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Abstract
Purkinje neurons, the sole output of the cerebellar cortex, deliver GABA-mediated inhibition to the deep cerebellar nuclei. 
To subserve this critical function, Purkinje neurons fire repetitively, and at high frequencies, features that have been linked 
to the unique properties of the voltage-gated sodium (Nav) channels expressed. In addition to the rapidly activating and inac-
tivating, or transient, component of the Nav current (INaT) present in many types of central and peripheral neurons, Purkinje 
neurons, also expresses persistent (INaP) and resurgent (INaR) Nav currents. Considerable progress has been made in detailing 
the biophysical properties and identifying the molecular determinants of these discrete Nav current components, as well 
as defining their roles in the regulation of Purkinje neuron excitability. Here, we review this important work and highlight 
the remaining questions about the molecular mechanisms controlling the expression and the functioning of Nav currents in 
Purkinje neurons. We also discuss the impact of the dynamic regulation of Nav currents on the functioning of individual 
Purkinje neurons and cerebellar circuits.
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Introduction

In most mammalian central neurons, voltage-gated sodium 
(Nav) currents underlie the generation and propagation of 
action potentials and regulate repetitive firing rates [1, 2]. 
The detailed time- and voltage-dependent properties of the 
Nav currents, in concert with the many other voltage- and 
non-voltage-gated currents expressed, underlie the genera-
tion of cell-type-specific differences in the waveforms of 
individual action potentials and the rates and patterns of 
repetitive firing [1, 2]. In cerebellar Purkinje neurons, which 
fire repetitively at high frequency in vivo [3] and in vitro 
[4], independent of synaptic inputs [4, 5], for example, three 
Nav current components have been distinguished: (1) a rap-
idly activating and inactivating, i.e., transient, component, 
INaT; (2) a non-inactivating, persistent component, INaP [6]; 

and (3) a resurgent component, INaR [5]. These Nav cur-
rent components all contribute to shape the waveforms of 
action potentials and control the repetitive firing rates of 
Purkinje neurons [5, 7, 8]. Deletion or mutation of Scn1a 
or Scn8a, which encode the Nav channel pore-forming (α) 
subunits Nav1.1 or Nav1.6, respectively, attenuates Nav 
currents and repetitive firing rates in Purkinje neurons, the 
sole output neurons of the cerebellar cortex, and impairs 
motor performance [9–12]. Interestingly, modulation of the 
voltage-dependent properties of Nav currents in Purkinje 
neurons also disrupts high-frequency firing and affects motor 
coordination and balance [13].

Here, we review the time- and voltage-dependent prop-
erties of the Nav currents expressed in cerebellar Purkinje 
neurons and explore the roles of the three Nav current com-
ponents, INaT, INaP, and INaR, in shaping the firing properties 
and the functioning of these cells. We also discuss recent 
studies focused on identifying the molecular determinants of 
native Nav currents in Purkinje neurons and the mechanisms 
contributing to INaT, INaP, and INaR gating. Finally, we discuss 
upstream mechanisms that may contribute to Nav current 
modulation and important, unanswered questions about the 
regulation of Nav channel expression, properties, and func-
tioning in cerebellar Purkinje neurons.
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Purkinje neurons are the sole output 
of the cerebellar cortex

In pioneering work conducted during the 1960s, Eccles, 
Llinás, and Sasaki directly linked the cerebellum to motor 
function and mapped the physiological underpinnings of 
the cerebellar circuit [14–21]. Purkinje neurons function 
as the final destination of sensory information processing 
in the cerebellar cortex (Fig. 1) and the relay of informa-
tion from the cerebellar cortex to downstream targets [22]. 
Sensory information enters the cerebellum via mossy fib-
ers (Fig. 1), originating from over two-dozen brain and 
spinal cord nuclei [22], that synapse on and excite gran-
ule neurons [14]. The granule neurons, in turn, project 
parallel fiber axon bundles into the molecular layer of the 
cerebellar cortex (Fig. 1), where they make excitatory 
synapses on the large dendritic trees of Purkinje neurons 
[15]. The axons of Purkinje neurons exit the cerebellar 
cortex (Fig. 1) and provide GABA-mediated inhibition to 
neurons in the deep cerebellar nuclei [23–25]. In addi-
tion to granule cell inputs, Purkinje neurons also receive 
excitatory synaptic climbing fiber inputs from neurons in 
the inferior olivary nucleus [16] and local GABAergic 

inhibitory inputs from cerebellar basket [26] and stellate 
[17] cells (Fig. 1).

The interplay of inhibitory and excitatory synaptic 
inputs modulates the repetitive firing rates and can cause 
brief pauses in the firing of individual Purkinje neurons 
[19, 27], as well as synchronize the repetitive firing of adja-
cent Purkinje neurons [28, 29]. The synchronized firing 
of Purkinje neurons is important in relaying spike timing 
information to neurons in the deep cerebellar nuclei [30], 
and is evident during cerebellar-related motor behaviors [31, 
32]. In the absence of synaptic inputs, however, Purkinje 
cells continue to fire action potentials spontaneously and 
repetitively at high frequencies [4, 5]. This sustained, high-
frequency repetitive firing, which depends on the unique 
intrinsic membrane properties of Purkinje neurons, is vital 
to the functioning of the cerebellar cortex. Indeed, altera-
tions in the rates and patterns of repetitive firing of Purkinje 
neurons impact balance and motor performance [9–13].

Nav currents underlie high‑frequency 
repetitive firing in cerebellar Purkinje 
neurons

In 1980, Llinas and Sugimori demonstrated that the high-
frequency repetitive firing of action potentials observed in 
Purkinje neurons in acute cerebellar slices requires sub-
threshold Na+-dependent, tetrodotoxin (TTX)-sensitive 
membrane depolarizations [6, 33]. Combining voltage-
clamp and action potential-clamp recordings on isolated 
Purkinje neurons, Raman and Bean detailed the time- and 
voltage-dependent properties of the critical subthreshold 
currents underlying spontaneous action potential firing, 
providing new insights into the roles of these currents in 
shaping the waveforms of individual action potentials and 
in controlling the rates and patterns of repetitive firing [5, 7, 
34]. Importantly, these experiments revealed that the intrin-
sic, high-frequency repetitive firing of action potentials in 
cerebellar Purkinje neurons is not dependent on calcium cur-
rents (ICa) or hyperpolarization-activated cation currents (Ih) 
[7], conductance pathways often associated with pacemaker 
activity [35–37]. Instead, TTX-sensitive Nav conductances 
were identified as the primary source of subthreshold mem-
brane depolarizations, both during the action potential and 
the inter-spike interval, and to be critical in controlling the 
repetitive firing of Purkinje neurons [5, 7]. Indeed, sponta-
neous, high-frequency repetitive firing persists in isolated 
Purkinje neurons with pharmacological inhibition of ICa and 
Ih, but not in the presence of TTX [7].

Action potential-clamp recordings also revealed that the 
TTX-sensitive inward Nav currents are activated in Purkinje 
neurons at subthreshold membrane potentials during the 
upstroke of individual action potentials, as well as during the 
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Fig. 1   Schematic of the cerebellar circuit shown in sagittal and coro-
nal planes. Climbing fibers, originating in the inferior olive, form 
excitatory synapses on the dendrites of Purkinje neurons (green). 
Mossy fibers, which originate in multiple hindbrain and spinal cord 
nuclei, form excitatory synapses on granule neurons (red) in the cer-
ebellar cortex. The granule cells, in turn, project parallel fiber axons 
into the molecular layer and form excitatory synapses on the den-
drites of Purkinje neurons. Stellate and basket cells (blue), in contrast, 
form inhibitory synapses on Purkinje neurons, the sole output of the 
cerebellar cortex, which project inhibitory axons to the deep cerebel-
lar nuclei
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inter-spike interval [7]. Combining action potential-clamp 
and voltage-clamp recordings, Carter and Bean [38] went on 
to examine INa availability during action potentials and dur-
ing inter-spike intervals in Purkinje neurons firing at differ-
ent rates. To quantify INa as a function of time and voltage, 
they applied steady-state depolarizing voltage steps at differ-
ent times during action potentials [38]. These experiments 
revealed that Purkinje neurons continue to fire at > 100 Hz 
even with ~ 75% of the Nav channels inactivated. In Purkinje 
neurons firing at 300 Hz, INa availability fell to 15% of its 
(original) maximal value [38].

Multiple Nav current components drive 
and fine tune repetitive firing in Purkinje 
neurons

Steady-state voltage-clamp recordings revealed that the criti-
cal Nav conductance in cerebellar Purkinje neurons included 
a rapidly activating and inactivating, i.e., a transient Nav 
current component, INaT, and a non-inactivating, i.e., per-
sistent Nav current component, INaP [5, 7, 9, 39], as illus-
trated in Fig. 2a. In mouse Purkinje neurons, INaP, which is 
observed at voltages as negative as − 80 mV, was shown to 
contribute to the regulation of action potential thresholds 
and the amplification of dendritic excitatory and inhibi-
tory synaptic potentials [40]. Voltage-clamp experiments 
also revealed that the decay of INaT in cerebellar Purkinje 
neurons follows a bi-exponential time course [9]. At room 
temperature, the fast component of INaT decay inactivates 
with a time constant of ~ 1 ms, and the slow component of 

INaT decay inactivates with a time constant of ~ 8 ms [9]. 
Recovery of the fast inactivating component of INaT (from 
inactivation) is best described by a single exponential; the 
time constant of recovery at − 40 mV (and at − 80 mV) at 
room temperature, for example, is 3.8 ms [5, 41]. This rate 
is considerably faster than the rate of INaT recovery observed 
in other mammalian central neurons. In hippocampal CA1 
pyramidal cells, for example, the time constant of INaT recov-
ery from inactivation at − 70 mV at room temperature was 
reported to be 9 ms [42].

Voltage-clamp analyses also led to the discovery of a dis-
tinct “resurgent” Nav current component, INaR, in Purkinje 
neurons, revealed on membrane repolarizations following 
depolarizing voltage steps [5, 43], as illustrated in Fig. 2b. 
INaR, therefore, would be expected to provide depolarizing, 
inward (Na+) current during the falling phase of action 
potentials and inter-spike intervals in Purkinje neurons [8, 
41]. Action potential-clamp recordings from Purkinje neu-
rons indeed revealed an increase in TTX-sensitive inward 
Nav current during the action potential downstroke [7, 38, 
44, 45].

To explore the functional role(s) of the individual Nav 
current components in the regulation of high-frequency 
repetitive firing in Purkinje neurons, Khaliq et al. [8] con-
structed a conductance-based Purkinje neuron model based 
on the experimentally determined properties of the three Nav 
current components, INaT, INaP, and INaR, together with the 
three voltage-gated potassium (Kv) currents, two voltage-
gated calcium (Cav) currents, and the calcium-activated 
potassium current, identified in these cells [7–9, 34]. The 
Nav currents were simulated using a Markov model [34] 
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Fig. 2   Three Nav current components, INaT, INaP, and INaR, resolved 
in steady-state voltage-clamp experiments. In the example voltage-
clamp paradigm illustrated, INaT and INaP, are revealed during the 
depolarizing voltage step to + 10  mV (a), and INaR is observed on 
membrane repolarization (from + 10  mV) to − 40  mV (b). In both 

the left and right panels, the waveform of the evoked Nav currents 
is shown below the voltage-clamp paradigm, and schematics of Nav 
channel gating states are presented; the intrinsic channel inactiva-
tion gate is shown in red and the open-channel blocking particle is 
depicted in blue
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that included an ‘open blocked’ state to simulate INaR. This 
conductance-based model allowed manipulation of INaR 
and INaT densities and revealed that decreasing INaR reduced 
repetitive firing rates in model cells [8]. Using this model 
[34] to simulate INaR, Ransdell et al. [41] demonstrated that 
(positively) scaling the magnitude of INaR in dynamic-clamp 
recordings [46, 47] increased instantaneous and evoked fir-
ing rates in Purkinje neurons in acute cerebellar slices.

Nav channel gating in cerebellar Purkinje 
neurons

Each Nav channel pore-forming (α) subunit contains four 
homologous domains (domains I–IV), each with six trans-
membrane segments (S1–S6) that are linked by cytosolic 
peptides (Fig.  3a) [48]. The S5 and S6 transmembrane 
domains contribute to the formation of the Na+-selective 
pore (Fig. 3b). The voltage-sensing, S4, segment in each 
domain has multiple positively charged residues, repeated at 
three-residue intervals, followed by two hydrophobic amino 
acids [48, 49]. The positively charged amino acid residues 
in the S4 domain respond to changes in membrane voltage 
and move (outward) on membrane depolarization [50]. This 
charge movement opens the Nav channel pore, allowing Na+ 
influx. Following opening, Nav channels inactivate, medi-
ated by the cytosolic DIII–DIV linker peptide, specifically 
by three residues in the DIII–DIV linker that form the hydro-
phobic (IFM) motif [51], terminating Na+ influx. The IFM 
motif binds to a site in the channel pore that is only made 
available after the outward movement (opening) of the DIV 
S4 segment [52–54]. Importantly, this means that Nav chan-
nel inactivation, although tightly linked to voltage-dependent 

Nav channel activation [55], is a voltage-independent pro-
cess [52, 56].

Interestingly, the S4 voltage sensors in each of the four 
domains of an Nav channel α subunit have different voltage 
sensitivities [53]. Because Nav channel inactivation requires 
the movement or activation of the domain IV voltage sen-
sor [54], and Nav channels conduct Na+ after activation of 
domains I, II, and III [57, 58], INaP can arise at membrane 
potentials that activate the domain I, II, and III voltage sen-
sors if domain IV remains deactivated. Importantly, these 
gating mechanisms indicate that differential regulation of 
the voltage sensitivities of the domain I–IV voltage sensors 
may regulate the proportion/density and voltage dependence 
of INaP and INaR.

The “resurgent” component of the Nav current in Purkinje 
neurons, INaR, is evident on membrane repolarization follow-
ing brief depolarizations to positive test potentials (Fig. 2b) 
[5, 43]. In Purkinje neurons, INaR, peaks at − 35 to − 45 mV, 
activates with a time constant of 5–6 ms and inactivates 
with a time constant of ~ 20 ms [5, 41, 43]. Importantly, the 
fact that INaR is not revealed instantaneously on membrane 
repolarization, but rather takes time to activate, reveals that 
it (INaR) does not reflect INaP tail currents. Rather, INaR must 
be mediated by newly opened or recovered Nav channels. 
In Purkinje neurons, prolonged (40 ms), moderate depo-
larizations (e.g., to − 30 mV) result in INaR (at − 40 mV) 
that is much smaller than INaR (also measured at − 40 mV) 
after a short (5 ms) depolarizing step to more positive (e.g., 
+ 30 mV) potentials [34]. Using (both) voltage-clamp pro-
tocols mimicking these paradigms on the same cell, Raman 
and Bean [34] showed that INaT recovery paralleled INaR, i.e., 
INaT recovery was greater when measured after a hyperpo-
larizing voltage step producing a large INaR, than following 
steps yielding little INaR. This result has several important 
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Fig. 3   Schematic of the membrane topology of Nav α and β subunits. 
a Nav α subunits have four homologous (DI–DIV) domains, each of 
which has six transmembrane segments; the voltage-sensing S4 seg-
ment in each domain is red and the two (S5 and S6) transmembrane 
domains contributing to the pore are brown. The inactivation gate 
(grey) in the DIII–DIV linker and the Nav channel transmembrane 
accessory (β) subunits, Navβ1–Navβ4, are also shown. Navβ2 and 

Navβ4 (green) form covalent disulfide bonds with Nav α subunits, 
whereas Navβ1 and Navβ3 (blue) interact non-covalently with Nav 
α subunits. Binding sites for additional Nav channel interacting pro-
teins, including AnkyrinG (purple) in the DII–DIII cytosolic linker 
and iFGF14 (blue) in the C-terminus, are also indicated. b The 24 
transmembrane spanning segments of a single Nav α subunit assem-
ble to form an Na+ selective pore (brown)
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implications. First, because the magnitude of INaR was 
dependent on the duration and potential of the pre-step, with 
shorter, more depolarized potentials resulting in larger INaR, 
Raman and Bean reasoned that there were two competing 
Nav channel inactivation mechanisms [34]. Specifically, they 
suggested that Nav channels undergo conventional inactiva-
tion (mediated by the cytosolic DIII–DIV linker) at more 
hyperpolarized potentials and a novel form of Nav channel 
inactivation at more depolarized potentials.

This novel mechanism of Nav channel inactivation was 
referred to as “open-channel block”, i.e., activated Nav 
channels opened at depolarized membrane potentials were 
blocked by a particle distinct from the DIII–DIV linker. 
Grieco et al. [59] specifically suggested that a blocking par-
ticle, not part of the Nav α subunit, competes with conven-
tional inactivation, occludes the Nav channel pore during 
strong depolarizations, and is expelled from the pore on 
membrane repolarization allowing ‘resurgent’ Na+ influx 
(before the Nav channels enter a conventional inactivated 
state). In the open-channel block mechanism, Nav channels, 
or at least the subset of Nav channels that undergo open-
channel block, forego conventional inactivation allowing 
faster recovery of INaT during hyperpolarization [34].

The proposed mechanism for INaR generation requires the 
presence/functioning of a particle that competes with con-
ventional inactivation and occludes the Nav channel pore at 
depolarized potentials. The Nav channel β4 subunit (Navβ4), 
which binds covalently to Nav α subunits [60, 61] and has a 
short (20 residues) intracellular C-terminus, which includes 
several positively charged amino acids, in addition to a phe-
nylalanine residue, was suggested by Lewis and Raman to 
function as an endogenous “blocking” particle [62]. In a 
landmark study, Grieco et al. [63] demonstrated that INaR, 
measured in membrane patches excised from Purkinje 
neurons, was abolished when the intracellular face of the 
membrane was exposed to proteases specific for cleavage 
at positively charged (trypsin) or aromatic (chymotrypsin) 
residues. In addition, following protease treatment, INaR was 
rescued by intracellular application of a synthetic peptide, 
referred to as β4peptide, homologous to the Navβ4 C-terminus 
[63]. Interestingly, although co-expression of Nav α subu-
nits with Navβ4 in heterologous cells results in Nav cur-
rents that lack INaR [64–66], intracellular applications of the 
β4peptide to HEK-293 cells expressing Nav1.1, 1.4, 1.5, or 1.7 
produce robust INaR [65–68]. It has also been reported that 
shRNA-mediated ‘knockdown’ of Navβ4 reduced or elimi-
nated INaR in cerebellar granule neurons [69], as well as in 
dorsal root ganglion neurons [70]. More recently, however, 
it was shown that targeted deletion of Navβ4 (Scn4b−/−) 
reduces, but does not abolish INaR in striatal medium spiny 
neurons [71] or in cerebellar Purkinje neurons [41]. In 
fact, INaR amplitudes/densities in Scn4b−/− Purkinje neu-
rons were ~ 50% of wild-type INaR levels, and in addition, 

the time- and voltage-dependent properties of the residual 
INaR were indistinguishable from wild-type INaR [41]. These 
results clearly indicate that Navβ4-independent mechanisms 
contribute to the generation of native INaR.

An alternative, or perhaps additional, mechanism for INaR 
generation is that there is a range of membrane voltages and/
or a distinct subset of Nav channels in which the rate of Nav 
channel deactivation is slower than the rate of channel recov-
ery from inactivation [41, 43]. If Nav channel closing (deac-
tivation), for example, is slower than recovery from inacti-
vation at membrane potentials between − 50 and − 30 mV, 
Na+ influx through recovered Nav channels will occur. This 
mechanism was first suggested by the results of experiments 
demonstrating that β-toxins from Centruroides scorpions 
[72] slow the kinetics of deactivation of heterologously 
expressed Nav1.6 channels in HEK-293 cells [73, 74]. The 
change in deactivation kinetics resulted in the generation 
of resurgent Nav currents in cells exposed to the toxin [73, 
74]. It has also been reported that exposure of rat cerebellar 
Purkinje neurons to Cn2 toxin, a β-toxin from Centruroides 
noxius, produced an additional Na+-mediated resurgent cur-
rent with voltage-dependent activation properties distinct 
from native INaR [73]. It remains to be determined if there are 
intrinsic mechanisms in Purkinje neurons, or other neuronal 
cell types, which similarly modulate Nav current deactiva-
tion kinetics to produce resurgent Nav currents.

A fascinating aspect of INaR in Purkinje neurons that has 
not been thoroughly explored to date is that, at negative 
potentials, the magnitude and the rate of decay of INaR par-
allel the magnitude and the rate of decay of the slow com-
ponent of INaT inactivation. Representative recordings from 
an isolated Purkinje neuron demonstrate that the magnitude 
and decay phase of INaR at − 40 mV (from a depolarized 
membrane potential) are indistinguishable from the slow 
component of INaT inactivation evoked directly on membrane 
depolarization to − 40 mV from a hyperpolarized membrane 
potential (Fig. 4). Noting this property, Raman and Bean 
proposed that, rather than competing with conventional 
inactivation, Nav channels responsible for INaR may undergo 
open-channel block at all voltages that activate INaT [34].

Nav channel alpha and accessory subunits 
in the functioning of Purkinje neurons

Transcripts encoding the Nav1.6 (SCN8A/Scn8a) and Nav1.1 
(SCN1A/Scn1a) pore-forming α subunits are robustly 
expressed in cerebellar Purkinje neurons [75]. In situ hybrid-
ization studies have provided conflicting results [76–78] 
regarding the expression of Scn2a, which encodes the 
Nav1.2 α subunit, in cerebellar Purkinje neurons. In addi-
tion, although readily detected in cerebellar granule neu-
rons, the Nav1.2 protein was not detected on Purkinje neuron 
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somata, dendrites and axons [12]. In contrast, robust anti-
Nav1.6 and anti-Nav1.1 protein labeling has been reported 
in Purkinje neurons [79, 80], and the Nav1.6 and Nav1.1 
proteins are differentially localized. Anti-Nav1.1 labeling, 
for example, was observed on the cell bodies and dendrites 
of Purkinje neurons [79] and, in addition, was detected in the 
segment of the axon proximal to the soma [81]. In contrast, 
anti-Nav1.6 staining was reported to be localized to the axon 
initial segment (AIS) [80, 81]. Focal application of TTX (to 
block Nav currents) or β-pompilidotoxin (to increase INaR) 
[82] revealed that action potentials in Purkinje neurons are 
initiated in the distal portion of the AIS, although when 
AIS Nav channels were blocked, somatic Nav channels in 
Purkinje neurons were sufficient to generate repetitive firing 
[83]. Simultaneous extracellular recordings from Purkinje 
neuron somata and different sites along the axon [84], in 
combination with the results of antibody labeling [80, 81], 
suggest that Nav1.6 plays a critical role in the initiation of 
action potentials in the AIS and the regulation of repetitive 
firing in Purkinje neurons.

In studies designed to explore directly the contributions 
of individual Nav α subunits to the regulation of action 
potential generation and repetitive firing in Purkinje neu-
rons, the functional consequences of the targeted disruption 
of the genes encoding individual Nav α subunits were exam-
ined. The first of these studies used the naturally occurring 
Scn8amed mutant mouse [85], which results in the functional 
‘knockout’ of Scn8a and loss of the Nav1.6 protein [9, 85, 

86]. As might have been expected, loss of Nav1.6 resulted in 
attenuation of repetitive firing in Purkinje neurons. Record-
ings from cells isolated from 14- to 19-day-old mice revealed 
spontaneous firing rates reduced to 9 Hz in Scn8amed, com-
pared with 35 Hz in wild type, Purkinje neurons [8]. In 
addition, peak INaT densities in Scn8Amed Purkinje neurons 
were ~ 65% of wild-type levels [9]. Interestingly, INaP and 
INaR densities were reduced to 30 and 10–20%, respectively, 
of wild-type levels in Scn8Amed Purkinje neurons [9]. Tar-
geted disruption of Scn1a and loss of Nav1.1 also reportedly 
reduced spontaneous, repetitive firing rates in acutely iso-
lated postnatal day 13–14 Purkinje neurons to 45 Hz, com-
pared with 69 Hz in wild-type cells [12]. Loss of Nav1.1 
resulted in INaT, INaP, and INaR densities that were 42, 41, 
and 31% of those measured in wild-type Purkinje neurons, 
respectively.

Taken together, these observations suggest that both 
Nav1.1 and Nav1.6 contribute to the high rates of repetitive 
firing in Purkinje neurons and animals lacking either of these 
subunits have severe deficits in balance and motor coordi-
nation [10, 12]. In addition, both the Nav1.1 and Nav1.6 
α subunits contribute to INaT, INaP, and INaR, although loss 
of Nav1.6 disproportionately affects INaR and INaP. Using 
the Cre–lox system to eliminate Scn8a expression selec-
tively in Purkinje or in cerebellar granule neurons, Levin 
and colleagues demonstrated that loss of Nav1.6 in granule 
neurons resulted in only minor behavioral defects, whereas 
mice lacking Nav1.6 in Purkinje neurons exhibited ataxia, 
tremors, and impaired coordination [11].

It is important to note that the biophysical properties of 
native INaP and INaR in Purkinje neurons are distinct from 
those of heterologously expressed Nav1.1- or Nav1.6-
encoded Nav currents. Heterologous expression of Nav1.1, 
for example, revealed persistent Nav current amplitudes 
corresponding to 2–13% of INaT [87]. It has been estimated 
that Nav1.1-mediated INaP in cerebellar Purkinje neurons 
is ~ 1.4% of Nav1.1-mediated INaT [12]. Even more striking 
is the fact that neither Nav1.6 nor Nav1.1 produces resurgent 
Nav currents in heterologous expression systems [64, 65].

Accumulated evidence suggests that native neuronal 
Nav channels, like many other types of ion channels, func-
tion in macromolecular protein complexes comprising the 
pore-forming α subunits and a complement of accessory and 
regulatory proteins [88–90]. Various Nav channel accessory 
proteins have been linked to the regulation of Nav channel 
trafficking, localization, and gating [65, 91–93], increasing 
the complexities by which Nav channel regulation can influ-
ence intrinsic neuronal excitability, action potential wave-
forms, and repetitive firing. Clear roles for the intracellular 
fibroblast growth factors (iFGF11–14), also referred to as 
fibroblast homologous factors (FHFs) [13, 81, 94, 95], and 
the Nav channel β subunits (Navβ1–4) [41, 43, 63] in the 
regulation of Purkinje neuron Nav channels, action potential 

0.
5 

nA

20 ms

-40 mV
+10 mV

-90 mV 0.
1 

nA

10 ms

~ 
Fig. 4   Decay phases of INaT and INaR. In the panel on the left, Nav 
current waveforms recorded from an isolated neonatal Purkinje neu-
ron during two different voltage-clamp paradigms are shown; the 
voltage-clamp paradigms are illustrated above the current records. In 
the first case, membrane depolarization to − 40  mV from a holding 
potential (HP) of − 90 mV (red) evoked INaT (red); note the fast (red, 
open arrow) and slow (red, filled arrow) components of inactivation 
of INaT. Membrane repolarization to − 40 mV following a brief (5 ms) 
strong (+ 10  mV) depolarization from the same HP revealed INaR 
(black). Note that the time course of INaR decay (black, filled arrow) 
and the slow component of INaT inactivation (red, filled arrow) are 
indistinguishable. The currents are shown on expanded amplitude and 
time scales in the records shown in the panel on the right
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waveforms, and repetitive firing patterns, for example, have 
been provided. FGF14 is the locus of mutations in spinal 
cerebellar ataxia type 27 (SCA27) [96], an autosomal domi-
nant disorder characterized by progressive ataxia and cogni-
tive decline [96]. iFGFs are unique from the canonical FGFs 
in that they lack a signal sequence for secretion and they do 
not activate any known FGF receptors [97, 98]. Rather, the 
iFGFs function intracellularly, binding to the C-terminus of 
Nav α subunits/channels [99–101].

iFGF14 is robustly expressed in Purkinje neurons 
and localizes with Nav1.6 at the AIS [81, 102]. iFGF14 
null (Fgf14−/−) mice display severe deficits in balance 
and motor coordination [103] and the vast majority of 
Fgf14−/− Purkinje neurons are quiescent and lack the ability 
to fire repetitively, even in response to depolarizing current 
injections [95]. Interestingly, shRNA-mediated ‘knockdown’ 
of iFGF14 in adult Purkinje neurons also resulted in deficits 
in balance and motor coordination and markedly attenuated 
firing in Purkinje neurons [13]. Additional experiments 
revealed that attenuated firing in Fgf14−/− Purkinje neurons 
could be attributed to a hyperpolarizing shift in the voltage-
dependence of steady-state inactivation of INaT and that fir-
ing could be rescued by membrane hyperpolarizations to 
membrane potentials that allow inactivated Nav channels 
to recover. It has also been reported that shRNA-mediated 
‘knockdown’ of iFGF14 in neonatal Purkinje neurons in 
culture results in reduced INaR [94]. Loss of iFGF14, how-
ever, does not measurably affect INaR in acutely dissociated 
Purkinje neurons (unpublished). Additional iFGFs may also 
serve important roles in the regulation of Nav currents and 
the excitability of Purkinje neurons. Goldfarb and colleagues 
[102] demonstrated, for example, that animals lacking both 
iFGF12 and iFGF14 (Fgf12−/−, Fgf14−/−) display signifi-
cantly worse motor defects than Fgf14−/− animals and that 
granule neuron excitability in Fgf12−/−, Fgf14−/− mice was 
markedly attenuated. The role of iFGF12 in Purkinje neu-
rons, however, has not been explored to date.

Transcripts (Scn1b–Scn4b) encoding Navβ1–4 are 
expressed in developing cerebellar Purkinje neurons [41, 61, 
93, 104, 105], although Scn3b (Navβ3) is undetectable in 
mature Purkinje neurons [105]. As discussed above, Navβ4 
contributes to INaR and repetitive firing rates are attenuated 
in adult Scn4b−/− Purkinje neurons. In marked contrast, 
repetitive firing rates and properties in neonatal (P14–P15) 
Scn4b−/− and wild-type Purkinje neurons are indistinguish-
able [41], suggesting that the functional effects of Navβ4 on 
the repetitive firing rates of Purkinje neurons are develop-
mentally regulated. Adult Scn4b−/− animals also have defi-
cits in balance and motor coordination [41], although not 
as severe as those observed in Fgf14−/− animals [13, 103].

In contrast with expectations, voltage-clamp experiments 
revealed that INaR is readily detected in Scn4b−/− Purkinje 
neurons and that the mean amplitude of the current is ~ 50% 

of the magnitude of INaR in wild-type cells [41]. These obser-
vations demonstrate that additional, perhaps compensatory, 
mechanisms contribute to the generation of INaR in Purkinje 
neurons. Although the critical, alternate mechanism(s) 
remain to be identified, there are several possibilities. As 
mentioned above, it has been reported that shRNA-mediated 
‘knockdown’ of iFGFf14 in neonatal Purkinje neurons in 
dissociated cell culture resulted in reduced INaR [94]. In addi-
tion, INaR has been reported to be attenuated (compared with 
wild-type levels) in neonatal Scn1b−/− granule neurons in 
culture [93]. Importantly, no changes in INaP or INaT densi-
ties or properties were observed in Scn1b−/− granule neu-
rons [93], indicating specificity for INaR. In contrast, Navβ2 
(Scn2b) more closely resembles Navβ4 than Navβ1 and 
includes multiple positively charged residues in the C-ter-
minus [62]. However, relative INaR (to INaT) amplitudes are 
similar in Scn2b−/− and wild-type Purkinje neurons [63]. 
The effects of the additional loss of Navβ1 or Navβ2 with 
Navβ4 on Nav currents in Purkinje neurons have not been 
investigated to date.

Teasing out the additional molecular determinants of INaR 
and determining if there are physiologically relevant mecha-
nisms distinct from open-channel block of Nav channels that 
contribute to INaR will be important in efforts to provide a 
detailed understanding of the diverse roles of Nav currents 
in controlling the physiology and functioning of cerebellar 
Purkinje neurons.

Summary, open questions, and future 
directions

The discovery and detailed characterization of the bio-
physical properties of INaP [6] and INaR [5] have provided 
important insights into the contributions of these Nav cur-
rent components, together with INaT, to regulate spontane-
ous, high-frequency, repetitive firing in Purkinje neurons 
[8, 9, 38, 41, 44]. Cerebellar Purkinje neurons are also 
being utilized to uncover the important contributions of 
distinct Nav channel accessory proteins on the proper-
ties of the Nav currents and on the regulation of action 
potential waveforms and repetitive firing properties [13, 
63, 94, 106]. However, this work is still in its infancy. 
At present, for example, the only Nav channel accessory 
proteins shown to contribute to the regulation of the excit-
ability and the functioning of cerebellar Purkinje neurons 
are iFGF14 and Navβ4. In addition to the contribution of 
the many other Nav channel accessory proteins that are 
expressed in Purkinje neurons (including Navβ1, Navβ2, 
iFGF11, iFGF12, and iFGF13), we should also consider 
the possibility that multiple proteins are involved and that 
this could result in non-linear contributions to membrane 
excitability. Binding of calmodulin on the C-terminus of 
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Nav1.4, which is expressed primarily in skeletal smooth 
muscle, for example, has been reported to affect channel 
permeability [107]. Over-expression of calmodulin has 
also been shown to attenuate Nav1.6-mediated INaP in 
Purkinje neurons in vitro [106]. It is certainly possible that 
calmodulin and iFGF14 (or other iFGFs), both of which 
bind to the C-terminus of Nav α subunits (Fig. 3), act 
competitively or synergistically to modulate Nav channel 
gating properties. Interestingly, mice with global deletion 
of Fgf12 do not exhibit changes in motor coordination or 
granule neuron excitability, whereas loss of Fgf14 caused 
deficits in both animal coordination and granule neuron 
firing [102]. The combined deletion of Fgf14 and Fgf12, 
however, resulted in a more severe deficit in both these 
phenotypes than Fgf14 deletion alone [102]. These obser-
vations suggest that the expression/functioning of these 
two Nav channel accessory proteins may be linked in ways 
that are physiologically relevant. An important area for 
future research will be to explore the functional relation-
ships among the various Nav channel accessory subunits 
(Fig. 3) and to define their roles in the dynamic regulation 
of Purkinje neuronal excitability.

Beyond the combined and/or non-linear impact of 
Nav channel accessory subunits, there are also compel-
ling recent studies that have identified potential upstream 
regulators that promote the binding of iFGF14 to Nav 
α subunits. These include glycogen synthase kinase 3 
(GSKIII) [108, 109] and, more recently, casein kinase II 
(CKII) [110], which is a priming kinase for GSKIII. Inhi-
bition of either of these kinases in hippocampal neurons 
disrupts iFGF14:Nav α subunit complexes, specifically 
Nav1.6- and Nav1.2-channel complexes [108, 110], and 
alters Nav channel localization and membrane excitability 
[110]. While GSKIII is required during neuronal devel-
opment and actively regulates neuronal proliferation and 
migration [111–113], it also functions in the regulation of 
synaptic transmission [114]. GSKIII is detected in both 
pre-synaptic and post-synaptic neuronal compartments 
[115], and interestingly, GSKII has been found to par-
ticipate in both long-term synaptic depression [116] and 
potentiation [117]. The finding that GSKIII also functions 
in the regulation of iFGF14:Nav α subunit complexes may 
signify a mechanism by which network-level activity regu-
lates or modulates the intrinsic excitability of individual 
neurons. Although this hypothesis has not been tested at 
the network level, Purkinje neurons and the cerebellar cir-
cuit are an ideal model system to examine these processes.
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