.org/10.3354/meps09499.

42. Cram JA, Chow CE, Sachdeva R, Needham DM, Parada AE, Steele JA,
Fuhrman JA. 2015. Seasonal and interannual variability of the marine
bacterioplankton community throughout the water column over ten
years. ISME J 9:563–580. https://doi.org/10.1038/ismej.2014.153.

Zhang et al. Applied and Environmental Microbiology

September 2018 Volume 84 Issue 18 e01000-18 aem.asm.org 14

https://doi.org/10.1038/ismej.2013.178
https://doi.org/10.1038/ismej.2013.178
https://doi.org/10.1111/1574-6941.12230
https://doi.org/10.1111/1574-6941.12230
https://doi.org/10.1038/ismej.2015.105
https://doi.org/10.1038/ismej.2015.105
https://doi.org/10.1111/1462-2920.13640
https://doi.org/10.1111/1462-2920.13640
https://doi.org/10.1016/j.envpol.2016.07.035
https://doi.org/10.1016/j.envpol.2016.07.035
https://doi.org/10.1038/ismej.2017.161
https://doi.org/10.1038/ismej.2017.161
https://doi.org/10.1111/ele.12773
https://doi.org/10.1038/ismej.2012.22
https://doi.org/10.1098/rstb.2011.0063
https://doi.org/10.1038/ismej.2013.30
https://doi.org/10.3389/fmicb.2016.00214
https://doi.org/10.3389/fmicb.2016.00214
https://doi.org/10.1038/ismej.2015.18
https://doi.org/10.1016/j.aquaculture.2011.11.002
https://doi.org/10.1139/f84-118
https://doi.org/10.3354/ame021245
https://doi.org/10.3354/ame024117
https://doi.org/10.1128/AEM.70.11.6753-6766.2004
https://doi.org/10.1128/AEM.70.11.6753-6766.2004
https://doi.org/10.1111/1574-6941.12022
https://doi.org/10.1098/rspb.2014.2630
https://doi.org/10.1098/rspb.2014.2630
https://doi.org/10.1111/1574-6941.12445
https://doi.org/10.1038/nrmicro3326
https://doi.org/10.1038/nrmicro3326
https://doi.org/10.1038/nature04056
https://doi.org/10.1093/molbev/msr124
https://doi.org/10.1093/molbev/msr124
https://doi.org/10.1146/annurev-marine-120710-100912
https://doi.org/10.1111/j.1462-2920.2009.01954.x
https://doi.org/10.3389/fmicb.2016.00234
https://doi.org/10.1038/ismej.2009.50
https://doi.org/10.1038/ismej.2009.50
https://doi.org/10.1111/j.1462-2920.2011.02545.x
https://doi.org/10.3354/ame01632
https://doi.org/10.1038/ismej.2009.108
https://doi.org/10.1038/ismej.2009.108
https://doi.org/10.1099/ijsem.0.002374
https://doi.org/10.1099/ijsem.0.002374
https://doi.org/10.1016/j.hal.2012.05.002
https://doi.org/10.1016/j.hal.2012.05.002
https://doi.org/10.3389/fmicb.2015.00064
https://doi.org/10.1128/AEM.00335-09
https://doi.org/10.1016/j.jmarsys.2008.05.016
https://doi.org/10.1016/j.jmarsys.2008.05.016
https://doi.org/10.1007/s00253-017-8327-0
https://doi.org/10.1007/s00253-017-8327-0
https://doi.org/10.3354/meps09499
https://doi.org/10.1038/ismej.2014.153
http://aem.asm.org


43. Langille MGI, Zaneveld J, Caporaso JG, Mcdonald D, Dan K, Reyes JA,
Clemente JC, Burkepile DE, Thurber RLV, Knight R. 2013. Predictive
functional profiling of microbial communities using 16S rRNA marker
gene sequences. Nat Biotechnol 31:814 – 821. https://doi.org/10.1038/
nbt.2676.

44. Lopes LD, Andreote FD. 2016. Bacterial abilities and adaptation toward
the rhizosphere colonization. Front Microbiol 7:1341. https://doi.org/10
.3389/fmicb.2016.01341.

45. Koo H, Mojib N, Hakim JA, Hawes I, Tanabe Y, Andersen DT, Bej AK. 2017.
Microbial communities and their predicted metabolic functions in
growth laminae of a unique large conical mat from Lake Untersee, East
Antarctica. Front Microbiol 8:1347. https://doi.org/10.3389/fmicb.2017
.01347.

46. Mills HJ, Hunter E, Humphrys M, Kerkhof L, McGuinness L, Huettel M,
Kostka EJ. 2008. Characterization of nitrifying, denitrifying, and overall
bacterial communities in permeable marine sediments of the northeast-
ern Gulf of Mexico. Appl Environ Microbiol 74:4440 – 4453. https://doi
.org/10.1128/AEM.02692-07.

47. Lin SY, Hameed A, Liu YC, Hsu YH, Hung MH, Lai WA, Young CC. 2017.
Ruficoccus amylovorans gen. nov., sp. nov, an amylolytic and nitrate-
reducing diazotroph of the family Puniceicoccaceae. Int J Syst Evol
Microbiol 67:956 –962. https://doi.org/10.1099/ijsem.0.001723.

48. Musat F, Harder J, Widdel F. 2006. Study of nitrogen fixation in microbial
communities of oil-contaminated marine sediment microcosms. Environ
Microbiol 8:1834–1843. https://doi.org/10.1111/j.1462-2920.2006.01069.x.

49. Chen Y, Zhou W, Li Y, Zhang J, Zeng G, Huang A, Huang J. 2014. Nitrite
reductase genes as functional markers to investigate diversity of deni-
trifying bacteria during agricultural waste composting. Appl Microbiol
Biotechnol 98:4233– 4243. https://doi.org/10.1007/s00253-014-5514-0.

50. Straub KL, Schönhuber WA, Buchholz-Cleven BEE, Schink B. 2004. Diver-
sity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involve-
ment in oxygen-independent iron cycling. Geomicrobiol J 21:371–378.
https://doi.org/10.1080/01490450490485854.

51. Ntougias S, Zervakis GI, Fasseas C. 2007. Halotalea alkalilenta gen. nov.,
sp. nov., a novel osmotolerant and alkalitolerant bacterium from alkaline
olive mill wastes, and emended description of the family Halomon-
adaceae Franzmann et al. 1989, emend. Dobson and Franzmann 1996.
Int J Syst Evol Microbiol 57:1975–1983. https://doi.org/10.1099/ijs.0
.65078-0.

52. General Administration of Quality Supervision, Inspection, and Quaran-
tine. 2007. The specification for marine monitoring of China, part 4:
seawater analysis. GB 17378.4-2007. General Administration of Quality
Supervision, Inspection, and Quarantine, Beijing, People’s Republic of
China.

53. Parada AE, Needham DM, Fuhrman JA. 2016. Every base matters: assess-
ing small subunit rRNA primers for marine microbiomes with mock

communities, time series and global field samples. Environ Microbiol
18:1403–1414. https://doi.org/10.1111/1462-2920.13023.

54. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD,
Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI. 2010. QIIME
allows analysis of high-throughput community sequencing data. Nat
Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303.

55. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME
improves sensitivity and speed of chimera detection. Bioinformatics
27:2194 –2200. https://doi.org/10.1093/bioinformatics/btr381.
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