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Abstract

CT is routinely used for radiotherapy planning with organs and regions of interest being 

segmented for diagnostic evaluation and parameter optimization. For cardiac segmentation, many 

methods have been proposed for left ventricular segmentation, but few for simultaneous 

segmentation of the entire heart. In this work, we present a convolutional neural networks (CNN)-

based cardiac chamber segmentation method for 3D CT with 5 classes: left ventricle, right 

ventricle, left atrium, right atrium, and background. We achieved an overall accuracy of 87.2% 

± 3.3% and an overall chamber accuracy of 85.6 ± 6.1%. The deep learning based segmentation 

method may provide an automatic tool for cardiac segmentation on CT images.
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1. INTRODUCTION

Computed tomography (CT) is routinely used for diagnosing conditions, treatment planning, 

and procedure guidance1-4. In the field of radiation oncology, the heart can be segmented 

from CT volumes when planning a radiotherapy treatment plan when the dose is applied 

near the heart 5. Cardiologists and surgeons use CT images for planning procedures to 

correct septum defects and diagnosing congenital heart disease6, 7. Precise chamber-specific 

segmentation can also be used to assess cardiac function using metrics such as chamber 

volume, ejection fraction, and myocardial mass8.
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The processes of segmentation can be time consuming for a radiologist. A quick and 

accurate segmentation method capable of locating individual heart chambers is desirable. 

Other groups have segmented the four heart chambers on CT previously, but the methods 

required the deformation of a prior model or atlas9,10. In most cardiac cases, this would 

require a non-rigid deformation, which can introduce additional errors into segmentation, 

due to natural differences between patient anatomy 11. This is further compounded when 4D 

atlas-based segmentation is considered12, 13. Other methods depend on computed 

tomography angiography data for atlas segmentation14, 15. However, this procedure is time-

consuming and exposes the patient to more radiation than a traditional CT.

A convolutional neural network (CNN) segmentation method offers a valuable alternative to 

atlas-based approaches. A key advantage of using a CNN is that there is no need to perform 

deformable registration. Many different heart sizes and conditions could be included in the 

training data to create the model, which removes the need for a generalized physical 

representation of the heart. In addition, a CNN could be easily integrated into imaging 

software to provide automatic estimations for measurements such as heart size and surface-

to-volume ratios during CT scans. In this study, we explore how a CNN could be used to 

segment the four chambers of the heart using patches from 3D CT images.

2. METHODS

2.1 Data Acquisition and Processing

Chest CT images were acquired for 11 patients at baseline prior to radiotherapy. Each CT 

had a slice thickness of 2.5 mm, with the total number of slices ranging from 78 to 154. The 

in-plane resolution varied from 0.979 × 0.979 mm2 to 1.270 × 1.270 mm22, with an image 

size of 512 × 512 pixels. After imaging, an atlas was deformed to each patient heart and 

verified by a radiologist to create a gold standard for the left ventricle, right ventricle, left 

atrium, and right atrium. An example is shown in Figure 1. The CT volumes and radiologist-

verified segmentations were loaded into MATLAB (MathWorks, Inc., Natick, MA, USA) to 

make 31 × 31 pixel patches. The patches were placed into one of five classes: left ventricle 

(LV), right ventricle (RV), left atrium (LA), right atrium (RA), and background. The 

background is any area inside the patient body but not part of the four classes. From these 

patch lists, 2500 patches from each class for each patient were chosen for CNN training and 

validation.

2.2 Convolutional Neural Network Fabrication

The diagram of the TensorFlow16 CNN is shown in Figure 2, which used the AdaDelta17 

optimizer. The CNN had four convolution layers with an additional max pooling layer 

between the first and second convolution layers. All layers used the ‘Valid’ specification, as 

outlined in the TensorFlow documentation. The kernel size and stride for the max pooling 

layer were both 2 × 2. These layers were followed by two fully connected layers, after which 

a model would be created to classify the testing data. Each patch from the testing data could 

be one of five classes: background, left ventricle, right ventricle, left atrium, or right atrium.
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The sizes of the convolutional layer filters and the number of neurons in the fully connected 

layers were adjusted to optimize the neural network, along with the learning rate, drop-out 

value, AdaDelta parameters ρ and ε, and the bias initialization constant were adjusted to 

optimize the results. The convolutional kernel size was set to 3 × 3. Various convolutional 

kernel sizes were investigated, with the first two convolutional layers using the same filter 

size and the last two using the same filter size. The number of neurons in the fully connected 

layers were also investigated and allowed to differ. Training was allowed to ran for 40 

epochs with a batch size of 25. Model evaluation was performed at the end of each epoch.

2.3 Validation

The results were validated by calculating the overall accuracy of the classification of each 

class, with accuracy defined as the number of correctly labeled patches over the total number 

of patches for the testing dataset. The highest accuracy for each patient is averaged to give a 

final average accuracy for the parameters used. In addition to the overall accuracy, individual 

class accuracies were also calculated for each heart.

3. RESULTS

The optimal learning rate was found to be 0.005, with values from 0.1 to 0.0001 being 

tested. Drop-out values from 0.6 to 1.0 were also tested, with 1.0 producing the highest 

average accuracy. The bias initialization constant was set to 0.10 and the optimal values 

were 0.95 and 1 × 10−9 for AdaDelta parameters ρ and ε. Fully connected layer neuron 

numbers were set to 256 and 128. Various values for the convolutional layer filter sizes were 

tested, with the optimal results shown in Table 1. Increasing the convolutional filter sizes 

caused a steady increase in overall accuracy and a decrease in standard deviation. Using 

sizes of 500, 500, 1000, and 1000 for the convolutional filters, an average accuracy of 87.2% 

± 3.3% was obtained. Average accuracies for each chamber were over 80%, while the 

average accuracy for the background patches was 93.7% ± 2.4%.

Individual patient performance using the optimal CNN parameters with convolutional filter 

sizes of 500, 500, 1000, and 1000 are shown in Table II. The overall accuracy for each 

patient was greater than 80%, with values ranging from 80.8% to 92.9%. All individual class 

accuracies were 73.0% or greater. Among the four chamber classes used, the performance 

for each patient for each chamber differed. For instance, Patients 1 and 2 had lower 

accuracies in the left atrium, while Patients 3 and 4 had their lowest accuracies in the right 

ventricle.

4. DISCUSSION

Overall, the average classification accuracies increased with increasing convolution filter 

sizes, as shown in Table I. This indicated the number of features needed to accurately 

classify the patches was relatively large. The large patch size helped by providing enough 

information for the CNN to extract the variety of features needed. Background patches had 

the highest accuracy, which was not unexpected since the anatomy outside the heart was 

easily distinguishable from cardiac anatomy. The left and right atrium patches saw the 

largest improvements with increasing convolutional filter sizes. Standard deviations for the 
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average accuracies also decreased, showing more consistency between patients during leave-

one-out cross-validation training.

The individual patient performances in Table II show only three patients with an overall 

accuracy below 85%: Patients 7, 10, and 11. Patient 7 had the lowest right atrium accuracy 

of all 11 patients. Patient 10 had the lowest right ventricle accuracy. Patient 11 had the 

lowest overall accuracy, with relatively poor performances for the left ventricle and right 

atrium. Left atrium classification accuracy was high for all patients, with the lowest being 

83.7% and four patients having accuracies over 90%. This suggests some uniformity 

between patient left atriums which may not exist in the other chambers. For example, even 

though the left ventricle classification accuracy was also high, Patient 11 performed poorly, 

suggesting some dissimilarity exists between the left ventricle of Patient 11 and the other 

patients.

A limitation of the study was the small number of patients included. By using more hearts in 

the training dataset, the classification accuracy of each patient and the average accuracies for 

each class should become more uniform. In particular, the average accuracies for the right 

ventricle and atrium could approach that of the left ventricle and atrium, increasing the 

overall accuracy of the method. Including more data would also decrease the risk of 

dissimilar patients.

5. CONCLUSIONS

We developed a patch-based, entirely autonomous convolutional neural network-based 

method to segment the four heart chambers from a conventional CT scan with high accuracy. 

This approach required no atlas and no prior registration between patients, reducing possible 

sources of error. Data pre-processing was limited to only patch creation, which is easily 

performed independently of the user. The results from the method can then be used for 

patient treatment planning or to automatically calculate cardiac function metrics. Future 

work will extend the CNN to four-dimensional (4D) CT and to explore the use of 3D 

patches to further improve the results.
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Figure 1. 
Gold standard segmentation provided by a trained radiologist. The left ventricle (LV), right 

ventricle (RV), left atrium (LA), and right atrium (RA) are visible on this slice.
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Figure 2. 
The workflow for the convolutional neural network used to segment the heart on 3D CT. The 

training patches from the 3D CT volumes of 10 patients are fed into four convolutional 

layers and a max pooling layer. These are followed by two fully connected layers and the 

final model. Testing data is then assigned a label of background, left ventricle, right 

ventricle, left atrium, or right atrium by the model.
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Table I.

Effect of convolutional filter size on classification results. Results shown represent the average accuracy for all 

patients. The values for the other parameters are shown below the table. Accuracies are in percentage.

CFS
1 &2

CFS
3 & 4

Background LV RV LA RA Overall

150 75 88.4 ± 4.9 78.1 ± 9.1 73.3 ± 9.0 69.2 ± 11.2 66.0 ± 8.5 75.0 ± 5.7

200 100 88.7 ± 4.4 78.4 ± 14.2 73.9 ± 9.1 71.1 ± 5.8 69.3 ± 7.7 76.3 ± 5.3

100 200 88.9 ± 4.2 82.9 ± 7.9 74.6 ± 9.3 70.9 ± 10.1 71.3 ± 7.1 77.7 ± 4.8

200 400 91.6 ± 3.2 79.6 ± 7.1 78.9 ± 9.7 82.0 ± 6.6 77.9 ± 6.4 82.0 ± 4.3

300 600 92.6 ± 2.9 85.4 ± 6.4 80.5 ± 8.8 83.1 ± 7.6 80.6 ± 4.2 84.8 ± 4.2

400 800 93.1 ± 2.8 86.6 ± 5.8 81.6 ± 7.7 85.9 ± 5.7 82.9 ± 6.2 86.0 ± 3.7

500 1000 93.7 ± 2.4 87.8 ± 5.6 82.9 ± 6.2 88.6 ± 3.5 83.0 ± 6.2 87.2 ± 3.3

Learning Rate: 0.005, Drop-out Value: 1.0, Bias Initialization Constant: 0.10, ρ: 0.95, ε: 1 × 10−9, Fully Connected Layer Neuron Counts: 
256 and 128. CFS: Convolution Filter Size
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Table II.

Individual patient performance using the optimal CNN parameters with convolution filter sizes of 500, 500, 

1000, and 1000. Accuracies are in percentage.

Patient# Background LV RV LA RA Overall

1 95.7 91.9 97.8 86.2 93.1 92.9

2 96.4 90.3 86.4 84.7 86.0 88.8

3 95.0 90.0 78.2 87.6 82.1 86.6

4 97.2 88.4 76.4 89.6 82.0 86.7

5 94.0 91.8 86.0 95.9 90.3 91.6

6 94.4 93.5 83.2 92.2 77.4 88.2

7 90.4 84.2 86.6 89.1 73.0 84.7

8 92.9 92.0 78.2 90.4 88.9 88.5

9 93.5 87.7 84.7 90.2 80.3 87.3

10 88.4 82.7 74.6 84.8 86.2 83.3

11 92.7 73.1 80.2 83.7 74.1 80.8

Average 93.7 ± 2.4 87.8 ± 5.6 82.9 ± 6.2 88.6 ± 3.5 83.0 ± 6.2 87.2 ± 3.3
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