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Abstract

The analysis of neural dynamics in several brain cortices has consistently uncovered low-

dimensional manifolds that capture a significant fraction of neural variability. These neural 

manifolds are spanned by specific patterns of correlated neural activity, the “neural modes.” We 

discuss a model for neural control of movement in which the timedependent activation of these 

neural modes is the generator of motor behavior. This manifold-based view of motor cortex may 

lead to a better understanding of how the brain controls movement.

Since the work of Herbert Jasper (Jasper et al., 1958) and Ed Evarts (Evarts, 1968), cortical 

function has been studied by recording single neuron activity while animals perform a 

variety of behaviors, including decision making (Newsome et al., 1989), sensation (Wurtz, 

1969), and movement (Georgopoulos et al., 1982; Humphrey et al., 1970).

In the motor system, the main focus of this article, single neuron studies typically involved 

recordings during repeated, stereotypical movements. Many of these experiments sought 

explicit representations that relate single-neuron activity to specific movement covariates, 

including but not limited to target position, endpoint and joint kinematics, endpoint forces, 

and muscle activity (Evarts, 1968; Georgopoulos et al., 1982; Humphrey et al., 1970; 

Morrow et al., 2007; Thach, 1978). Although some of these efforts involved the decoding of 

population activity (Georgopoulos et al., 1982), they were restricted to models of non-

interacting neurons whose individual activity was associated with specific movement 

covariates.
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However, some of these studies also identified single neurons whose activity did not 

represent movement parameters (Churchland and Shenoy, 2007; Fetz, 1992; Scott, 2008). If 

neurons in primary motor cortex (M1) were to represent movement parameters, those 

representations ought to be most evident in corticomotoneuronal (CM) cells, which make 

direct connections onto spinal motoneurons (Fetz, 1992). Yet, many of these CM cells do not 

represent any specific movement covariate (Fetz et al., 1989).

The ultimate role of M1 is to generate movement, not to represent it (Churchland et al., 

2012; Cisek, 2006; Scott, 2004); thus it is not surprising that many M1 neurons do not relate 

to any single movement covariate. The search for representations at the singleneuron level 

might actually divert us from understanding the neural control of movement. Early neural 

network simulations indicated that individual neurons need not explicitly encode movement 

covariates when the goal of M1 population activity is to generate realistic muscle activation 

patterns (Fetz, 1992).

The role of neurons that do not explicitly represent any movement covariate can be 

explained by recent work based on optimal feedback control theory, which postulates that 

the goal of motor cortex is to produce a desired movement and force, taking into account the 

state of the muscles. This hypothesis avoids the need for explicit representation of movement 

covariates by single neurons, though some neurons may still represent movement covariates 

or high level task characteristics as a byproduct of the necessary control signals (Scott, 2008; 

Todorov, 2000).

Recent and accelerating technical developments provide the experimental tools for 

monitoring the activity of large numbers of neurons, as well as the statistical and modeling 

tools for analyzing how these neural populations perform the computations necessary to plan 

and execute movement (Gao and Ganguli, 2015). The challenge of understanding the neural 

control of movement by analyzing neural population activity is formidable, as population 

activity in any specific area not only reflects its intrinsic dynamics, but must also respond to 

its inputs and generate output projections based on the computations being performed 

(Sussillo et al., 2015). A simplification arises from the fact that neural computations are 

based on the joint activity of interconnected neurons (Fetz, 1992; Hatsopoulos et al., 1998; 

Shenoy et al., 2013); the resulting population activity is thus likely constrained by the 

connectivity of the underlying network.

Here we argue that the underlying network connectivity constrains the possible patterns of 

population activity (Okun et al., 2015; Sadtler et al., 2014; Tsodyks et al., 1999), and that the 

possible patterns are confined to a low-dimensional manifold (Stopfer et al., 2003; Yu et al., 

2009) spanned by a few independent patterns that we call neural modes. These modes 

capture a significant fraction of population covariance. It is the activation of these neural 

modes, rather than the activity of single neurons, that provides the basic building blocks of 

neural dynamics and function (Luczak et al., 2015; Sadtler et al., 2014; Shenoy et al., 2013).

We thus propose a generative model of the activity of individual neurons based on the 

activation of neural modes, and explain how the parameters of the model can be identified 

using dimensionality reduction methods. We then review work showing that these neural 
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modes span task-specific neural manifolds in premotor and motor cortices. We propose that 

neural manifolds spanned by a surprisingly small number of neural modes are likely to 

simplify the neural control of movement, and speculate on the potential learning 

mechanisms underlying the emergence of this low-dimensional organization.

From single neurons to neural manifolds

Current multi-electrode arrays (MEAs) allow for the simultaneous recording of about a 

hundred neurons. This is many more than the small numbers recorded with single electrodes, 

but still a tiny fraction of the total number of neurons involved in movement generation. 

Despite this limitation, Brain-Machine Interfaces (BMIs) based on these MEAs are able to 

predict reasonably well many behavioral variables (Carmena et al., 2003; Ethier et al., 2012; 

Serruya et al., 2002).

What is the underlying reason for this success? Intuitively, it is the high degree of correlation 

and redundancy across individual neural activity. This intuition has been recently made 

precise in elegant arguments on the low dimensionality of the stereotypical motor behaviors 

used in most motor control studies (Gao and Ganguli, 2015). The relatively small number of 

independent signals needed to control behavior during the execution of such tasks only 

requires a small number of independent neural signals. These neural signals are the latent 
variables (Cunningham and Yu, 2014) that describe the dynamics of the neural modes.

The participation of individual neurons in neural modes is illustrated in Fig. 1A. Note that 

each neural mode includes a large fraction of the neurons in the population, and that a given 

neuron can participate in several neural modes. In this view, the time-dependent activity of 

individual neurons is simply a reflection of the latent variables (Fig. 1B) (Kaufman et al., 

2016; Kobak et al., 2016; Macke et al., 2011). Consider the neural space in Fig. 1C; each 

axis represents the activity of one of the N recorded neurons (here, N=3). Assuming that 

network connectivity constrains the possible patterns of population activity (Okun et al., 

2015; Sadtler et al., 2014; Tsodyks et al., 1999), the population dynamics will not explore 

the full high-dimensional neural space, but instead remain confined to a low-dimensional 

surface within the full space, the neural manifold. In the simplest linear case, the neural 

manifold is flat, as the hyperplane in Fig. 1C, spanned by the two neural modes,.u1 and u2

This geometrical picture illustrates a possible generative model for the dynamics of 

individual neurons: the activity ni(t) of the ith neuron, 1 ≤ i ≤N , results from a linear 

combination of latent variables Lj(t) plus additive noise εi:

ni(t) = ∑ j ui jL j(t) + εi . 1

Here, Lj(t) is the jth latent variable, the time-dependent activation of the jth neural mode. 

Each latent variable results from projecting the neural population activity onto the 

corresponding neural mode. The coefficient uij in the linear combination quantifies the 

contribution of the jth latent variable to the activity of the ith neuron. These participation 
weights relate to the internal connectivity of the network (Okun et al., 2015). The noise term 
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represents intrinsic neural noise, and potentially other processes not accounted for in the 

model. By construction, neural population activity remains within the neural manifold 

except for small fluctuations (see how close the actual black trajectory is to the gray 

trajectory projected into the manifold in Fig. 1C).

Dimensionality reduction techniques allow us to study neural population dynamics by 

finding a set of neural modes that span the neural manifold and identify relevant population 

features (Cunningham and Yu, 2014). Common linear techniques for dimensionality 

reduction, such as principal component analysis (PCA) and factor analysis (FA), identify 

neural modes as dominant patterns of covariation across neurons and yield the parameters of 

the generative model (Eq. 1; Fig. 1B).

As an illustration, we show that neural data recorded during an isometric wrist task (Fig. 

2A,B) is largely accounted for by the latent variables in Fig. 2C. The lowdimensionality of 

the neural manifold follows from the rapid increase of the explained variance with the 

number of neural modes (Fig. 2D).

Neural manifolds: a framework to study neural control of movement

The concept of the neural manifold and its associated latent variables has been used in a 

series of recent studies that replace the search for movement representation by single 

neurons to consider instead movement planning and execution based on the activation of a 

few neural modes (Ahrens et al., 2012; Bruno et al., 2015; Churchland et al., 2012, 2010a, 

2010b; Churchland and Shenoy, 2007; Elsayed et al., 2016; Kaufman et al., 2016, 2014; 

Michaels et al., 2016; Overduin et al., 2015; Sadtler et al., 2014; Santhanam et al., 2009; 

Sussillo et al., 2015).

One of the earliest findings of a neural manifold for movement control comes from Shenoy 

and colleagues (Santhanam et al., 2009), who analyzed population activity recorded with an 

MEA implanted in the arm area of dorsal premotor cortex (PMd) during a delayed center-out 

reach task. Single-neuron activity in PMd correlates with the direction toward the end point 

of an upcoming reach movement (Riehle and Requin, 1989; Shen and Alexander, 1997). 

Shenoy and colleagues used FA to obtain neural modes that accounted for the observed 

shared variance of individual neurons. They found that a three-dimensional manifold 

sufficed to identify target-specific clusters of latent activity during the delay period (Fig. 

3A).

A subsequent study (Churchland et al., 2010b) showed a systematic decrease in the trial-to-

trial variability in the neural dynamics of both PMd and primary visual cortex (V1) 

following stimulus onset, as demonstrated in two-dimensional visualizations of the latent 

variables (Fig. 3B). The low-dimensional manifold was characterized using Gaussian 

Process Factor Analysis (GPFA), a method that combines FA with temporal smoothing 

through a Gaussian kernel, to extract the low-dimensional trajectories defined by the latent 

variables during individual trials. The method was proposed and compared to static methods 

like PCA and FA in an earlier paper (Yu et al., 2009) that identified variability reduction 

following target presentation in PMd data.
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The notion of a neural manifold and its associated latent variables was subsequently used by 

Churchland, Shenoy, and colleagues (Churchland et al., 2012, 2010a) to explain how neural 

activity in both PMd and M1 during movement planning (Riehle and Requin, 1989) does not 

generate movement during the delay preceding a go signal (Cisek and Kalaska, 2005). To 

explain how M1 could prepare movement without causing it, the same group (Kaufman et 

al., 2014) identified a six-dimensional neural manifold using PCA, then built a linear model 

that related these latent variables to three muscle synergies (d’Avella et al., 2003; Tresch and 

Jarc, 2009), also identified by PCA. Based on this linear model, they divided the neural 

manifold into a potent space, whose activity controls muscle activity, and a null space, 

whose activity does not affect muscle activity (Kaufman et al., 2014) (Fig. 3C). They 

showed that preparatory activity lies in the null space; this condition-dependent activity 

provides an initialization from which the population dynamics evolve to generate the desired 

movement (Churchland et al., 2012, 2010a; Kaufman et al., 2014). In a recent follow-up 

study, the same group expanded this analysis to show that preparatory and movement 

activity lie in orthogonal spaces within the manifold, and that population dynamics evolve 

from one to the other (Elsayed et al., 2016) (Fig. 3D).

The separation between potent and null spaces was also used by Slutzky and colleagues to 

investigate the long-term stability of BMIs (Flint et al., 2016). They found that the stability 

of all recorded neurons was not uniformly necessary to achieve stable BMI control, and 

showed that neural activity in the potent space was significantly more stable than neural 

activity in the null space. This finding provided evidence supporting the postulate that 

optimal feedback control allows the brain to control activity in the potent space, while 

activity in the null space can vary from trial to trial (Todorov and Jordan, 2002).

Together, these studies strongly support the existence of low-dimensional manifolds in 

motor cortices. The notion that latent variables may constitute the building blocks of 

population activity allows us to consider the activity of individual neurons as 

onedimensional samples of the manifold dynamics. These studies also suggest that the 

constraints embodied by the neural manifolds simplify movement generation by providing a 

small number of signals that are independently controlled to achieve a desired behavior 

(Giszter, 2015; Mussa-Ivaldi and Solla, 2004; Overduin et al., 2015; Shenoy et al., 2013; 

Thoroughman and Shadmehr, 2000).

Emergence of neural manifolds through learning

Neural manifolds embody patterns of correlated activity; we hypothesize that these 

correlations reflect the connectivity of the underlying network of neurons. Since longterm 

learning can alter cortical connectivity (Fu et al., 2012; Rioult-Pedotti et al., 1998), we 

address potential connections between learning and the emergence of neural manifolds.

A revealing connection between neural manifolds and learning was discovered by Batista, 

Yu, and colleagues (Sadtler et al., 2014), who used a BMI paradigm in monkeys to address 

the question of why some motor skills are easier to learn than others. They used FA to 

identify a ten-dimensional neural manifold, and built a linear decoder from these latent 

variables into a two-dimensional center-out task. Once the monkeys had learned the task, the 
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decoder was modified in one of two ways; see Fig. 4A. When the modification required the 

use of existing neural modes (a within-manifold perturbation), the monkeys easily adapted 

in a single session (Fig. 4 B). In contrast, when the modification required the acquisition of 

new neural modes (an outside-manifold perturbation), the task proved significantly harder to 

learn (Fig. 4C). The same group subsequently showed that monkeys could learn new neural 

modes (Oby et al., 2015) if they were guided to generate these new patterns progressively, 

over many days. These results suggest that short-term adaptation may be based on the 

generation of new combinations of preexisting neural modes, while long-term learning may 

require generating new neural modes. If neural modes arise from a neural circuitry that 

constrains spatiotemporal patterns of activity, it is not surprising that modifying a neural 

manifold is more difficult than simply learning to use an existing neural manifold in novel 

ways.

A connection between the emergence of neural manifolds and learning also arises from a 

simulation (Sussillo et al., 2015) in which a Recurrent Neural Network (RNN) was trained to 

output the correct activity pattern for seven muscles recorded during a reach task 

(Churchland et al., 2012) (Fig. 4D). In the RNN model, training refers to learning the 

connections between neurons to obtain a network able to perform the desired function, in 

analogy with the modification of synaptic connectivity in biological learning. Latent 

variables were then identified for the data generated by the trained RNN, and compared to 

those for the experimental data. The experimental data were best reproduced by the simplest 

RNN connectivity that allowed the network to output the measured muscle activity. A 

similar result was subsequently achieved with an RNN trained to output the x and y 

components of hand velocity for a delayed center-out reach task (Michaels et al., 2016).

In a complementary simulation study (Hennequin et al., 2014), Gerstner and colleagues 

proposed a neural network model with random excitatory recurrent connections and 

inhibitory connections that were learned to achieve stable population dynamics. This 

balanced network generated population activity patterns whose associated latent variables 

also exhibited the damped oscillations experimentally observed in the latent variables during 

reaching (Churchland et al., 2012). It is quite interesting that a network model not trained to 

produce a specific output – kinematics or muscle activity – but to stabilize its internal 

dynamics also exhibits oscillatory latent variables.

Neural manifolds in non-motor brain cortices

Although we have focused on neural manifolds in motor cortices, it is important to remark 

that neural manifolds seem to be widely present across the brain. A number of studies have 

shown that the largely heterogeneous activity patterns of individual neurons in monkey 

(Kobak et al., 2016; Machens et al., 2010; Mante et al., 2013; Markowitz et al., 2015) and rat 

(Durstewitz et al., 2010) prefrontal cortex, monkey (Churchland et al., 2010b) and rat 

(Forsberg et al., 2016) V1, rat olfactory cortex (Kobak et al., 2016), rat thalamus (Chapin 

and Nicolelis, 1999), rat parietal cortex (Raposo et al., 2014), locust olfactory system 

(Stopfer et al., 2003), aplysia pedal ganglion (Bruno et al., 2015), and perhaps the entire 

zebrafish brain (Ahrens et al., 2012) can be explained as generated by a small set of latent 
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variables associated with neural modes. In all these studies, neural modes and their time-

varying activation helped describe previously unexplained mechanisms of neural function.

Studies of sensory cortices have provided clear evidence of network connectivity constraints 

on the activity of individual neurons. In the cat V1, the instantaneous activity of strongly 

tuned neurons is tightly linked to the population activity measured with optical imaging, 

both in response to stimulus presentation and during spontaneous activity (Tsodyks et al., 

1999). Experiments in auditory and somatosensory cortices of awake and anesthetized rats 

further examined the relation between spontaneous and stimulus-evoked activity (Luczak et 

al., 2009) and found a surprising degree of conservation across these distinct regimes. The 

authors identified neural modes for spontaneous population activity, and found that neural 

modes in response to stimuli lay within the same neural manifold. Interestingly, the evoked 

responses sampled a smaller portion of the manifold than the spontaneous activity, an 

organization of population activity also found in monkey V1 (Cowley et al., 2016).

Recent experiments in both mouse and monkey V1, and in rat auditory cortex demonstrated 

that the correlation between single neuron activity and population activity is the same during 

both spontaneous and stimulus-evoked activity (Okun et al., 2015). These authors 

demonstrated that correlations between individual neurons and the population significantly 

predict all pairwise correlations among the neurons. The degree of correlation between 

individual neurons and the population displays three interesting properties: 1) it predicts the 

responses of individual neurons during optogenetic stimulation of the surrounding 

population, suggesting that the relationship between population activity and that of a single 

neuron is causal; 2) it predicts the estimated number of synapses that a neuron receives from 

its neighbors, relating activity correlations to the underlying network structure; 3) it 

correlates strongly with the participation weight of the first FA factor on the activity of each 

neuron. Together, these results provide convincing if not direct evidence that network 

connectivity underlies the interactions among neurons captured by dimensionality reduction 

methods and the resulting neural modes.

Open questions

The prevalence of neural manifolds across brain areas highlights their importance as a tool 

to understand brain function and reinforces the idea that neural processing may be built upon 

latent variables rather than on the activity of single neurons. The concept of neural manifolds 

is not restricted to flat surfaces; the manifold might well be a nonlinear surface within the 

neural space (Fig. 1D). However, for stereotypical laboratory tasks as those discussed here, 

linear methods such as PCA or FA capture a large amount of the neural covariance. If the 

task-specific neural dynamics explore only a limited region within the manifold, a local 

linear approximation to a nonlinear neural manifold would work quite well (see the gray and 

purple planes in Fig. 1E). For complex behaviors whose dynamics explore a larger region of 

neural space, linear methods may provide poor estimates of the neural manifold. Nonlinear 

methods for dimensionality reduction such as Locally Linear Embedding (LLE) (Roweis 

and Saul, 2000), Isomap (Tenenbaum et al., 2000), or Autoencoder Neural Networks 

(Hinton and Salakhutdinov, 2006) might be needed.
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These nonlinear methods have already been used in non-motor brain areas. Analysis of 

population data from the locust antennal lobe during an odor identification task using LLE 

revealed odor-specific neural manifolds that contain trajectories corresponding to different 

concentrations of the same odor (Stopfer et al., 2003). The analysis of the population activity 

of retinal ganglion cells using Isomap (Ganmor et al., 2015) identified activity clusters 

corresponding to similar visual stimuli. It remains an open question whether nonlinear 

methods might reveal mechanisms for the neural control of movement that linear methods 

have not revealed.

The studies discussed here focus on neural manifolds associated with specific tasks. Since 

organisms are able to execute a rich repertoire of motor tasks, how are the corresponding 

neural manifolds organized with respect to each other within the neural space? The neural 

space may contain distinct neural manifolds, each associated with a specific task. What is 

then the relationship among these distinct manifolds? Is each manifold spanned by its own 

unique neural modes, or do tasks in a class share some neural modes that represent common 

features? These are virtually unexplored questions; note however a recent suggestion that 

preparation and execution of a movement correspond to orthogonal but related manifolds 

(Elsayed et al., 2016). Whether a similar finding applies to manifolds corresponding to the 

execution of different tasks is yet unknown.

An alternative is that all motor behaviors might lie within a single, possibly nonlinear, 

universal neural manifold, with each task sampling a different region (Fig. 1E). Because the 

tasks commonly studied are simple and stereotypical, the manifolds extracted from the 

recorded neural data may capture only a small region of the universal manifold, a region 

spanned by task-specific neural modes. This picture agrees with theoretical arguments that 

limiting the complexity of behavior also constrains the dimensionality of the neural 

manifolds (Gao and Ganguli, 2015). In this view, recording larger populations of neurons 

may not yield new insights; only by recording population activity during naturalistic, 

complex behaviors will we uncover the true underlying neural manifold.

We have argued that motor behaviors are generated by the time-varying activation of a small 

set of neural modes, population-wide activity patterns arising from network connectivity that 

define a low-dimensional manifold in neural space. We argue that the transition from a 

neuron-centric to a manifold-centric view of neural activity fosters a important advance in 

our understanding of brain function. Experiments involving longer and more complex motor 

tasks will require the development of increasingly sophisticated techniques for recording and 

data analysis; all these will be critical to advance our understanding of the relation between 

network connectivity, the resulting neural manifolds, and motor behaviors.
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Figure 1. The neural manifold hypothesis
A) Latent variables as a generative model for population activity. The relative area of the 

blue/green regions in each neuron represents the magnitude of the contribution of each latent 

variable to the neuron’s activity. B) Spikes from three recorded neurons during task 

execution as a linear combination of two latent variables. C) Trajectory of time-varying 

population activity in the neural space of the three recorded neurons (black). The trajectory 

is mostly confined to the neural manifold, a plane shown in gray, spanned by the neural 

modes u1 and u2. D) A curved, nonlinear neural manifold, shown in blue. Linear methods 

would capture a flat, local approximation to a small task-specific region of the manifold. E) 

Linear manifolds for two different tasks shown as gray and purple planes. Are these two 

planes local linear approximations to different regions within a large, continuous manifold 

(transparent surface with blue contour), or are they distinct task-specific manifolds that may 

or not share neural modes?
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Figure 2. Latent variables for an isometric center-out task
A) Monkey performing an isometric eight-target center-out wrist task. The targets are color 

coded (inset). The same target color code is used for the curves shown in panels B and C. B) 

Peristimulus time histogram for three out of the 68 neurons recorded in a single session. C) 

Latent variables track the activation of the three leading neural modes, identified with PCA. 

In panels B and C, target presentation (“Tgt on”) is followed by movement onset (“Mov”) 

after about 140 ms. D) Variance explained as function of the number of PCA neural modes. 

Ten modes sufficed to account for about 70% of the variance.
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Figure 3. Neural modes in motor cortices
A) Preparatory activity in PMd for an eight-target reach task. A neural manifold spanned by 

three neural modes reveals target-specific clusters. The targets are color coded (inset). Each 

point represents activity measured during the delay period for one trial. Adapted from 

(Santhanam et al., 2009). B) Population variability in PMd is reduced by stimulus 

presentation. For a delayed reach task (timeline at bottom of panel), population activity 

trajectories for individual trials are shown in gray in a twodimensional manifold. The “Pre-

target” confidence ellipsoid shrinks during “Go cue”, as trajectories get closer together. 

Adapted from (Churchland et al., 2010b). C) The null space allows for movement 

preparation without execution. Population activity trajectories for each reach condition are 

shown in gray in a two-dimensional manifold. Preparatory activity sets the corresponding 

initial conditions (gray circles within purple ellipsoid). Null (purple, top) and potent (dark 

blue, bottom) latent variables, defined with respect to EMG activity, are shown on the right. 

Adapted from (Kaufman et al., 2014). D) Neural modes associated with movement 

preparation and execution span different manifolds. Two movement modes span a plane (in 

gray), while the orthogonal preparation mode spans a line that contains the initial conditions 

(colored circles). Projections of the full trajectories onto the movement manifold resemble 

the traces in panel C. Trajectories are color coded for each target, as per panel A. Adapted 

from (Elsayed et al., 2016).
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Figure 4. Neural manifolds and learning
A) Existing neural modes facilitate the adaptation to variations of a learned task. In a BMI 

paradigm, ten latent variables representing the recorded activity of M1 neurons were mapped 

onto x and y components of cursor velocity. Once monkeys were proficient with the BMI, a 

B) within-manifold or C) outside-manifold perturbation was imposed on the decoder inputs. 

Adaptation to B required a change in the relative activation of existing neural modes, while 

C required the acquisition of new neural modes through changes in neural comodulation 

patterns. Adapted from (Sadtler et al., 2014). D) A recurrent neural network was trained to 

generate condition-specific EMG patterns selected through inputs representing preparatory 

activity. The latent variables that described the population activity of the trained recurrent 

network closely resembled those associated with the experimental data. Adapted from 

(Sussillo et al., 2015).
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