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Abstract

Magnetic resonance imaging is integral to the care of patients with high-grade gliomas. Anatomic 

detail can be acquired with conventional structural imaging, but newer approaches also add 

capabilities to interrogate image-derived physiologic and molecular characteristics of central 

nervous system neoplasms. These advanced imaging techniques are increasingly employed to 

generate biomarkers that better reflect tumor burden and therapy response. The following is an 

overview of current strategies based on advanced magnetic resonance imaging that are used in the 

assessment of high-grade glioma patients with an emphasis on how novel imaging biomarkers can 

potentially advance patient care.
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Approximately 78,000 new brain tumors, one third of which are malignant, are diagnosed 

yearly in the United States. Glial tumors constitute approximately three-fourths of primary 

malignant brain neoplasms and are largely responsible for poor outcomes of brain tumor 

patients.1

Magnetic resonance imaging (MRI) and computed tomography (CT) are widely used to 

assess neurologic disorders. The use of CT is commonplace in the acute clinical setting due 

to its rapidity of image acquisition and wide availability. However, MRI is the modality of 

choice for the evaluation of brain tumors based on, in comparison to CT, better anatomic 

detail of normal brain structures and detection of tumor-infiltrated areas. Additionally, a 

wide array of MR pulse sequences has been developed that can be tailored to detect a variety 

of intracranial aberrations. MRI has also been a critical component of brain tumor treatment 
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trials, based upon its ability to generate surrogate endpoints that correlate with patient 

outcomes. The goal of this chapter is to provide an overview of MRI-based imaging 

strategies with the highest potential to improve management of high-grade glioma (HGG) 

patients.

Conventional MRI techniques

Conventional MRI sequences commonly used for evaluation of intracranial malignancy 

include T1-weighted (T1W), T2-weighted (T2W), fluid attenuated inversion recovery 

(FLAIR), T2*W gradient echo and post-contrast T1W images. These sequences provide 

exquisite anatomic detail, and the use of a gadolinium-based contrast agent in this protocol 

allows for the detection of areas where the blood-brain barrier is compromised. Yet, many 

important limitations of this standard brain tumor imaging remain. For instance, it can be 

difficult or impossible to distinguish various glioma grades and underlying histology (e.g.: 

grade II versus grade III tumors, or oligodendroglioma versus astrocytoma), and the 

appearance of treatment-related changes can overlap that of residual or recurrent tumor. 

Furthermore gliomas can be difficult to distinguish from other intra-cranial mass lesions 

such as metastasis, abscess and tumefactive multiple sclerosis (Figure 1). These limitations 

are important to note as they can impact patient prognosis as well as treatment approaches.

In general, gliomas are hypointense on T1W images and hyperintense on T2W images. 

Contrast enhancement, necrosis, hemorrhage, ill-defined infiltration of surrounding brain 

and abundant peritumoral edema are commonly considered imaging characteristics of 

aggressive lesions and raise the possibility of a high-grade glial neoplasm. The association 

of contrast enhancement with tumor grade has been extensively studied. Although contrast 

enhancement is a common feature of HGG, it remains a nonspecific finding. For example, 

almost a third of HGG tumors do not enhance, while nearly 50% of low grade 

oligodendrogliomas demonstrate some enhancement.2 The presence of enhancement with 

central necrosis in which there is an irregular ring enhancing lesion with central T2 

hyperintensity is a common feature of glioblastoma (GBM) (WHO grade IV), but a variety 

of other pathologies (abscess, multiple sclerosis, lymphoma in immunocompromised 

individuals, etc.) can generate a similar appearance. GBMs are often highly infiltrative 

tumors and can cross into the contralateral hemisphere via the corpus callosum. Satellite 

lesions and intratumoral hemorrhage are also frequently encountered imaging features of 

these tumors. The combination of a ring-enhancing lesion with areas of hypo- or non-

enhancing tumor infiltration involving the cortex or deep nuclei is particularly suggestive of 

GBM.

According to the updated 2016 World Health Organization guidelines, oligodendrogliomas 

are genetically characterized by the presence of the isocitrate dehydrogenase (IDH) mutation 

and 1p/19q codeletion. Tumors with histologic features of oligodendroglioma and mutated 

IDH, but without 1p/q19 codeletion, are classified as astrocytomas. The previously identified 

oligoastrocytoma is now a discouraged terminology, with the classification of 

oligodendroglioma “not otherwise specified” (NOS) used for tumors with incomplete or 

unclear genetic testing.3 As with tumor grade, it would advantageous to non-invasively 

distinguish astrocytomas from oligodendrogliomas by MRimaging. Unfortunately 
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conventional MRfeatures of astrocytoma and oligodendroglioma are highly overlapping. 

Oligodendrogliomas have been described as more often centered in the cortex and exhibiting 

coarse or abundant calcification, but these features are too rarely present and lack the needed 

specificity to allow for the accurate identification of oligodendrogliomas based on imaging 

alone. Thus, structural imaging has, to date, fallen short in the ability to definitively establish 

tumor grade and histologic subtype for gliomas.

Advanced MRI techniques

While conventional MRI is exceptional in providing detailed structural evaluation of both 

the brain and intracranial neoplasms of all kinds, advanced MR techniques offer the ability 

to interrogate the pathophysiologic properties of tumors that may yield important 

information on tumor infiltration, aggressiveness, treatment response and, in general, 

generate a better understanding of underlying tumor biology. Commonly used advanced MR 

techniques include perfusion-weighted imaging (PWI), MR spectroscopy (MRS) and 

diffusion-weighted imaging (DWI) and its variants such as diffusion tensor imaging (DTI),

Diffusion imaging

DWI is a technique with a multitude of applications within neuroimaging as well as in other 

areas of radiology. The technique employs MRI sequences sensitized to the movement of 

water molecules. Pulse sequences are generated so that water molecules that do not move 

between pulse applications are refocused, and thus are able to generate signal, whereas those 

that do move lose their ability to generate signal in the reconstructed image. Thus areas of 

restricted diffusion are bright on DWI, whereas areas of free water motion are dark. 

Measurements of the degree of signal change with varying gradient strengths allows for 

calculation of an apparent diffusion coefficient (ADC), with lower ADC values reflecting 

lower (more restricted) diffusion.

A number of physiologic properties of tumors may influence ADC values. Cystic and 

necrotic areas allow for more free diffusion of water molecular in comparison to intact 

tissue, resulting in high ADC values. In solid tumor tissue the main factor affecting ADC is 

the size and complexity of the extra-cellular space. Increased cell density will limit the 

extracellular space and thus ADC can, with appropriate caveats, be used as an indirect 

measurement of cellularity.4

Tissue microstructure can produce directional variations in ADC, known as anisotropic (as 

opposes to isotropic) diffusion. Diffusion data can be acquired in multiple gradient 

directions to allow for the diffusional coefficient to be characterized in terms of magnitude 

and direction. Employing greater numbers of gradient directions results in more complete 

estimation of the directional variations in ADC in 3-dimensional space. Since diffusion is 

more prevalent parallel rather than transverse to myelinated nerve fibers, this DTI technique 

allows the visualization of dominant white matter tracts, where the degree of diffusional 

anisotropy can be presented as color coded, three-dimensional directional maps of nerve 

fibers (tractography).5 Tractographic data can be used to demonstrate the relationship 

between tumors and major white matter tracts, a major concern for surgical planning (Figure 

2). Another promising application of DTI imaging is the potential to detect and predict the 
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invasive growth patterns of high-grade tumors such as GBM.6 A multitude of additional 

variations of diffusion imaging such as diffusion kurtosis imaging,7 high b value,8 histogram 

curve fitting,9 functional diffusion maps,10–12 and restriction spectrum imaging 13 are 

currently under investigation and may provide additional insights into complex tissue 

environments.

Perfusion imaging

A hallmark of tumor physiology is the delivery of nutrients and removal of waste by 

diffusion processes until growth renders this method insufficient to support cell division and 

continued growth. Once stressed by hypoxia and hypoglycemia, tumors produce factors 

which initiate the development of new blood vessels, a process known as neoangiogenesis.14 

In tumors where growth surpasses the angiogenic process, tumor vasculature will be 

irregular with arteriovenous shunts, multiple blind-ending vessels and areas of 

hypoperfusion and even necrosis. The use of advanced MR imaging to quantify and 

characterize this abnormal microvascular environment is a powerful tool in understanding 

these variations in tumor biology. MR perfusion imaging capitalizes on the altered 

microvascular environment and provides information potentially relevant to tumor grade, 

treatment response and tumor aggressiveness. Perfusion imaging is in widespread use 

clinically, and it has been shown to prospectively impact the confidence of both imagers in 

assessing tumor status and clinicians in determining tumor treatment plans.15 Several forms 

of perfusion imaging have been developed to generate a variety of perfusion-based 

biomarkers. Dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) 

imaging are dependent on the intravenous injection on gadolinium-based contrast agents, 

whereas arterial spin labelling (ASL), which uses magnetic labeling of endogenous protons 

in blood to assess blood volume flow and flow rate, can be acquired without injectable 

contrast.

Dynamic susceptibility contrast perfusion—DSC perfusion is the most commonly 

used MR technique in the assessment of brain tumors. Aseries of T2*W images are 

acquired, using high temporal resolution, with power injection of intravenous contrast during 

dynamic image acquisition. The contrast bolus retains integrity as it passes through the brain 

producing a relatively brief decrease in signal intensity, reflecting the concentration of 

intravascular contrast. This signal change can be analyzed using a number of algorithmic 

approaches in order to calculate the relative cerebral blood volume (rCBV), among other 

metrics.

DSC calculations are based on the assumption that all contrast is intravascular, which does 

not hold in tumors with areas of blood-brain barrier breakdown. The resulting leaked 

contrast produces a strong and competing T1 contrast effect which leads to falsely low 

measurements of CBV. This T1 shine-through effect can be minimized by preloading the 

patient with a dose of contrast before acquisition of dynamic data and using algorithm-based 

leakage correction methods.16 Despite the widespread use of DSC-MRI in the clinical 

setting and proposals for standardized techniques, considerable heterogeneity exists across 

institutions which often limits the generalizability of DSC findings.17
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Dynamic contrast-enhanced perfusion—DCE uses dynamic T1W acquisition to 

measure changes in signal intensity during contrast administration. Unlike in DSC-MRI, the 

signal changes from intravascular and extravascular contrast leakage are additive, allowing 

for direct estimation of contrast leakage and blood-brain barrier permeability. DCE-MRI 

also is less degraded by susceptibility artifact in comparison to the more widely utilized 

DSC-MRI, a feature which is of particular importance in imaging gliomas with intratumoral 

blood products and post-operative hardware which can degrade image quality.18 Many 

clinical applications of DCE use semi-quantitative analytic methods, usually attempting to 

quantify the rate of change or degree of change of signal intensity relative to baseline. A 

modified version of the Tofts pharmacokinetic model is the most commonly used analytic 

approach in DCE, producing three main imaging biomarkers: estimates of the vascular 

fraction (vp), extravascular extracellular space fraction (ve) and the transfer contrast 

coefficient (Ktrans).19 Despite the potential benefits, the clinical implementation of DCE-

MRI to this point has been limited. The relative long acquisition times of DCE protocols are 

one important barrier to wider adoption of this technique. Research is ongoing to design 

DCE techniques which address many of the technical challenges associated with this 

modality in an attempt to allow wider acceptance into clinical use.20

Arterial spin labeling—ASL differs from other methods of MR perfusion imaging in that 

it does not depend on exogenous contrast, and instead relies on magnetic labeling of blood 

flowing into tissues of interest. A variety of different approaches to ASL exist, each 

designed to improve the relatively poor signal-to-noise ratio of the ASL sequences and the 

potential inaccuracies in measurement of CBF. ASL can provide relatively accurate absolute 

quantification of cerebral perfusion in normal brain along with a number of timing 

parameters reflecting the speed of inflow of blood to the tissue. Although ASL is not as 

widely utilized as DCE-MRI, there continue to be advances in this technique with a 

promising outlook for future application in glioma imaging.21

See Table I for a summary of the most commonly derived MR imaging biomarkers in 

glioma.

MR spectroscopy

Proton MRI is dependent on signal generated from free protons, which are most abundant in 

water. In addition to free protons, the MRI signal is also affected to a much lesser degree by 

protons bound to macromolecules, which are found in low relative concentrations in biologic 

tissues. Despite their scarcity, these bound protons have specific frequency variations, which 

are expressed in parts per millions (ppm) in relation to a known reference frequency. 

Acquiring data which allows separation of these small frequency peaks, each representing a 

specific macromolecular component, is known as MR spectroscopy (MRS). MRS is a 

sensitive technique for detecting such components at very low concentrations, if sufficient 

suppression of the water signal can be achieved.22

MRS can be acquired with single and multivoxel techniques. In single voxel MRS 

metabolite concentrations are generated by averaging data over a relatively larger ROI. In 

multivoxel MRS, 2Dand 3Dmaps can be generated in order to detect spatial variation in 
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metabolite concentrations. Molecular species commonly resolved by MRS include N-acetyl 

aspartate (NAA), choline (Cho), creatine (Cr), lactate, myoinositol and lipid. A summary of 

the biochemical process related to these metabolites are reviewed in Table II.

Emerging imaging techniques

Many additional advanced MRI techniques are being developed for brain tumor applications. 

Chemical exchange saturation transfer (CEST) MRI is one research technique with exciting 

potential to add value to standard imaging after eventual translation into clinical use. CEST 

creates imaging contrast based on sensitivity to chemical exchange of protons on functional 

metabolic groups rather than exogenously administered contrast.23 The CEST technique 

which has primarily been applied to brain tumor imaging is the exchange of amide protons 

of endogenous tissue proteins and peptides, known as amide proton transfer (APT). Early 

studies have shown a potential use of APT in the differentiation of tumor from edema and 

true progression versus pseudoprogression, although these techniques have yet to be widely 

applied clinically.24 Current research is also ongoing into other CEST techniques utilizing 

other metabolites such as creatine and D-glucose, as potential imaging markers of tumor 

physiologic processes.25, 26

Clinical applications of advanced MRI

Imaging of treatment response

The current standard for response assessment in glioma is represented by the 

RANO(Response Assessment in Neuro-Oncology) criteria, released in 2010. The RANO 

criteria represented a refinement of the prior standard, the Macdonald criteria. The 

Macdonald criteria, which was developed for CT and extrapolated to MRI, relied on the 

assessment of enhancing tumor only.27 The RANO criteria incorporates qualitative 

assessment of non-enhancing tumor into the response evaluation.28 Analysis of data from 

the phase II BRAIN trial demonstrated that identification of PFS was reduced when using 

RANO compared to Macdonald criteria.29 This is mostly due to the designation of FLAIR-

only tumor progression for some patients using RANO; a category of progression not 

available for the Macdonald criteria. Table III summarizes the differences between the 

RANO and Macdonald criteria.

Despite response criteria revisions, there are many well recognized imaging findings that can 

occur during glioma treatment regimens which may lead to interpretive difficulties. For 

example, following temozolomide (TMZ) and radiotherapy, patients with GBM may 

demonstrate increasing enhancement and progressive T2 signal abnormality. Follow up 

scans without interval treatment often demonstrate improvement. This “pseudoprogression,” 

seen in approximately 20–30% of patients within 3 months from the completion of radiation 

therapy, is actually associated with better patient outcomes.28, 30 Radiation necrosis, which 

typically occurs many months after the completion of radiation treatment, and 

pseudoprogression can be grouped under the broader term “treatment effect” to distinguish 

these phenomena from tumoral enhancement.

POPE and BRANDAL Page 6

Q J Nucl Med Mol Imaging. Author manuscript; available in PMC 2018 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



True tumor progression versus pseudoprogression—Advanced MR imaging 

techniques have been employed to allow improved identification of true tumor progression, a 

critical determination in the care of HGG patients. For instance, diffusion imaging can be 

used as a surrogate of cellularity. Thus restricted diffusion in an enhancing lesion favors 

tumor over treatment effect. Various ADC cut off values to distinguish the two have been 

proposed.31, 32 Parametric response maps and high b value diffusion acquisition have also 

been advocated as methods to further improved identification of true progression with 

diffusion imaging.

It has been found that true progression tends to have higher perfusion than 

pseudoprogression (Figure 3). For instance in one cohort of GBM patients, rCBV increased 

by an average of 12% in patients with true progression, but decreased by an average of 41% 

in patients with pseudoprogression by 1 month after treatment initiation.33 In another study 

progressing lesions demonstrated a CBV greater than 2.2 mL/100 g and corresponded to 

regions of increased metabolism on FDG-PET, consistent with tumor recurrence. Conversely 

regressing lesions had CBV less than 1.7 mL/100 g and largely corresponded to regions of 

hypometabolism on FDG-PET, indicative of treatment effect. Lesion progression versus 
regression could be distinguished, based on an absolute CBV threshold of 2.0 mL/100 g, 

with a reported sensitivity and specificity of 100%.34 A more recent study analyzed data 

from 44 GBM patients using DSC to differentiate progression from treatment-related 

change. Maximum rCBV rather than mean rCBV appeared slightly better at differentiating 

true tumor progression from treatment effect with 78% sensitivity and 86% specificity when 

rCBVmax was set to 2.6. Interestingly neither rCBVmean nor rCBVmax was predictive of 

overall survival.35 It can be argued that this is a limitation of perfusion imaging methods, as 

OS is a fundamental endpoint for which highly accurate surrogate imaging markers are 

needed.

One potential refinement of DSC imaging is to assess changes in perfusion over the course 

of treatment, rather than at a single time point. For instance in a study of HGG patients 

treated with radiation therapy, temozolomide and the radiosensitizer paclitaxel poliglumex, 

mean rCBV at initial enhancing lesion growth was not significantly different between true 

and pseudoprogressors. However, change in rCBV at first follow-up as well as the overall 

linear trend in rCBV was significantly different between the two groups.36

Different protocols and applications of PWI have been investigated as a means to add value 

to standard MRI, with somewhat variable results. However, in a large meta-analysis of data 

from 28 articles published since 2005, the pooled sensitivity and specificity of DSC was 

90% and 88%, respectively, for detecting true tumor recurrence in the setting of possible 

pseudoprogression.37 Thus the totality of the evidence indicates that DSCis fairly accurate in 

identifying true tumor progression. Achieving even greater accuracy may require combining 

DSC data with other advanced imaging modalities such as DTI,38 ASL,39 and MRS.40, 41 

This is not guaranteed, however; a recent meta-analysis of 9 studies found that 

monoparametric and multiparametric MRI performed equally in a clinical context.42 

Another caveat is that true versus pseudoprogression is a false dichotomy as oftentimes there 

is an intermixing of viable tumor and treatment effect with variable ratios of the two 

components.43 This fractional tumor burden, which appears to correlate with perfusion 
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metrics, may provide a better marker for overall survival. Similarly investigations based on a 

combination of DSC and DTI data have also categorized tissue into true progression, mixed 

response, and pseudoprogression.38 Such approaches may more accurately model post-

treatment tumors.

Anti-angiogenic therapy and non-enhancing tumor—Incorporation of 

antiangiogenic agents into GBM treatment regimens lengthen progression free survival 

(PFS) but does not significantly affect overall survival (OS).44 Antiangiogenic therapy can 

result in rapid reduction in capillary endothelial permeability, suppressing tumor 

enhancement, irrespective of change in tumor size. This phenomenon may generate falsely 

diminished estimates of tumor burden (Figure 4), leading to the use of the term 

“pseudoresponse.” Pseudoresponse is one key driver of the need to develop MR protocols 

that can accurately assess both enhancing and non-enhancing tumor burden.

As with cytotoxic therapies, progressive enhancement during antiangiogenic treatment has 

been shown to be associated with shorter OS. However, no difference in OS was found in a 

study of HGG patients treated with the anti-angiogenic drug bevacizumab with improved 

versus stable contrast enhancement, raising the possibility that pseudoresponse was 

degrading the prognostic significance of tumor size measurements that are based on 

contrast-enhancing tissue.45 This difficulty was addressed with the use of DSC, which could 
stratify survival in patients with improved or stable contrast enhancement, as shown in a 

follow-up study.46 Although this finding has been disputed, and may depend on timing of 

perfusion imaging,47 it remains a possibility that the incorporation of perfusion metrics in 

trials of antiangiogenic therapy could be beneficial in predicting outcome.

Another issue that degrades accuracy of non-enhancing tumor detection is post-treatment 

changes that lead to increased abnormal, yet non-specific, T2/FLAIR signal that can be 

confused with viable tumor. Specifically, it can be a challenge on some scans to differentiate 

vasogenic edema, gliosis, post-ischemic change and other entities from non-enhancing 

tumor. Advanced MRI techniques have been vigorously investigated as a means to overcome 

this challenge.

Perfusion imaging also may add value in distinguishing non-enhancing tumor from gliosis 

and edema. Both DCE-MRI and DSC-MRI appear to be helpful in identifying areas of 

tumor infiltration, which is associated with higher perfusion parameters in comparison to 

vasogenic edema.48, 49 These metrics may also be useful in identifying areas of tumor 

infiltration that are at risk of subsequent tumor progression.50

Diffusion imaging also has been used to identify areas of tumor infiltration, particularly in 

the setting of anti-angiogenic therapy. This application is based on the theory that tumoral 

infiltration is associated with higher cellularity resulting in less diffusion,51 whereas simple 

vasogenic edema results in increased diffusion. For instance it has been shown that areas of 

T2 change which subsequently develop decreased diffusion go on to develop enhancing 

tumor.52, 53 Yet it is important to note that not all such diffusion restriction is indicative of 

viable tumor. Antiangiogenic therapy is associated with the development of new areas of 

persistent restricted diffusion that can be confused with non-enhancing tumor.54 These 
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regions are typically periventricular and can have an intrinsically T1W hyperintense rim 

(Figure 5). An ADC cut-off value of 0.736 ×10−3 mm2/s has been proposed to distinguish 

the two, with ADC values above the cut-off indicative of viable tumor.55 Thus, careful 

interpretation of diffusion imaging in gliomas, particularly in those patients receiving 

antiangiogenic therapy, is warranted.

Early response detection and predictive markers—Markers that predict poor 

response at baseline or early in a patient’s treatment course could help improve therapeutic 

decision-making. Thus several studies have focused on such early response and predictive 

markers. One such approach assessed the prognostic value of DWI by generating ADC 

histograms from enhancing tumor components and found that tumors with low ADC values 

were more likely to progress at 6 months compared to tumors with high ADCvalues.56 This 

association of outcomes with ADC analysis held true only for an anti-angiogenic agent, and 

not for cytotoxic drugs, thereby suggesting that this imaging marker is predictive of 

treatment response with a specific class of drugs, rather than simply being a prognostic 

marker (Figure 6). Recently this predictive marker of anti-angiogenic therapy has been 

validated by analyzing a large data set from 5 separate phase II clinical trials of multiple 

anti-angiogenic agents.9

In addition to ADC analysis, perfusion imaging has also been used to stratify response to 

anti-angiogenic therapy either alone,57, 58 or in combination with other non-imaging 

markers.59, 60 In the latter case the authors developed a novel biomarker (vascular 

normalization index) that combined K trans from DCE with microvessel volume and 

circulating collagen type IV (serum biomarker). This index was predictive of OS and PFS in 

patients treated with anti-angiogenic therapy.61

Imaging metrics are often averaged over the entirety of the region of interest. But a newer 

technique termed “parametric response maps” allow for the assessment of serial changes on 

a voxel-by-voxel level. Thus competing or weak regional signals in a tumor overlooked due 

to averaging by traditional analysis, may be detectable by this method. This analysis, when 

applied to tumor CBV and ADC values, can be predictive of treatment response at a time 

point when changes in average values have yet to occur.10–12, 60

Immunotherapy response assessment—As in many other areas of clinical oncology, 

a variety of immunotherapies are being actively explored for potential effectiveness in the 

treatment of HGG. This can create a significant challenge in the imaging assessment of 

treatment response, as enhancement on MRI in these patients could represent an active 

inflammatory response indicating potentially effective therapy, or it could simply be due to 

tumor progression.62 The immunotherapy response assessment in neuro-oncology (iRANO) 

was published in 2015 as a first attempt to recognize specific challenges in interpreting the 

measurement of treatment-related imaging changes in the setting of immunotherapies.63 At 

this early point, the current recommendation is to consider the possibility of an 

immunotherapy pseudoprogression, and advocates for patients to receive a confirmation 

scan at 3 months, anytime enhancing lesion enlargement is observed within 6 months of the 

start of immunotherapy. Although empirically determined it should be noted that 

pseudoprogression can occur beyond this 6-monght cut-off.64 Markers for 
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pseudoprogression in the setting of immunotherapy may differ from those that have been 

successfully employed for pseudoprogression in patients with standard therapy. But as with 

standard therapy, advanced MR such as perfusion imaging has been investigated as a way to 

identify pseudoprogressors but to date the utility and accuracy required for adoption into the 

clinical standard of care has not been demonstrated.65

MRI molecular characterization

The 2016 WHO classification of central nervous system tumors represented a substantial 

change in comparison to the 2007 predecessor for defining and categorizing intracranial 

malignancies. The 2016 guidelines, for the first time, specified the importance of molecular 

findings, in addition to histology, for the identification of tumor types. The new 

classifications go so far as to favor the genetic findings in cases of molecular and histologic 

discordance.3

As a result there is increasing interest in attempting to correlate conventional MRI tumor 

characteristics such as enhancement, necrosis and edema with relevant molecular and 

genetic features.66 Advanced MRI techniques are also actively being researched for their 

ability to provide genotypic correlates of gliomas. Currently the most clinically relevant 

molecular changes include co-deletion of 1p/19q in oligodendroglial tumors, isocitrate 

dehydrogenase (IDH) mutations and methylguanine methyltransferase (MGMT) promoter 

methylation.

Codeletion of 1p/19q—The 1p/19q co-deletion in oligodendroglioma is a prognostic 

factor for better chemoradiotherapy response and longer survival.67 An indistinct tumor 

border on T1W and T2W images and heterogeneous signal intensity on T2W images are 

some of the conventional MR features that have been correlated with 1p/19q co-deletion 

status.68 Textural analysis of T2 signal has been found to predict 1p/19q co-deletion with a 

sensitivity and specificity of 93% and 96% respectively.69 1p/19q co-deleted tumors also 

appear to have higher rCBV than their non-deleted counterparts.70 To date MR spectroscopy 

and other non-perfusion advanced MR metrics do not appear to add value to establish 

1p/19q co-deletion status, at least in isolation, but may yet yield improvements in diagnostic 

accuracy when combined with PWI.71

Isocitrate dehydrogenase mutation—Mutations of the IDH gene are associated with 

improved survival irrespective of tumor grade. They are found in secondary but only rarely 

in primary GBM. There are three isoforms of the IDH gene, the most important mutations of 

which involve cytosolic IDH1 and the mitochondrial IDH2 forms; the majority of IDH 

mutants in glioma are IDH1 mutations.72

Some conventional MR features have been linked to the presence of the IDH1 mutation. 

Although controversial to some degree,73 several studies have suggested that IDH1 mutant 

gliomas have a predilection for the frontal lobe and have larger volumes of non-enhancing 

tumor.74–76 Low grade wildtype IDH1 glioma may be more infiltrative than IDH1 mutant 

tumors.77 And rCBV is higher in IDH1 wildtype GBM than in IDH1 mutants.78
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IDH1 mutations cause the production of 2-hydroxyglutarate (2-HG), an oncometabolite that 

can be detected with MRspectroscopy79 (Figure 7). The presence of 2-HGis highly specific 

for IDH1 mutant tumors. In a recent study, MRS was used to measure 2-HGin patients with 

IDH mutant gliomas before and after radiochemotherapy. 2-HG levels declined significantly 

on post-treatment scans raising the possibility that measurements of 2-HGlevels could be a 

biomarker of drug response.80 Other groups have linked 2-HGMRS quantitative 

measurements to the amount of metabolically active cells in gliomas.81 It remains to be 

determined whether monitoring 2-HGlevels with MRS can provide a more sensitive or 

specific or an earlier marker of treatment response.

MGMT promoter methylation—Methylation of the MGMT repair protein promoter 

inhibits transcription of MGMT, increases sensitivity to TMZ, and positively impacts patient 

prognosis.82 Tumor features derived from standard and advanced MRI have been 

investigated as a way of non-invasively identifying MGMT promoter methylation status. For 

instance, ring enhancement is associated with non-methylated MGMT promoter.83 In a 

study of 358 de-novo GBM, MGMT promoter methylated tumors were more commonly 

found in the left, compared to the right, cerebral hemisphere.84 However a similar analysis 

with a much smaller number of patients (N.=72) failed to show spatial preference for these 

tumors.83 It has also been suggested that limited edema is associated with improved 

prognosis in tumors with MGMT promoter methylation.74

Advanced MR imaging strategies have also been used to predict MGMT promoter 

methylation with varying success. For instance, an ADC histogram analysis found that 

MGMT promoter methylation was associated with a low median ADC of the lower curve.85 

Conversely, higher average ADC values are associated with MGMT promoter methylation.
86, 87 One study found higher rCBV in unmethylated versus methylated tumors,88 although 

another study found no significant association.86 A study of 43 GBM patients using DCE-

MRIfound that MGMT methylated tumors had increased permeability (higher Ktrans) 

compared to unmethylated tumors.87 The same group also reported that the initial area under 

the time-to-signal intensity curve from DCE imaging stratifies survival in promoter 

unmethylated MGMT GBM, but not in methylated tumors.89 Arecent study combined both 

structural and physiologic MR imaging to derive an accurate marker for MGMT promoter 

methylation status in 92 patients with GBM. The authors found that MGMT promoter 

methylation was associated with increased ADC and decreased rCBF(from ASL imaging). 

They also found that MGMT promoter methylated tumors occurred more commonly in 

regions not contacting the subventricular zone and tended to be more necrotic. In a model 

combining tumor location, necrosis, ADC and rCBF, the authors were able to establish 

MGMT promoter methylation status with an impressive area under the curve (AUC) of 

0.91.90

Although validation in larger cohorts in required, the studies discussed above indicate that 

there is a relationship between molecular features of GBM and qualitative and quantitative 

image-derived biomarkers. The diagnostic and prognostic molecular features of GBM are 

typically established by histological analysis following initial biopsy or tumor resection. But 

GBM may change molecular features over treatment course, for instance down regulating 

MGMT expression.91 Since re-biopsy in many of these patients is not clinically feasible, 
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having a non-invasive measure of molecular status could provide valuable information on 

disease status potentially impacting treatment decisions.

Treatment planning

Surgical and radiotherapy treatment planning can be aided by advanced MRI applications 

which can improve identification of tumor extent, localization of the aggressive component 

of a tumor, for biopsy targeting and careful evaluation of the tumor relationship to the major 

white matter tracts.

Surgical planning—A single glioma may contain areas of varying tumor histologic grade. 

Since the overall grade of the tumor is defined by the most malignant portion, tumor biopsy 

(as opposed to complete resection) carries the risk of sampling less malignant portions of the 

tumor, leading to undergrading of the glioma. This challenge can be overcome by using 

standard and advance MRto target tumor “hotspots” with the highest malignant potential. 

For instance, DCE-MRImaps have been shown to identify high-yield targets for biopsy 

planning.92 Similarly relative Chol to NAAlevels can be used as an indicator of cellularity, 

identifying tumors areas subsequently targeted for biopsy or radiosurgery.93 Patients using 

MRS-selected targeted radiosurgery in GBM had longer average survival compared to 

historical controls,93 suggesting this technique could improve patient outcomes, but this 

result will need to be validated in prospective and randomized studies.

An additional benefit of advanced MRI techniques is their ability to improve delineation of 

the extent tumor invasion and margins, as tumoral components can extend beyond the 

enhancing radiologic abnormality demonstrated on conventional MRI. A number of studies 

have shown that PWI, DWI and MRS can all provide clinically useful information regarding 

tumor infiltration and are helpful in distinguishing invasion from peripheral vasogenic 

edema.94 A recent study by Cordova et al. evaluated the integration of preoperative MRS 

with intraoperative imaging navigation and stereotactic tissue extraction, and validated the 

ability of MRS to define invasive disease beyond the limitations of conventional 

MRsequences.95 The relationship between the tumor and major white matter tracts also 

could be evaluated using diffusion tractography, enabling assessment of the degree of 

tumoral infiltration or tract displacement there by guiding surgical approach and extent of 

resection.96

Radiotherapy planning—Advanced MRI techniques have, furthermore, been 

investigated for their ability to accurately delineate the target volume for radiotherapy. Using 

MR spectroscopy to delineate a target volume has been reported to identify a larger target 

volume compared to conventional MRI.97 Measurements of the isotropic and anisotropic 

components of the diffusion weighted signal have identified three separate tumor margin 

patterns: 1) diffuse pattern of marginal abnormality (isotropic exceeds anisotropic 

measurements in all directions) associated with diffuse increasing tumor size over time; 2) 

localized pattern of abnormality where tumor occurred in one specific direction; and 3) 

minimal abnormality pattern that was associated with no evidence of recurrence. The 

importance of these findings is that DTI is potentially predictive of tumor recurrence 

patterns and can be incorporated into RT treatment planning.98, 99 It is important to note that 
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the impact of advanced MRI techniques on patient survival or morbidity has not been firmly 

established.

Conclusions

Interpretation of conventional MRI sequences used in glioma imaging are becoming more 

standardized across institutions, in large part due to the guidance of the initial Macdonald 

and subsequent RAN Oresponse assessment criteria. Reproducible technical parameters and 

well-established imaging markers will allow for the incorporation of these approaches into 

future radiographic response assessment criteria necessary for optimization of clinical trials. 

Towards that goal standardized protocols for implementation in glioma treatment trials100 

and also for perfusion imaging17 have been proposed and are being widely adopted.

Imaging is key in tumor diagnosis and can provide valuable insights into patient prognosis. 

Imaging provides spatial information, relationship of tumor to eloquent brain and white 

matter structures crucial for surgical planning and imaging identifies areas targeted for 

biopsy and radiotherapy. Imaging can be combined with clinical attributes including age, sex 

and Karnofsky performance status to refine prognosis. There is a continuously expanding 

repertoire of available advanced MRI techniques to evaluate patients with HGG. 

Conventional and physiologic markers have been demonstrated to be a non-invasive 

surrogate for underlying genetic profiles that impact prognosis and treatment and are 

evermore central to the clinical care of glioma patients. Integrating the strengths of advanced 

MRI with other techniques such as PET, functional MRI and quantitative machine learning 

techniques (radiomics) will improve our ability to accurately assess disease burden and plan 

treatment. Predictive and early response markers predicated on noninvasive techniques are 

an area where imaging may have substantial impact on therapy strategies with potential for 

improving the clinical outcomes in patients with high grade gliomas.
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Figure 1. 
—Glioblastoma and mimics. Axial post-contrast T1-weighted images of the brain in 6 

patients. All patients demonstrate a ring-enhancing lesion. Histopathologic diagnoses were 

toxoplasmosis (A), neurocysticercosis (B), tuberculosis (C), tumefactive multiple sclerosis 

(D), primary CNS lymphoma in an immunocompromised patient (E) and glioblastoma (F).
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Figure 2. 
—Diffusion tensor tractography for surgical planning. Axial (A) and sagittal (B) T2-

weighted images of the brain with superimposed color-coded DTI-derived tractographic 

images. Note displacement of fiber tracts by the tumor (red arrow).
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Figure 3. 
—Pseudoprogression identified with perfusion imaging. Axial post-contrast T1-weighted 

images (A, C, D, F) and axial rCBV maps (B, E) of the brain. For patient 1 (A-C), the initial 

image shows an enhancing periventricular lesion (A, oval), with low rCBV (B, oval). 

Follow-up imaging (C) shows resolution of enhancement (oval) compatible with the lesion 

representing pseudoprogression on the initial images. Conversely, for patient 2 an initial 

enhancing lesion (D, oval), shows markedly elevated rCBV (E, oval) and the lesion 

progresses on follow-up imaging (F, oval), compatible with true progression.
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Figure 4. 
—Pseudoresponse and diffusion imaging. Axial post-contrast T1-weighted (A, C), T2-

weighted (B, D), and DWI(E) images of a patient with glioblastoma. On initial presentation 

the patient had a left cerebral ring-enhancing mass (A, arrow) with surrounding vasogenic 

edema seen as T2-hyperintese areas (B). Following biopsy and 1 week of anti-angiogenic 

therapy with bevacizumab, tumor-related enhancement nearly resolved (C, arrow). However, 

diminished but still abundant T2 hyperintensity (D) corresponded to areas of DWIsignal 

abnormality (E, arrows) with low ADC(not shown), compatible with residual non-enhancing 

tumor. Such rapid resolution of contrast enhancement independent of substantial tumor 

shrinkage is compatible with pseudoprogression.
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Figure 5. 
—Persistent diffusion restriction after anti-angiogenic treatment. Axial diffusion (A, E), T2-

weighted (B, F), T1-weighted (C, G) and post-contrast T1-weighted images of a patient with 

glioblastoma treated with bevacizumab. At the first time point show (A-D) the patient had 

developed a DWI and T2 bright (A and B arrow) peri-ventricular lesion with restricted 

diffusion that demonstrated an intrinsically T1-hyperintense rim (C, arrow) and little or no 

contrast enhancement (D). Follow-up imaging nearly 1 year later showed little interval 

change in the lesion (arrow, E-H) and no evidence of progression compatible with the lesion 

representing treatment effect rather than growing tumor.
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Figure 6. 
—ADC as predictive biomarker for high grade glioma response to anti-angiogenic therapy. 

Pre-contrast T1-weighted images are subtracted from post-contrast T1-weighted images to 

generate T1-subtraction maps which are then segmented and overlaid on the ADC Map 

(process illustrated in part A). Voxels from the enhancing region are used to generate an 

ADC histogram fitted with a 2-normal curve with a lower (ADCL) and higher (ADCH) 

component (part B). A larger volume of ADCL<1.24 μm2/ms is associated with shorter 

survival (part C, red graph) in glioblastoma patients treated with anti-angiogenic therapy 

(from Ellingson et al.).9
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Figure 7. 
—Magnetic resonance spectroscopy for identifying IDH1 mutant gliomas. Axial fluid-

attenuated inversion recovery (FLAIR) images (A, B) of two anaplastic astrocytomas (WHO 

grade III) show areas of abnormal hyperintensity compatible with tumor. Comparison of 

representative MR spectra from the IDH1 mutant (C) versus wild-type (D) glioma. Note the 

extra peaks in the region of Glu/Gln/2-HG(centered at 2.25 ppm) that are increased in the 

IDH1 mutant tumors (from Pope et al.).79
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Table I.
—MR imaging biomarkers commonly used in the assessment of brain tumor patients with 
glioma.

Technique Biomarker Correlation

DWI Apparent diffusion coefficient Cellular density

DSC-MRI Relative cerebral blood volume Vascular proliferation

Relative cerebral blood flow

Mean transit time

DCE-MRI V(p)
Contrast transfer coefficient (Ktrans)

Vascular proliferation
Vascular permeability

ASL Cerebral blood flow Vascular proliferation

DTI Fractional anisotropy of water
 molecules

White matter tracts
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Table II.
—Commonly measurement metabolites using MR spectroscopy.

Metabolite Significance

NAA Surrogate for neuronal integrity

Choline Marker for turnover in membrane

Creatine Marker for energy metabolism; internal control

Lactate Non-oxidative glycolysis. Seen in necrosis and hypoxia

Lipid Marker for cellular necrosis
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Table III.
Comparison of Macdonald versus RANO assessment of disease status in high-grade 
glioma.

Parameter Macdonald RANO

Complete response (CR) Disappearance of all measurable enhancing 
disease

Disappearance of all measurable and non-measurable enhancing
 disease

Improved or stable non-enhancing disease

Clinically stable or improved Clinically stable or improved

No corticosteroids No corticosteroids

Partial response (PR) ≥50% decrease in the enhancing disease ≥50% decrease in the enhancing disease

No progression in the non-measurable disease

Stable or improving non-enhancing disease

Clinically stable or improved Clinically stable or improved

Stable or reduced corticosteroids use Stable or reduced corticosteroids use

Stable disease (SD) Imaging that does not meet criteria for CR, PR 
or
 progression

Imaging that does not meet criteria for CR, PR or progression

Clinically stable Clinically stable

Stable or reduced corticosteroids use Stable or reduced corticosteroids use

Disease progression ≥25% increase in the enhancing disease ≥25% increase in the enhancing and/or significant increase in the
 non-enhancing disease

New lesions New lesions

Clear progression in the non-measurable disease

Clinical deterioration Clinical deterioration
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