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Abstract

Background: Chrysanthemum is among the top ten traditional flowers in China, and one of the four major cut flowers
in the world, but the growth of chrysanthemum is severely restricted by high temperatures which retard growth and
cause defects in flowers. DREB (dehydration-responsive element-binding) transcription factors play important roles in
the response to abiotic and biotic stresses. However, whether the DREB A-6 subgroup is involved in heat tolerance has
not been reported conclusively.

Result: In the present study, CmDREB6 was cloned from chrysanthemum (Chrysanthemum morifolium) 'Jinba’. CmDREB6,
containing a typical AP2/ERF domain, was classed into the DREB A-6 subgroup and shared highest homology
with Cichorium intybus L. CIDREB6 (73%). CmDREB6 was expressed at its highest levels in the leaf. The CmDREB6
protein localized to the nucleus. Based on the yeast one hybrid assay, CmDREB6 showed transcription activation activity
in yeast, and the transcriptional activation domain was located in the 3 ‘end ranging from 230 to 289 amino acids
residues. CmDREB6 overexpression enhanced the tolerance of chrysanthemum to heat. The survival rate of two
transgenic lines was as high as 85%, 50%, respectively, in contrast to 3.8% of wild-type (WT). Over-expression of
CmDREB6 promoted the expression of CmHsfA4, CmHSP90, and the active oxygen scavenging genes CmSOD and
CmCAT.

Conclusion: In this study, DREB A-6 subgroup gene CmDREB6 was cloned from chrysanthemum “Jinba’. Overexpression
of CmDREB6 enhanced heat tolerance of chrysanthemum by regulating genes involved in the heat shock response and

ROS homeogenesis.
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Background
Plants face various abiotic stresses, among which heat stress
has become one of the main factors affecting crop growth,
quality and yield. High temperatures hamper plant photo-
synthesis, causing cell membrane damage, cell aging and
death [1]. Heat stress can also affect enzymatic activities,
which in turn have a negative impact on plant growth and
metabolism.

Plants and other organisms have both an inherent ability
to survive exposure to temperatures above the optimal for
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growth (basal thermotolerance) and an ability to acquire
tolerance to otherwise lethal heat stress (acquired thermo-
tolerance), where acquired tolerance depends on the acti-
vation of a number of transcription factors [2]. DREB
transcription factors belong to a subfamily of the AP2/
EREBP transcription factors family, whose conserved
AP2/EREBP (ethylene-responsive element binding pro-
teins) domain plays a key role in the binding of DREB
transcription factors to cis-acting elements of DREB. The
DREB group is divided into 6 subgroups (A-1 to A-6), and
the A-1 and A-2 subgroups contain DREB1s and DREB2s
genes, respectively. In Arabidopsis, these two types of
genes are involved in low temperature, drought and high
salt stress responses [3]. Overexpression of AtDREBIA
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was found to enhance tolerance of chrysanthemum to heat
[4]. However, whether the DREB A-6 subgroup is involved
in heat tolerance has not been reported conclusively.

Generally, when the temperature is higher than an am-
bient temperature of 10-15 °C, plants will generate a
heat shock response (HSR) quickly, within a few hours,
in order to tolerate the otherwise lethal temperature [5].
The HSR is mediated at the transcriptional level by cis-act-
ing sequences called heat shock elements (HSEs) that are
present in multiple copies upstream of the heat shock pro-
tein (HSP) genes [6]. The heat shock factor (HSF) plays an
important role in the regulation of the expression of HSP
genes in plants. When the plants are subjected to heat
stimulation, a HSF can specifically bind to a HSE, thus acti-
vating the HSP gene expression in vivo. The rapid accumu-
lation of heat shock proteins in the plant helps the folding,
stabilization and assembling of proteins, thus improving
the tolerance of plants to high temperature [7].

Chrysanthemum is among the top ten traditional
flowers in China, and one of the four major cut
flowers in the world. However, the growth of chrysan-
themum is severely restricted by high temperatures
which retard growth and cause defects in flowers [8].
In this study, we cloned CmDREB6, a member of the
DREB family of the A-6 subgroup, from chrysanthemum
Jinba’ and further analyzed its expression profiles and
transactivation activities. We successfully generated
CmDREB6 overexpressing chrysanthemum lines and
elucidated its regulatory roles in heat stress tolerance
of chrysanthemum, thus shading a new light on the roles
of the A-6 group DREB in abiotic stress tolerance.

Results

Cloning and phylogenetic analysis of CmDREB6 from
chrysanthemum

We cloned a 1,028 bp CmDREB6 fragment from chrys-
anthemum. The largest open reading frame was 936 bp
encoding a polypeptide of 311 amino acid residues
(Additional file 1). The molecular weight of the putative
protein was about 34.36 KDa, and the theoretical iso-
electric point was 6.72. Phylogenic analysis of CmDREB6
and DREB members from other species showed that
CmDREB6 is classified into the DREB A-6 subgroup,
and is most closely related to CiDREB6 from Cichorium
intybus (Fig. 1a), displaying 73% similarity to CiDREB6.
The amino acid alignment showed that CmDREB6 con-
tains one typical AP2/ERF domain which includes 1
a-helices and 3 p-sheet with the 14th valine and 19th
leucine conserved in the DREB A-6 subgroup (Fig. 1b).

Subcellular localization of CMDREB6

The pMDC43-GFP-CmDREB6 construct and empty vec-
tor pMDC43-GFP was transformed into onion epider-
mal cells via particle bombardment. GFP fluorescence of
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the control vector was evenly distributed throughout the
observed onion epidermal cells (Fig. 2). In contrast, GFP
fluorescence in the pMDC43-GFP-CmDREB6 fusion
protein was observed only in the nucleus of the onion
epidermal cells (Fig. 2), indicating that CmDREB6 local-
ized to the nucleus in vivo.

Transactivation ability of CmDREB6 and its transcriptional
activation domain analysis

The pGBKT7-CmDREB6 and the control plasmids were
introduced into the yeast strain Y2H gold. The results
showed that the yeast strain containing the recombinant
plasmid pGBKT7-CmDREB6 was able to grow on SD /
-Trp single-deficient medium, indicating that the recom-
binant plasmid was successfully transferred into the
yeast strain Y2H gold; then the grown yeast was trans-
ferred to double-deficient medium SD / -His-Ade. The
recombinant plasmid pGBKT7-CmDREB6 grew nor-
mally, while the negative control strain containing the
pGBKT7 plasmid did not grow on SD / -His-Ade, with
the positive control pCL1 growing normally (Fig. 3a).
The pGBKT7-CmDREB6 colony on the double-defective
plate supplemented with X-a-Gal turned blue (Fig. 3a),
suggesting that pGBKT7-CmDREB6 possessed transcrip-
tional activation abilities.

To analyze the transcriptional activation domain of
CmDREBS6, the recombinant plasmid pGBKT7-CmDREB6
(1-311 amino acid, full length), the truncated fragment
constructs of pGBKT7-CmDREB6 (1-290), pGBKT7-
CmDREB6 (1-229), pGBKT7-CmDREB6 (1-189), and the
pGBKT7 empty vector were subjected to yeast one hybrid
assays. It was found that the yeast strains containing re-
combinant plasmids pGBKT7-CmDREB6 (1-229) and
pGBKT7-CmDREB6 (1-189) could not grow normally, but
pGBKT7-CmDREB6 (1-311) and pGBKT7-CmDREB6 (1-
290) grew normally. The negative control strain containing
the pGBKT7 empty plasmid did not grow on the SD /
-His-Ade plate, but the positive control pCL1 grew nor-
mally (Fig. 3b). The results showed that the transcrip-
tional activation domain of CrmDREB6 was located in
the 230-290 amino acid at the C terminal.

Tissue specific expression profiles and expression
patterns of CmDREB6 in response to heat stress

RNA from root, stem, leaf and flower of chrysanthemum
was extracted for analysis of the relative expression
levels of CmDREB6 in different tissues. The expression
levels of CmDREB6 was highest in leaves, followed by
those in stem, flower and root in turn. The expression
levels of CmDREB6 in stem, leaves and flower was 1.6,
5.2 and 1.1 folds higher respectively than in the root
(Fig. 4a). The expression levels of CrmDREB6 at 8 h, 12 h
and 24 h after heat stress were 1.8, 2.6 and 1.2 folds
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Fig. 1 Phylogenetic analysis and alignment of the deduced amino acid
sequences of the DREB peptide sequences. a The phylogenic
relationship of CmDREB6 and 39 members from other species of
CvDREB2A(ABR23508.1), CIDREB2(AHJ08574.1), HaDREB2(AAS82861.1),
GMDREB2A(AFU35563.1), DREB2A(BAA33794.1), OsDREB2A(AAN02487.2),
FaDREB2(AAR11157.1), SIDREB2(ADM73511.1), SODREB2A(AEI69362.1),
PeDREB2L(ABV03750.1), WDREB2(BAD97369.1), ZmDREB2A(BAE96012.1),
PgDREB2A(AAV90624.1), ZmDBF(AAM80486.1), CIDREB6(AHJ08575.1),
RAP2-4(NP_177931.1), ABI4(AAC39489.1), ZmABI4(AAM95247.1), RAP2-
1(NP_564496.1), RAP2-10(NP_195408.1), GhDBP1(AAO43165.1),
CiDREN5(AHJ08576.1), TINY(AAC29139.1), GmTINY(ACP40513.1),
ZmDBF2(AAMB0485.1), CIDREBTA(AHI59150.1), DgDREB1B(ABD90467.1),
DgDREBTA(ABD90468.1), CIDREB1B(AHI59151.1), CaDREB(AAR88363.1),
MtDREB1C(ABB72792.1), HVCBF1(AAL84170.1), ZmDBP4(ACO72995.1),
HVCBF2(AAM13419.1), OsDREB1B(AAN02488.1), HvCBF3(ACC63520.1),
ZmDREBTA(AAN76804.1), OsDREBTA(AEW67332.1), LpCBF3(AAX57275.1).
b Alignment of the deduced amino acid sequences of A-6 subgroup of
CmDREB6 and CiDREB6(AHJ08575.1), ZmDBF(AAMB0486.1), RAP2—
4(NP_1777931.1). The red line represents the conserved DNA-binding
domain (AP2/ERF domain), the blue line represents two motifs of M1
and M2, 3 green box, 1 orange box and A respectively represent 3
-sheets, 1 a-helix and V14, L19

higher than those at 0 h (before heat stress), respectively
(Fig. 4b).

CmDREBG6 overexpression enhanced the tolerance of
chrysanthemum to heat stress

Putative transgenic plants were verified by PCR amplifi-
cation of hygromycin resistant gene. The expected bands
with a fragment size of Ca. 750 bp were present in five
putative transgenic lines, but not in WT plants (Fig. 5a;
Additional file 2). The expression levels of CmDREB6
plants in overexpressing lines were higher than those of
WT ‘Jinba’; two overexpressing lines with higher expres-
sion levels of CmDREB6, ox-8 and ox-15, were selected
for further heat stress tolerance assays (Fig. 5b). The re-
sults showed that WT plants wilted severely, and all the
leaves of WT plants became wilted, shrunk and drooped,
and especially the top leaves of WT were severely burned
after 24 h heat-shock. In contrast, ox-8 and ox-15 lines
displayed minor wilting, and most leaves remained green
(Fig. 5c). After one-week recovery growth, almost all WT
plants were scorched, and only one out of 26 plants
survived with very weak growth, and the survival rate of
WT plants was 3.8%, whereas the survival rate of ox-8
and ox-15 was 85% and 50%, respectively (Fig. 5¢), indicat-
ing that CmDREB6 conferred heat stress tolerance to
chrysanthemum.

CmDREB6 over-expression induced the expression of
CmHsfA4, CmHSP90 and antioxidant enzymes encoding
genes CmSOD and CmCAT

To dissect the pathways that lead to improved heat stress
tolerance in chrysanthemum by overexpressing CrnDREBG6,
the expression levels of CmHsfA4, CmHSP90, CmSOD and
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35S::GFP

35S:: GFP-CmDREB6

Fig. 2 Subcellular localization of CmDREB6. Subcellular localization of transiently expressed CmDREB6 products in onion epidermal cells. The upper row
shows the control 355:GFP signal, and the lower row shows the signal of the 355:GFP-CmDREB6 transgenes. The left panel shows bright field images,
the middle one green fluorescence signals detected at 488 nm and the right one the merged Green Fluorescent Protein (GFP) and bright field images.
Bar: 50 um

J

CmCAT were quantified in chrysanthemum under heat increased in response to heat stress, the expression level of
stress. Expression of CmHsfA4 was enhanced by heat shock ~ CmHSP90 in both 0x-8 and ox-15 plants remained higher
treatment in both WT and ox lines plants, the expression than that of WT during heat stress (Fig. 6b). CruDREB6
levels of CmHsfA4 in 0x-8, ox-15 plants were always higher  overexpression promoted expression of the reactive oxygen
than those in WT (Fig. 6a). The expression of CrmHSP90  scavenging genes CrmSOD and CmCAT in ox-8 and ox-15
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Fig. 3 Transcriptional activity assay of CmDREB6 protein and the analysis of transactivation activity domain of CmDREB6, (a): pGBKT7-CmDREB6;
(b): distributed model; (c): transactivation activity domain analysis
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Fig. 4 Expression patterns of CmDREB6 in different organs and after 40 °C treatment. a Relative expression leveal of CmDREB6 in root, stem, leaf and
flower of chrysanthemum. The expression of CmDREB6 was determined through gRT-PCR analysis. The expression level of CmDREB6 in root was set to
1, the error bars indicate the SE from three replicate samples. Asterisks indicate significant differences in expression levels of CmDREB6 in stem, leaf and
flower compared with that in root. * represents significance at p < 0.05, ** represents significance at p < 0.01. b Relative expression leveal of CmDREB6
after 40 °C treatment. The expression of CmDREB6 was determined through gRT-PCR analysis. The expression level of CmDREB6 in WT was set to 1, the
error bars indicate the SE from three replicate samples. Asterisks indicate significant differences in expression level of CmDREB6 under heat stress
compared with WT at 0 h, 1 h, 3 h and 24 h, respectively, * represents significance at p < 0.05, ** represents significance at p < 0.01

plants; the expression levels of these two genes were higher
than those in WT plants under heat stress (Fig. 6¢, d).

Discussion

Chrysanthemum CmDREB6 over-expression conferred

heat tolerance

Members of the A-6 DREB family have been isolated
from several species, and their roles in stress responses
and development have been characterized. CIDREB6 was
mainly induced under intense heat and drought, but not by
low temperature and high salt [9]. One of the eight mem-
bers of the Arabidopsis DREB A-6 subgroup, ERF055, was
expressed in the roots, stems, leaves, flowers and pods of
Arabidopsis, with the highest expression levels in the pods;
it has been verified that ERFOS5 gene in Arabidopsis is in-
volved in the development of embryo and postembryonic
development [10]. The AP2/ERF transcription factor
WIND1 (WOUND INDUCED DEDIFFERENTIATION 1),
which belongs to the A-6 DREB subgroup, promotes cell
dedifferentiation in Arabidopsis, and induces callus forma-
tion in rapeseed, tomato, and tobacco [11]. Other members
of the A-6 subgroup were successively isolated in different
species. For example, in Jatropha curcas L., expression of

JeDREB was induced by cold, salt and drought stress, but
not by ABA (Abscisic acid), and overexpression of JcDREB
in Arabidopsis enhances salt tolerance and freezing toler-
ance [12]. GhDBP2 was expressed at high levels in the
leaves of Gossypium hirsutum, and was strongly induced by
drought, high salt, low temperature and ABA [13]. In
Nicotiana tabacum, overexpressing the Suaeda salsa
SsDREB, a member of A-6 subgroup, tolerance to salt
and drought increased, as well as the growth rate,
chlorophyll content and photosynthetic rate, protein
level and soluble sugar content compared to WT plants
[14]. The expression of MsDREB6.2 from Malus sieversii
Roem is strongly induced by drought and salinity stress,
and is expressed at high levels in roots. Overexpression of
MsDREBS6.2 resulted in cytokinin-deficient developmental
phenotypes by enhancing MdCKX4a expression and en-
hanced drought tolerance in transgenic apple plants
[15]. These data indicate that DREB transcription fac-
tors could be used to improve the tolerance of plants
to abiotic stress, and different DREB transcription fac-
tors have different members and species specificity
[16]. In this study, the expression of the DREB A-6
subgroup member CmDREB6 was highest in leaves,
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Fig. 5 Analysis of phenotype and survival rate of two transgenic
chrysanthemum and WT chrysanthemum. a PCR identification results
of CmDREB6 in the putative transgenic ‘Jinba’ by Hyg primers; M, 2000
Maker; 8,9, 10, 11, 15 represents putative transgenic lines; 21 represents
WT. b Relative expression level of CmDREB6 in five putative transgenic
lines; The expression of CmDREB6 was determined through gRT-PCR
analysis. The expression level of CmDREB6 in WT was set to 1, the error
bars indicate the SE from three replicate samples. Asterisks indicate
significant differences in CmDREB6 expression levels in putative
transgenic lines compared with that in WT. * represents
significance at p < 0.05, ** represents significance at p < 0.01. ¢ The
phenotype and survival rate of two transgenic chrysanthemum
and WT plants under heat stress

and was induced by high temperatures, suggesting that
CmDREB6 may play a role in response to heat stress. In
agreement with heat inducible expression, CmDRE-
B6-overexpressed chrysanthemum enhanced the toler-
ance to heat (Fig. 5), suggesting that CmDREB6 confers
heat tolerance.

Page 6 of 10

CmDREB6 enhanced heat tolerance of chrysanthemum by
upregulating the expression of CmHsfA4 and CmHSP90
HSFs (Heat shock factors) play important roles in the re-
sponse to heat stress [17]. HsfA3 acts as a thermo-stable
regulator under the control of the DREB2A pathway, is
downstream of the DREB2A stress-modulating mechan-
ism, and regulates the expression of many heat-inducible
genes [18]. More evidence showed that DREB2A acti-
vates the HsfA3 and subsequently regulates the expres-
sion of HSP genes involved in the early phases of the
HSR, and DREB2C transactivates DRE-dependent tran-
scription of HsfA3 inducing the expression of the down-
stream gene HSPs, thereby enhancing thermotolerance
in the late phases of HSR [19, 20]. Recent studies have
shown that HsfA2 and HsfA3 function in the same heat
regulation pathway, and HsfA2 plays a dominant role
over HsfA3 [21]. HsfA4 is a potent activator of heat
stress gene expression [22]. However, the regulation of
HsfA4 by DREB has not been reported previously. In the
present study, induction of CmHsfA4 was observed in
CmDREB6 overexpressed plants either in non-stressed
or heat stressed plants (Fig. 6), suggesting the DREB A-6
subfamily member CmDREB6, might enhance heat toler-
ance in chrysanthemum by activating the expression of
CmHsfA4. However, whether CmDREB6 binds to the pro-
moter of CmHsfA4 directly remains to be determined.

HSPs are important molecular chaperones, widely me-
diating stress signals [23]. In the absence of stress, HSP
and HSF exist together as molecular chaperones. After a
heat shock reaction, plants produce large amounts of
toxic proteins, and HSPs are released from HSFs and
then bind to toxin proteins [24]. Many HSP proteins are
known to act as molecular chaperones for the protection of
thermo-labile proteins against heat-induced denaturation in
plant cells [25-27]. In this study, expression of CrmHSP90
was induced in CmDREB6 overexpressing plants, which
might protect chrysanthemum from heat induced damage.
Members of the HsfA subclass A4 have been shown to
serve as transcriptional activators for HSP genes [19, 28,
29]. Whether induction of CmHsfA4 in CmDREB6 overex-
pressing plants upregulates the expression of CmHSP70
and CmHSP90 remains to be elucidated. The MsHSFA4
gene in Medicago sativa was not expressed under non-
stress conditions but its expression was induced by heat
shock, similarly to AtHSFA4a expression [30].

CmDREB6 enhanced heat tolerance of chrysanthemum by
regulating ROS homogenesis

Heat stress may induce the generation and reactions of ac-
tivated oxygen species (ROS) including singlet oxygen
t0,), superoxide radical (O,"), hydrogen peroxide (H,O,)
and hydroxyl radical (OH") [31]. ROS causes the autocata-
lytic peroxidation of membrane lipids and pigments, thus
leading to the loss of membrane semi-permeability and
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modifying its functions [1]. In response, plants will then
produce antioxidant enzymes, such as superoxide dis-
mutase (SOD), catalase (CAT) to mitigate the damage
to the cell membrane and improve heat resistance [1].
HSP90 was found to be involved in the regulation of
HsfA2 expression in response to oxidative stress, where
the heat shock response promotes expression of SOD,
while the active oxygen scavenging gene CAT expres-
sion was not significantly altered [24]. Overexpression
of HsfA4A could prevent oxidative damage in Arabi-
dopsis and enhance tolerance not only to salt but also
to osmotic stress, paraquat, H,O, and anoxia [32]. The
ThDREB from Tamarix hispida could effectively im-
prove tolerance to salt and drought stress by enhancing
the antioxidase activity that keeps ROS accumulation at
low levels, thus facilitating scavenging [33]. Ectopic ex-
pression of EgDREBI from Elaeis guineensis enhanced
expression of tomato peroxidase (LePOD), ascorbate
peroxidase (LeAPX), catalase (LeCAT), superoxide dis-
mutase (LeSOD), heat shock protein 70 (LeHSP70) in
tomato seedlings under PEG treatment and cold stress
[34]. The AtDREBIB transgenic plants generally dis-
played lower levels of malondialdehyde (MDA) but
higher levels of superoxide dismutase (SOD), catalase
(CAT), and peroxidase (POD) activities than the WT
under drought stress [35]. Similarly, CeDREB6 overex-
pression could promote the expression of ROS pathway

related genes CmSOD and CmCAT in chrysanthemum,
suggesting that CmDREB6 enhances heat tolerance of
chrysanthemum by regulating ROS homeostasis.

In addition, over accumulation of stress-related tran-
scription regulators could be detrimental to growth and
is not deemed preferable [36, 37]. In this study, growth
retardation was observed in the CmDREB6 ox-15 line
with highest expression levels of CmDREB6. Com-
pared to the WT plants, the tolerance of ox-15 line to
heat stress and the activation of the expression of
downstream genes are not as obvious as those of the
ox-8 line, suggesting that over accumulation of
CmDREB6 retarded growth might affect tolerance to
heat stress.

Conclusions

The expression of the DREB A-6 subgroup member
CmDREB6 was induced by high temperatures. And
CmDREB6-overexpressed chrysanthemum enhanced the
tolerance to heat, suggesting that CmDREB6 confers
heat tolerance. Induction of CmHsfA4 was observed in
CmDREBS6 overexpressed, and CrmHSP90 was induced in
CmDREB6 overexpressing plants, which might protect
chrysanthemum from heat induced damage. CrnDREB6
overexpression could promote the expression of ROS path-
way related gene CmSOD and CmCAT in chrysanthemum,
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suggesting that CmDREB6 enhances heat tolerance of
chrysanthemum by regulating ROS homeostasis.

Methods

Plant materials and growth conditions

Cuttings of the chrysanthemum variety ‘Jinba’ were ob-
tained from the Chrysanthemum Germplasm Resource
Preserving Center (Nanjing Agricultural University,
Nanjing, China). The cuttings were potted into a 1:2
(v/v) mixture of garden soil and vermiculite, and were
maintained in a greenhouse with a relative humidity of
80%, light intensity 100 umol-m™*s™ ' and a 16 h/8 h
(light/dark) photoperiod, with day and night tempera-
tures of 23 °C and 18 °C, respectively.

Isolation and sequence analysis of CmDREB6

Total RNA was isolated from chrysanthemum leaves using
the RNAiso reagent (Takara, Tokyo Japan) and following
the manufacturer’s protocol. A 1 ug aliquot of the resulting
RNA treated with RNase-free DNase I was included as the
template for 1st strand cDNA synthesis, using Super Script
III reverse transcriptase (Invitrogen, Carlsbad, CA, USA).
The CmDREB6 open reading frame (ORF) was amplified
using CmDREB6-F/R primers (Additional file 3). The PCR
product purified using a Biospin Gel Extraction kit (Bio
Flux, Hangzhou, China) was introduced into pMD19-T
(Takara) for sequencing. The CmDREB6 sequence was
aligned with its homologs using the DNAMANV6 software
[38], and a phylogenic tree was generated using MEGAS5.0
software based on the neighbor-joining method and 1,000
bootstrap replicates. The polypeptides sequences of other
DREB members from other species were obtained from the
NCBI website (https://www.ncbi.nlm.nih.gov).

Tissues specific expression patterns of CmDREB6 and its
expression profiles in response to heat stress

Roots, stems and leaves were harvested from four-week old
chrysanthemum plants to characterize the tissue specific
expression profile of CmDREB6 transcription. The heat
stress experiment (40 °C) was conducted as previously de-
scribed [39]. The second leaf (counted from the shoot apex)
at O h, 4 h, 8 h, 12 h and 24 h after heat stress, respectively,
was sampled for RNA isolation. 1st strand cDNA was tran-
scribed as previously described. Transcript abundance was
detected by quantitative real time PCR (qPCR) using SYBR®
Premix Ex Taq™ II (Tli RNaseH Plus) (Takara) and the pri-
mer pair CmDREB6-RT-F/R (Additional file 3). The primer
pair CmEFla-F/R (Additional file 3) was used to amplify
the reference gene CmEFIa. Fold changes were calculated
using the 27**" method [40]. Each experiment included
three biological replicates.
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Sub-cellular localization and transcriptional activation
assay of CmDREB6

The CmDREB6 ORF was amplified using a Phusion® High
Fidelity PCR Kit (New England Biolabs, Ipswich, MA,
USA) with the primer pair CmDREB6-Nde-F/-BamH-R
(Additional file 3). The resulting amplification was digested
by Ndel/BamH], and then ligated into pENTR™1A (Invitro-
gen) to form the construct pPENTR™1A-CmDREB6.

For the subcellular assay, CrmDREB6 was further inserted
into the destination vector pMDC43 or pDEST-GBKT?7 via
LR reaction. The pMDC43-GFP-CmDREB6 construct and
the empty pMDC43 vector were introduced into onion epi-
dermal cells via particle bombardment (PDS-1000; Bio-
Rad). Transformed cells were held for 16 h on Murashige
and Skoog (MS) medium in the dark, and then GFP (Green
fluorescent protein) florescence was observed under a con-
focal laser scanning microscope.

For the transcriptional activation assay, CuDREB6 was
inserted into the destination vector pDEST-GBKT?7 via
LR reaction. The pDEST-GBKT7 vector with different
segments of CmDREB6 (1-311, 1-189, 1-229, 1-290
amino acid) was constructed to screen the transactiva-
tion region of the protein. Clones were sequenced to
verify the inserts were correct. The recombinant plasmids
pGBKT7-CmDREB6 or pGBKT7 empty vector (negative
control) or pCL1 (positive control) were transformed into
a Y2H gold yeast strain, then plated on SD / -Trp plates
and cultured at 30 °C for 3 days. Yeast colonies were then
transferred to medium SD / -His-Ade and cultured in the
dark at 30 °C for 3 days. The growth of yeast was observed
and photographed.

Regeneration of CmMDREB6 overexpressing
chrysanthemum plants

To identify the function of CmDREBS6, the vector of
pMDCA43-GFP-CmDREB6 driven by 35S promoter was in-
troduced into chrysanthemum fJinba’ by Agrobacterium-
mediated leaf disc infection [41]. Putative transgenic plants
were verified by PCR analysis using Hyg (hygromycin) F/R
primers, and over-expression of CmDREB6 in transgenic
plants was detected via qPCR using primers CmDREB6-
RT-F/R.

Heat stress tolerance assay for CnDREB6 overexpressing
chrysanthemum plants

Over-expression lines and WT plants were planted in the
same batch (soil: vermiculite; 1: 1, v/v). For the heat toler-
ance assay, chrysanthemum seedlings at the 6-—8 leaves
stage were exposed to 45 °C for 24 h; heat stressed plants
were then transferred to 22 °C and left to recover for
one-week [4]. Phenotypic changes before and after heat
treatment respectively were documented, and survival rates
were calculated.
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Gene expression profiles in CmDREB6 overexpressing
chrysanthemum plants

To further dissect the mechanisms involved in CmDREB6
regulated heat tolerance in chrysanthemum, the third leaves
(counted from the shoot apex) of heat stressed chrysanthe-
mum and WT plants were sampled at 0 h, 1 h, 3 h, 24 h
after exposure to heat treatment. Total RNA isolation and
c¢DNA were prepared as detailed above. Expression levels of
the heat stress-related genes CmHsfA4 (CmHsfA4 F/R),
CmHSP90 (CmHSP90 F/R) and antioxidant enzymes
encoding genes of CmSOD (CmSOD F/R) and CmCAT
(CmCAT F/R) were quantified. All the primers used are
listed in Additional file 3.

Statistical analysis

Results are expressed as mean + standard error. Statis-
tical significance was determined by SPSS 19.0 amongst
the means of WT and transgenic plants, and a one-way
analysis of variance using LSD (least significant difer-
rence) multiple range test was employed to identify
treatment means that differed statistically.

Additional files

Additional file 1: Text S1. The amino acid sequence of CmDREB6 under
accession No. MG199593. (DOC 22 kb)

Additional file 2: Figure S1. The electrophoresis analysis of PCR products
of hygromycin resistant gene Hptll in the putative CmDREB6 transgenic Jinba'.
(TIF 59 kb)

Additional file 3: Table S1. The sequence of primers used in this research.
(DOC 24 kb)
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