
Vol.:(0123456789)1 3

Cellular and Molecular Life Sciences (2018) 75:3473–3494 
https://doi.org/10.1007/s00018-018-2841-9

REVIEW

GLIS1–3 transcription factors: critical roles in the regulation 
of multiple physiological processes and diseases

Anton M. Jetten1 

Received: 28 February 2018 / Revised: 7 May 2018 / Accepted: 14 May 2018 / Published online: 19 May 2018 
© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Abstract
Krüppel-like zinc finger proteins form one of the largest families of transcription factors. They function as key regulators of 
embryonic development and a wide range of other physiological processes, and are implicated in a variety of pathologies. 
GLI-similar 1–3 (GLIS1–3) constitute a subfamily of Krüppel-like zinc finger proteins that act either as activators or repres-
sors of gene transcription. GLIS3 plays a critical role in the regulation of multiple biological processes and is a key regulator 
of pancreatic β cell generation and maturation, insulin gene expression, thyroid hormone biosynthesis, spermatogenesis, 
and the maintenance of normal kidney functions. Loss of GLIS3 function in humans and mice leads to the development of 
several pathologies, including neonatal diabetes and congenital hypothyroidism, polycystic kidney disease, and infertility. 
Single nucleotide polymorphisms in GLIS3 genes have been associated with increased risk of several diseases, including type 
1 and type 2 diabetes, glaucoma, and neurological disorders. GLIS2 plays a critical role in the kidney and GLIS2 dysfunc-
tion leads to nephronophthisis, an end-stage, cystic renal disease. In addition, GLIS1–3 have regulatory functions in several 
stem/progenitor cell populations. GLIS1 and GLIS3 greatly enhance reprogramming efficiency of somatic cells into induced 
embryonic stem cells, while GLIS2 inhibits reprogramming. Recent studies have obtained substantial mechanistic insights 
into several physiological processes regulated by GLIS2 and GLIS3, while a little is still known about the physiological func-
tions of GLIS1. The localization of some GLIS proteins to the primary cilium suggests that their activity may be regulated 
by a downstream primary cilium-associated signaling pathway. Insights into the upstream GLIS signaling pathway may 
provide opportunities for the development of new therapeutic strategies for diabetes, hypothyroidism, and other diseases.
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Introduction

GLI-Similar 1–3 (GLIS1–3) constitute a subfamily of 
Krüppel-like zinc finger transcription factors that contain a 
zinc finger domain (ZFD) that is highly conserved among 
GLIS1–3 as well members of the closely related GLI1–3 
protein subfamily [1–8] (Fig. 1). The ZFDs of GLIS1 and 
GLIS3 exhibit the highest homology suggesting that they 
are evolutionary the most closely related. Outside their ZFD, 

GLIS1–3 exhibit little homology with each other or GLI 
proteins with the exception of an N-terminal, conserved 
region (NCR) of about 60 aa that GLIS3 has in common 
with GLI1–3 [9].

Although several alternatively spliced GLIS transcripts 
and variants have been described, their physiological rel-
evance has yet to be determined. GLIS homologs have been 
identified in all mammalian species, as well as Zebrafish, 
Medaka, Xenopus and Drosophila [10–12]. The GLIS 
homolog in Drosophila is referred to as gleeful (gfl) or lame 
duck (lmd).

GLIS1–3 play a critical role in the regulation of many 
physiological processes and are been implicated in a vari-
ety of pathologies, including neonatal diabetes, glaucoma, 
cystic kidney disease, neurological disorders, congenital 
hypothyroidism, and cancer [1, 4, 5, 13, 14]. Study of this 

Cellular and Molecular Life Sciences

 *	 Anton M. Jetten 
	 jetten@niehs.nih.gov

1	 Cell Biology Group, Immunity, Inflammation and Disease 
Laboratory, National Institute of Environmental 
Health Sciences, National Institutes of Health, 
Research Triangle Park, NC 27709, USA

http://orcid.org/0000-0003-0954-4445
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-018-2841-9&domain=pdf


3474	 A. M. Jetten 

1 3

subfamily of transcription regulators has provided greater 
mechanistic insights into the regulation of several physi-
ological processes and the development of various patholo-
gies, and might eventually lead to the discovery of novel 
therapeutic approaches for these diseases.

Transcriptional activity and protein 
interactions

Activator and repressor functions

GLIS1 and GLIS3 function primarily as transcriptional 
activators, whereas GLIS2 can activate transcription, but 
appears to function mainly as a transcriptional repressor [8, 
15–18]. Deletion analysis revealed that GLIS1 and GLIS3 
contain a strong activation domain at their C terminus that 
mediates their interaction with co-activators. GLIS proteins 
regulate gene transcription by interacting with GLIS-bind-
ing sites (GLISBS) in the regulatory region of target genes. 
Insulin (Ins2), cyclin D2 (Cdnd2), fibroblast growth factor 
18 (Fgf18), neurogenin 3 (Ngn3), pendrin (Pds), and Na+/
I− symporter (Nis) are among the genes directly regulated 
by GLIS3, while GLI1, the Wnt family member 4 (Wnt4) 
and Snail1 (Snai1) are target genes of GLIS2 [17–22]. The 

interaction of GLIS proteins with GLISBS is mediated by 
their ZFD, which consists of a tandem repeat of five C2H2 
zinc finger motifs [1, 5, 8, 16, 19]. All five zinc finger 
motifs are required for optimal binding of GLIS proteins to 
GLISBS; loss of the first zinc finger has the least impact on 
this interaction. The in vivo consensus sequence of GLISBS 
derived from ChIP-Seq analysis exhibits high similarity with 
the GLISBS consensus sequence, (G/C)TGG​GGG​(A/C), 
identified by an in vitro screen [17, 23, 24]. Members of the 
closely related GLI and ZIC families also bind G-rich DNA 
response elements similar to GLISBS and therefore might 
compete for the same binding site and interfere with each 
other’s action in cells in which they are co-expressed. This 
is supported by a report showing that GLIS2 can inhibit 
GLISBS-dependent activation of a reporter gene by GLI1 
and repress GLI1-induced transcriptional activation of Wnt4 
by competing for the same binding site [17, 18]. In addition, 
different members of these protein families may interact by 
forming heterodimers as have been reported for other Krüp-
pel-like zinc finger transcription factors, including members 
of the ZIC and GLI subfamilies [25].

GLIS proteins activate or repress transcription through 
the recruitment of co-activators or co-repressors, respec-
tively. The co-activator, C-terminal binding protein 
(CBP), was shown to interact with GLIS3 and be part of a 

Fig. 1   Schematic presentation of human GLIS1–3 proteins. The DNA 
binding domain (DBD) containing five zinc finger motifs, the activa-
tion domain (AD), and the N-terminal conserved region (NCR) are 
indicated. Numbers on the right indicate the size of the GLIS1–3 and 
GLI proteins. Lower panel: comparison of the amino acid sequence 

between the NCRs of GLIS3 and GLI1–3. Homologous amino acids 
are shown in blue. The ciliary localization signal consensus (CLS) 
and the SUFU binding domain are indicated. The CLS binds TNPO1, 
which guides transport into the primary cilium
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multiprotein co-activator complex [19]. Mass spectromet-
ric analysis of GLIS3 protein complexes identified several 
phosphorylation and arginine methylation sites, and a num-
ber of GLIS3-interacting partners [9, 26]. Still very little 
is known about the role of GLIS3 phosphorylation and the 
upstream kinase signaling pathways that might regulate 
GLIS3 activity and function. The arginine methyltransferase 
PRMT5 and the lysine demethylase KDM4C were among 
the GLIS3 interacting proteins identified. PRMT5 catalyzes 
the formation of H3K4me3, which is associated with active 
chromatin, while KDM4C demethylates histone H3K9me3, 
which is associated with the repressed state of a gene. Thus, 
these (de)methylation activities correlate with transcription-
ally active genes and are consistent with GLIS3 acting as an 
activator of gene transcription. Since GLIS3 was found to 
be methylated, PRTM5 might also be involved in mediating 
its methylation and as such modulate GLIS3 transcriptional 
activity or protein stability or alter its interactions with other 
proteins.

C-terminal binding protein 1 (CtBP1) functions as a 
co-repressor for a number of transcription factors, includ-
ing GLIS2, by interacting with PXDLS consensus motifs, 
in which X is any amino acid [27]. CtBPs mediate tran-
scriptional repression by recruiting histone deacetylases 
(HDACs) and histone methyltransferases. HDAC3 was 
found to be part of the GLIS2-CtBP1 transcription silenc-
ing complex. The latter is consistent with the concept that 
GLIS2 functions as a transcriptional repressor as indicated 
by data showing that GLIS2 represses the expression of sev-
eral genes, including Gli1 and Wnt4 [18].

TAZ

GLIS3, but not GLIS1 or GLIS2, was found to interact with 
TAZ (WWTR1), a PDZ binding motif-containing transcrip-
tional co-activator [28, 29]. TAZ is part of the Hippo signal-
ing pathway that regulates its nuclear localization and activ-
ity [30]. The Hippo pathway plays a role in the regulation of 
many biological functions, including cell migration, differ-
entiation, proliferation, and cell polarity. The WW-domain 
of TAZ recognizes a P/LPXY motif in the C terminus of 
GLIS3 [28]. Co-expression with GLIS3 promotes the trans-
location of TAZ from the cytoplasm to the nucleus where it 
co-localizes with GLIS3. TAZ enhances the transcriptional 
activity of GLIS3 and appears to function as a co-activator 
of GLIS3-mediated transcriptional activation. Whether 
GLIS3 activity in vivo is regulated by the Hippo signaling 
pathway is an attractive hypothesis that needs further study. 
Moreover, it is worthwhile noting that GLIS3-deficiency as 
well as loss of TAZ function leads to the development of 
polycystic kidney disease [28, 31]. These observations are 
consistent with a functional link between these two proteins 
and the development of polycystic kidney disease.

β‑Catenin and p120 catenin

Yeast two-hybrid analysis identified β-catenin as a GLIS2-
interacting partner [32]. The tetrahedral configuration of 
the first zinc finger of GLIS2 and the armadillo repeats of 
β-catenin are required for this interaction. GLIS2 inhibits 
β-catenin/T cell factor (TCF)-mediated transcription as 
well as the expression of the TCF target gene, cyclin D1 
(Ccnd1) suggesting that it functions as a negative modulator 
of the Wnt/β-catenin-TCF signaling pathway consistent with 
GLIS2 repressor function.

GLIS2 also interacts with p120 catenin (CTNND1) and 
induces its translocation to the nucleus [33]. This interaction 
involved the 140 aa, N-terminal region of GLIS2 and the C 
terminus of p120 and was enhanced by the tyrosine kinase 
SRC. Interaction with p120 induces proteolytic cleavage of 
GLIS2 between ZF4 and ZD5 that results in the generation 
of a C-terminal-truncated GLIS2-lacking ZF5 (GLIS2∆C). 
Since ZF5 plays a critical role in the recognition of GLISBS 
by GLIS2, one would predict that GLIS2 is unable to bind 
this site and regulate GLISBS-dependent transcription. 
However, GLIS2∆C was still able to bind DNA possibly by 
recognizing a DNA sequence different from that of GLISBS 
or via interaction with another transcription factor. Moreo-
ver, GLIS2∆C was capable of inhibiting neural tube differ-
entiation suggesting that it still has a function. Co-expres-
sion with E-cadherin, which sequesters p120, inhibited the 
p120–GLIS2 interaction.

Ubiquitin and SUMO ligases

Both GLIS2 and GLIS3 have been reported to be ubiqui-
tinated and sumoylated [9, 34, 35]. Yeast two-hybrid and 
mass spectrometric analyses revealed that a number of WW-
domain containing HECT E3 ubiquitin ligases, including 
ITCH, NEDD4, and SMURF1/2, interact with GLIS3 [9, 
26]. These interactions with GLIS3 are mediated through 
their WW-domain, which recognizes a PPYP461 motif in 
GLIS3. ITCH was shown to enhance polyubiquitination 
of GLIS3 and promote its proteolytic degradation by pro-
teasomes, and consequently reduce GLIS3 protein stabil-
ity. ITCH inhibits the transcriptional activity of wild-type 
GLIS3, but not that of a PPYP mutant that is unable to inter-
act with ITCH. This inhibition of GLIS3-mediated transac-
tivation might be related to decreased GLIS3 protein levels. 
This study suggests that ubiquitination plays an important 
role in regulating GLIS3 protein stability and as a conse-
quence its activity and function.

GLIS2 was found to interact with the E3 ubiquitin ligase, 
tripartite motif containing 32 (TRIM32, also named Bar-
det–Biedl syndrome 11 or BBS11), and BBS1 [35, 36], pro-
teins that are part of the Bardet–Biedl syndrome (BSS) mul-
tiprotein complex, which plays a role in ciliogenesis and cilia 
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maintenance. In zebrafish, deficiency in either TRIM32 or 
GLIS2 leads to the development of renal cysts. The 141–359 
region of GLIS2 that includes the ZFD, interacts with 
the TRIM32 N -terminus containing the Ring and B-box 
domains. TRIM32 enhances K63-dependent polyubiquitina-
tion but inhibits K48-linked polyubiquitination of GLIS2, 
thereby inhibiting its proteasomal degradation. Unexpect-
edly, the catalytic activity of TRIM32 was not required for 
this increase in K63 ubiquitination suggesting the involve-
ment of another ubiquitin ligase. TRIM32 also modifies 
GLIS2 transcriptional activity; it reversed the inhibition of 
β-catenin-mediated transcriptional activation by GLIS2 and 
inhibited the GLIS2-induced activation of the Ins2 promoter. 
In addition, TRIM32 changes the subnuclear localization 
of GLIS2 and instead of a diffuse pattern of expression it 
becomes localized to nuclear bodies [35], including PML 
bodies, which are involved in the regulation of multiple cel-
lular functions, such as apoptosis, DNA repair, and cell cycle 
[37]. This co-localization and interaction with promyelocytic 
leukemia protein, PML (also named TRIM19) suggest that 
GLIS2 might have a role in these processes as well.

E3 SUMO ligase, PIAS4, was reported to also interact 
with GLIS2 and catalyze sumoylation of GLIS2 at multiple 
sites, including K195 [34]. This sumoylation was specific 
for SUMO3. The PIAS4-mediated sumoylation was shown 
to interfere with GLIS2 ubiquitination, thereby inhibiting 
its degradation by the proteasome and extending its half-
life. Although mutation of K195R prevents ubiquitination 
and sumoylation at this site, the overall GLIS2 ubiquitina-
tion was increased and GLIS2 protein stability decreased. 
Increased sumoylation did not affect the inhibitory effect of 
GLIS2 on β-catenin-mediated gene activation, but inhibited 
its activation of the Ins2 promoter. These results suggest that 
sumoylation selectively influences GLIS2 transcriptional 
activity and function.

SUFU

As has been reported for GLI proteins [38], both GLIS2 and 
GLIS3 have been shown to interact with suppressor of fused 
(SUFU) [9, 18, 39]. GLIS3 interacts with SUFU through a 
VYGHF motif located within the NCR as well as with an 
undefined site at the C terminus of GLIS3. SUFU protects 
GLIS3 from proteasomal degradation, thereby stabilizing 
GLIS3 protein. The cullin-RING ubiquitin ligase cullin 3 
(CUL3) also interacts with GLIS3 and promotes the ubiqui-
tination and degradation of GLIS3. CUL3 interacts with the 
N terminus of GLIS3, a region that includes the SUFU bind-
ing motif. This raised the possibility that the stabilization 
of GLIS3 by SUFU may be due to its inhibition of GLIS3 
interaction with CUL3. SUFU plays also an important role 
in the control of hedgehog/GLI signaling and regulates this 
pathway at multiple levels [40, 41]. In the case of GLIS3, 

co-expression of GLIS3 and SUFU causes translocation of 
SUFU to the nucleus, suggesting that GLIS3 and SUFU 
are part of a nuclear protein complex. Although SUFU was 
shown to moderately reduce GLIS3-mediated transcriptional 
activation, the precise function of SUFU in GLIS3-mediated 
transcriptional activation is not fully understood [9]. In con-
trast to GLIS3, the GLIS2–SUFU complex appears more 
susceptible to ubiquitination and degradation by the protea-
some suggesting a different mode of regulation [18].

Genetic alterations in human GLIS1–3

GLIS3‑associated mutations and variants

Genetic variations and mutations in the human GLIS3 gene, 
which maps to chromosome 9p24.2 (Fig. 2a), have been 
linked to a wide range of pathologies. Patients with loss-
of-GLIS3-function mutations most consistently develop a 
syndrome referred to as neonatal diabetes and congenital 
hypothyroidism (NDH) and have a greatly reduced life span 
of a few days to several years [13, 42–48]. Abnormalities 
associated with GLIS3 mutations can extend to intrauterine 
growth retardation (IUGR), developmental delay, develop-
ment of polycystic kidneys, congenital glaucoma, hepatic 
cholestasis, osteopenia, atrial septal defects, and minor facial 
dysmorphisms. Facial anomalies associated with GLIS3 
mutations typically include depressed nasal bridge, bilateral 
low-set ears, long philtrum, large anterior fontanelle, and 
elongated, upslanted palpebral fissures. GLIS3-deficiency 
shows some phenotypic variability among patients; some 
patients do not develop cystic kidneys or skeletal abnor-
malities or show abnormal thyroid gland development. The 
phenotypic abnormalities observed in GLIS3-deficient mice 
largely mimic those observed in human patients [1, 4, 5, 22, 
28, 49–51].

Mutations in human GLIS3 that cause loss of func-
tion, are extremely rare and were first described in several 
NDH patients from Saudi Arabia and France and subse-
quently in a few other patients [13, 42–47]. Genetic muta-
tions in GLIS3 include deletions encompassing exons 5–9, 
3–4, 9–11, 10–11, and several larger deletions covering 
regions > 100 kb that include exons 1–2 and part of intron 
2 or exons 1–4 and part of intron 4 (Fig. 2a). Homozygous 
frameshift mutations, p.Arg780Profs*79, p.Gly311Alafs*15, 
and p.Pro772Leufs*35 resulting in an early termination 
codon and the loss of the GLIS3 transactivation domain, 
were identified in several NDH patients [43, 45, 46, 48]. 
In addition, several homozygous missense mutations, 
p.Arg589Trp, p.Cys536Trp and p.His561Tyr, within the 
DNA-binding domain of GLIS3, were found to be associ-
ated with NDH [43]. p.Cys536Trp and p.His561Tyr within 
the second ZF motif cause the collapse of the tetrahedral 
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configuration of ZF2 and greatly diminishes the ability of 
GLIS3 to bind GLISBS. A patient with a p.Phe857Tyr mis-
sense mutation in GLIS3 was reported to develop neonatal 
diabetes and liver dysfunction and died of liver and kidney 
failure at 1.5 years of age [52]. A combination of heterozy-
gous variants in GLIS3 (p.R720Q) and DUOX2 (p.R683L/p.
L1343F) was found to be associated with congenital hypo-
thyroidism [47].

Genome wide association studies (GWAS) have uncov-
ered associations between single nucleotide polymorphisms 

(SNPs) in GLIS3 and several pathologies. The GLIS3-
associated SNPs, rs7034200, rs7875253, rs7041847, and 
rs10814916, have been linked to elevated fasting glu-
cose levels, altered β cell function, and increased risk for 
type 2 diabetes (T2D) [53–71] (Fig. 2a). The GLIS3 SNP 
rs2380949 was found to be associated with reduced insu-
lin clearance, a predictor of T2D incidence [72], while the 
GLIS3 SNP, rs180867004, exhibited a sex-specific associa-
tion with a higher risk for early onset of T2D in male Ameri-
can Pima Indians [68].

A

B

C

Fig. 2   Schematic presentation of the genomic maps of the human GLIS1–3 genes. Missense and frame shift mutations, and deletions implicated 
in disease are indicated. SNPs associated with increased risk for several pathologies are also shown. a GLIS3. b GLIS2. c GLIS1
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More than 40 genes have been identified as a suscep-
tibility locus for type 1 diabetes (T1D); however, GLIS3 
is one of a handful of genes that have also been linked 
to both T1D and T2D. The GLIS3 SNPs, rs7020673 and 
rs10758593, have been reported to be significantly associ-
ated with increased risk for T1D [54, 63, 73–76]. How-
ever, in a study of diabetic patients in Brazil no significant 
association was observed between these SNPs and T1D 
[77]. The low-frequency p.Ala908Val variant of GLIS3 
was found to be strongly associated with resistance to T1D 
[78].

GLIS3 variations have been linked to a number of addi-
tional pathologies. Certain susceptibility loci are shared 
between different autoimmune disorders. For the T1D-
associated GLIS3 SNP rs7020673, a significant association 
was found with rheumatoid arthritis risk [79]. Rs10116772 
was found to be associated with osteoarthritis [80], while 
rs736893, was identified as a risk factor for primary angle 
closure glaucoma (PACG) [81, 82]. A rare GLIS3 dupli-
cation was reported to be associated with congenital heart 
defects [83]. Rs476155 was identified as a susceptibility 
locus for low HDL-cholesterol levels, a risk factor for coro-
nary artery disease in ethnic Arabs [84]. A significant asso-
ciation was also found between the GLIS3 SNP, rs514716, 
and elevated levels of cerebrospinal fluid (CSF) tau and 
phosphorylated tau (ptau181), established biomarkers for AD 
[85, 86]. No significant correlation was found between T2D-
associated GLIS3 SNP, rs10814916, and risk of Parkinson’s 
or Alzheimer’s disease (AD) [87].

GLIS2‑associated mutations and variants

GLIS2 maps to chromosome 16p13.3 (Fig. 2b). Loss of 
GLIS2 function in humans as well as in mice lead to the 
development of type 7 nephronophthisis (NPHP7) [2, 
88–91]. Nephronophthisis is a rare autosomal recessive 
cystic kidney disease characterized by renal atrophy, fibro-
sis, and interstitial infiltration of inflammatory cells. It is 
the most common genetic cause of end-stage renal disease 
in children and young adults. A homozygous transversion at 
the acceptor splice site of intron 6 (IVS5 + 1G > T) in GLIS2 
was found to lead to loss of GLIS2 function and the develop-
ment nephronophthisis [88]. A homozygous missense muta-
tion, p.Cys175Arg (rs587777353), in exon 6 of GLIS2 was 
identified in a patient with nephronophthisis [89, 91]. This 
mutation, which is within the first ZF, destroys its tetrahedral 
configuration and thereby the ability of GLIS2 to optimally 
bind GLISBS and regulate GLISBS-dependent transcrip-
tion. This mutation also changed the subcellular localiza-
tion of GLIS2 from nucleus to cytoplasm, but had no effect 
on GLIS2 protein stability or its interaction with CTBP1, 
HDAC3 or β-catenin [89].

GLIS1‑associated mutations and variants

The human GLIS1 gene maps to chromosome 1p32.3 
(Fig. 2c). GLIS1 variants have been reported to be a risk 
factor for several neural pathologies. The intergenic SNP, 
rs185031519, near the GLIS1 locus was found to be associ-
ated with lower cerebrospinal fluid (CSF) amyloid-beta1-42 
(Aβ42) levels and higher tau and phosphorylated tau (ptau181) 
levels [86]. Lower CSF Aβ42 levels and higher tau and 
ptau181 correlate with the number of neurofibrillary tangles 
and plaque load and are well-established AD endopheno-
types. Rs185031519 was found to be associated with faster 
disease progression and increased AD risk.

A different GWAS study found an association between 
two GLIS1 SNPs, rs12082358 and rs12080993, and 
increased risk of autism spectrum disorder in a Taiwan-
ese Han population [92]. An additional SNP in GLIS1 
(rs797906) was identified as a susceptibility locus for late-
onset Parkinson’s disease (PD) in a Han Chinese population 
[93]. And although individual studies did not find a sig-
nificant correlation between this SNP and PD in Caucasian 
populations, pooled data appear to support an association 
between PD and rs797906 [93–97]. Another GLIS1-associ-
ated SNP (rs6663966) was found to be linked to increased 
severity of coronary artery calcified plaques and risk for 
cardiovascular disease in African Americans with T2D [98].

Molecular and physiological functions 
of GLIS1–3

GLIS as reprogramming factors

Several studies have established roles for GLIS proteins in 
reprogramming. Somatic cells can be reprogrammed into 
induced pluripotent stem cells (iPSCs) by ectopic expres-
sion of several reprogramming factors, OCT3/4 (POU5F1), 
SOX2, KLF4, and c-MYC (OSKM) [99]. GLIS1 signifi-
cantly promotes the reprogramming of both human and 
mouse fibroblasts into iPSCs when co-expressed with 
OSK (referred to as OSKG), whereas down-regulation of 
GLIS1 by shRNAs reduced reprogramming efficiency [14, 
100–102]. iPSCs generated by OSKG were shown to be fully 
able to produce germline competent chimaeras.

The mechanism by which GLIS1 enhances reprogram-
ming efficiency is not fully understood. Gene profiling 
analysis demonstrated that GLIS1 enhanced the expres-
sion of several pluripotent genes, including NANOG, 
ESSRB, LIN28A, MYCN, MYCL1, and several WNT 
ligands, such as WNT3 and WNT8A. Most of these genes 
appeared to be indirectly regulated by GLIS1. Mesen-
chymal–epithelial transition (MET) is a critical element 
in the reprogramming of somatic cells. GLIS1 regulates 
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several genes implicated in MET, including increased 
expression of the transcription factor FOXA2, a repressor 
of epithelial–mesenchymal transition (EMT), which as a 
consequence would promote MET and IPSC generation. 
GLIS1 was found to be in a protein complex with OCT4, 
KLF4, and SOX2. The N terminus and ZFD of GLIS1 
are required for the interaction with KLF4. Whether this 
interaction has a role in mediating the increase in pro-
gramming efficiency by GLIS1 needs further study [100].

The ability of GLIS1 to function as an efficient repro-
gramming factor was also demonstrated by transfecting 
human primary foreskin fibroblasts with a modified ver-
sion of a non-infectious Venezuelan equine encephali-
tis (VEE) virus RNA replicon expressing OCT4, KLF4, 
SOX2, and GLIS1 [102]. Moreover, OCT4, KLF4, SOX2, 
GLIS1 and c-MYC, robustly generated iPSCs from human 
fibroblasts from older adults, age 54–77 [103]. A different 
study showed efficient reprogramming of human urine-
derived cells using a high-efficiency episomal system 
containing OCT4, GLIS1, KLF4, SOX2, L-MYC, and the 
miR-302 cluster [104].

GLIS1 also enhances reprogramming induced by an 
alternative pathway. C-JUN functions as a powerful 
inhibitor of somatic cell reprogramming by inducing the 
expression of EMT genes, including TGFB and SNAIL, 
and inhibiting the expression of pluripotent genes, such 
as SOX2 and NANOG [105]. In contrast, JUN dimeri-
zation protein 2 (JDP2), which represses JUN-mediated 
transactivation, promotes reprogramming in conjunction 
with KLF4, SOX2 and MYC. JDP2 also induces repro-
gramming of MEFs into iPSCs via an alternative path-
way in combination with the expression of GLIS1, lysine 
demethylase KDM2B, and the transcription factors ID1/3, 
SALL4, and LRH1 (NR5A2) [105].

A recent study demonstrated that GLIS3 can promote 
reprogramming in human somatic cells as efficiently as 
GLIS1 [106]. In contrast to GLIS1 and -3, GLIS2 had 
a negative effect on reprogramming [106, 107]. How-
ever, knockdown of GLIS2 expression in human ESCs 
by siRNA abolished the expression of OCT4, SOX2, and 
NANOG and loss of stem cell phenotype [107]. This was 
accompanied by differentiation and expression of multi-
ple genes associated with endodermal and extraembryonic 
lineages. Knockdown of OCT4 also induced differentia-
tion that was associated with decreased expression of 
GLIS2. OCT4 was found to regulate GLIS2 transcription 
directly by binding to its promoter region. Thus, these 
observations suggest that GLIS2 may have a role in main-
taining the pluripotent state of hESCs. GLIS3, together 
with several other transcription factors, also promotes 
the reprogramming of human fibroblasts into retinal pig-
mented epithelial cells [108].

GLIS3 and thyroid hormone biosynthesis

Loss of GLIS3 function in humans and mice causes congeni-
tal or neonatal hypothyroidism [4, 43–46, 50, 109]. Congeni-
tal hypothyroidism is the most common inborn endocrine 
disorder and is caused by abnormalities in either thyroid 
development (thyroid dysgenesis) or thyroid hormone (T3/
T4) biosynthesis (dyshormonogenesis) [110, 111]. The thy-
roid phenotype in GLIS3-deficient patients is quite variable 
ranging from aplasia/dysplasia to dyshormonogenesis [13] 
suggesting that GLIS3 might have a role in both thyroid 
gland development and thyroid hormone biosynthesis.

The development of neonatal hypothyroidism in GLIS3-
deficient mice has been serving as a model to study the 
mechanisms underlying this pathology. GLIS3 expression 
in the thyroid gland is restricted to the thyroid follicular 
cells [24]. The basic morphology of the thyroid gland and 
the expression of several genes critical for thyroid develop-
ment, such as Pax8, Ttf1 (Nkx2.1), and Ttf2 (FoxE1), are not 
greatly affected in PND7 Glis3-KO mice, suggesting that 
abnormal thyroid gland development does not play a major 
role in the development of hypothyroidism in these Glis3-
KO mice, but has a major function in regulating thyroid 
hormone biosynthesis and homeostasis (Fig. 3).

Thyroid hormone biosynthesis is controlled by the hypo-
thalamic–pituitary–thyroid axis, in which low T3/T4 leads 
to increased production of thyrotropin-releasing hormone 
(TRH) by the hypothalamus and thyroid-stimulating hor-
mone (TSH) by the pituitary, which subsequently increases 
thyroid hormone production and blood levels [112] (Fig. 3). 
Increasing blood levels of thyroid hormone subsequently 
act as a negative feedback loop. Human and mice deficient 
in GLIS3 function exhibit low blood levels of T3 and T4, 
and highly elevated levels of thyroid-stimulating hormone 
(TSH). These observations indicate that the development of 
hypothyroidism is not due to the inability of the pituitary to 
respond to low thyroid hormone levels or to produce TSH.

Study of gene expression profiles of thyroid glands from 
wild-type and GLIS3-deficient mice revealed that GLIS3 
regulates the expression of a selective set of genes critical 
for thyroid hormone biosynthesis. The expression of par-
ticularly the iodide transporters, Nis (Slc5a5) and pendrin 
(Pds, Slc26a4), was greatly repressed in the thyroid gland 
of GLIS3-deficient mice (Fig. 3). Previous studies reported 
that mutations in NIS that result in a nonfunctional NIS pro-
tein [113], as well as mutations in PDS [114], cause con-
genital hypothyroidism in humans. Thus, the suppression 
of these genes appears to be a major contributory factor to 
the impaired T3/T4 biosynthesis and the development of 
neonatal hypothyroidism in GLIS3-deficiency.

In addition to controlling T3/T4 biosynthesis, TSH regu-
lates thyroid follicular proliferation. These actions are medi-
ated through the interaction of TSH with the TSH-receptor 
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(TSHR), a G-protein coupled receptor consisting of Gsα and 
Gq, and the subsequent activation of several kinase path-
ways, including cAMP- and phosphoinositol-dependent 
kinase, and the mTORC1/RPS6 pathway [115, 116]. In 
addition to the activation of several thyroid hormone bio-
synthetic genes, including Nis and Pds, persistent high TSH 
levels induce activation of many cell proliferation regula-
tory genes, including cyclins A2, B1 and B2 (Ccna2, Ccnb1, 
Ccnb2), and cell division cycle-associated protein 2 (Cdca2). 
Blood TSH levels are persistently elevated in low iodide diet 
resulting in increased proliferation of thyroid follicular cells 
and a significantly enlarged thyroid gland (goiter) (Fig. 3). 
In contrast to wild-type mice fed a low iodide diet, elevated 
TSH levels in GLIS3-deficient mice fed either a normal or 
low iodide diet do not induce expression of Nis and Pds or 
cell proliferation regulatory genes, such as Ccna2, Ccnb1, 
and Cdca2, and mice do not develop an enlarged thyroid 
gland. The lack of a TSH response is not due a loss of TSHR 
since Tshr expression was not altered in GLIS3-deficient 
mice. Together, these observations suggest that GLIS3 acts 
downstream of TSH/TSHR and mediates the transcriptional 

activation of Nis and Pds by TSH (Fig. 3). The TSH-depend-
ent induction of cell cycle genes involves activation of the 
mTORC1/RPS6 pathway. The repression of most cell cycle 
genes in GLIS3-deficient mice does not involve direct tran-
scriptional regulation by GLIS3, but appears to involve inhi-
bition of RPS6 kinase activation.

GLIS3 and pancreas development

Studies demonstrating that loss of GLIS3 function in 
humans and mice causes neonatal diabetes indicated a regu-
latory role for GLIS3 in pancreatic β cells [1, 4, 5, 13, 22, 
28, 42–50]. The development of hyperglycemia and hypo-
insulinemia in GLIS3 deficiency was found to be related to 
aberrant pancreatic β cell generation and insulin production, 
suggesting that GLIS3 may have a role in the regulation 
of pancreas development. In the mouse, pancreas organo-
genesis starts at about E9.5 when multipotential pancreatic 
cells (MPCs) emerge from the foregut endoderm and form 
the dorsal and ventral pancreatic buds, which subsequently 
undergo extensive expansion and branching (Fig. 4) [117, 

Fig. 3   GLIS3 is essential for thyroid hormone biosynthesis. a GLIS3 
expression is restricted to thyroid follicular cells where it directly 
regulates the transcription of several genes required for thyroid hor-
mone biosynthesis, particularly the two iodide transporter genes, 
NIS and PDS. Loss of GLIS3 causes a dramatic decrease in NIS and 
PDS expression and iodide transport, and consequently reduced thy-
roid hormone biosynthesis and hypothyroidism. b Low iodide diet 

(LID) greatly elevates blood TSH levels. Interaction of TSH with the 
TSHR in thyroid follicular cells activates several kinase pathways and 
expression of the thyroid biosynthetic genes, including NIS and PDS, 
and cell cycle genes. However, these genes are not induced by TSH in 
GLIS3-deficient thyroid follicular cells suggesting that GLIS3 medi-
ates the downstream effects of TSH/TSHR
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118]. By E12.5, the MPCs expressing PDX1, PTF1A, 
NKX6.1, HNF1β, and SOX9 become restricted to the branch 
tips, where they give rise to preacinar cells and subsequently 
mature acinar cells, while the trunk regions differentiate into 
PDX1+PTF1A−NKX6.1+HNF1β+SOX9+ bipotent progeni-
tors (BPs). GLIS3 protein is first observed in BPs and is not 
detectable in MPCs or acinar cells [119]. The BPs subse-
quently give rise to neurogenin 3+ (NGN3+) endocrine pro-
genitors and preductal cells, which then mature into ductal 
cells. The endocrine progenitors delaminate from the trunk 
via a still poorly understood process that involves EMT, and 
differentiate along the five endocrine cell lineages, α, β, γ, 
δ, and PP cells that produce glucagon, insulin, somatosta-
tin, ghrelin, and pancreatic polypeptide (PP), respectively, 
thereby leading to the formation of pancreatic islets. GLIS3 
protein remains expressed in (pre)ductal cells, NGN3+ 
endocrine progenitors, and in insulin+ and PP+ cells, but is 
repressed in α, γ, and δ cells (Fig. 4). This differential pat-
tern of GLIS3 expression raises the question whether GLIS3 
might have a role in endocrine lineage determination.

In human patients with GLIS3 dysfunction, as well as 
in Glis3-deficient mice, the size of pancreatic islets and the 
number of β cells are greatly reduced leading to the devel-
opment of neonatal diabetes [28, 45, 50]. This was found 
to be at least in part related to a reduction in the genera-
tion of NGN3+ endocrine progenitors during the secondary 

transition stage (E13.5–E15.5) of pancreas development [5, 
14, 28]. The decrease in endocrine progenitors appears to 
be in part due to suppression of NGN3 expression, a key 
transcription factor that is required for the commitment of 
BPs to endocrine progenitors [117, 118, 120]. GLIS3 was 
shown to regulate Ngn3 transcription directly by binding to 
GLISBS in its promoter region [21, 22], likely in collabora-
tion with other transcription factors, such as PDX1, SOX9, 
and HNF1β [121, 122]. The inhibition of NGN3+ endocrine 
progenitors is at least in part responsible for the observed 
decrease in pancreatic β cell generation, smaller islet size, 
and the development of neonatal diabetes in GLIS3-deficient 
mice. In addition to endocrine progenitor and pancreatic β 
cell generation, evidence is accumulating that in postna-
tal mouse pancreas GLIS3 regulates the maintenance and 
maturation of β cells [14, 19, 20, 28, 119]. GLIS3 transcrip-
tionally regulates the expression of Ins1, Ins2, and Glut2 
(Slc2a2), and the maturation markers, urocortin 3 (Ucn3) 
and MafA [123, 124], all of which are significantly down-
regulated in postnatal GLIS3-deficient pancreas (Fig. 4). In 
addition to its role in β cells, GLIS3 regulates duct mor-
phogenesis as well as the expression pancreatic polypeptide 
(Ppy) in PP cells [28]. GLIS3 deficiency causes significant 
dilation of pancreatic ducts and greatly reduces Ppy expres-
sion. Together these studies indicate that GLIS3 has multiple 
critical regulatory functions during pancreas development 

Fig. 4   Schematic of the 
multiple functions of GLIS3 in 
the pancreas. GLIS3 protein is 
first detectable in bipotent cells 
(BPCs) and is not expressed 
in multipotent progenitor cells 
(MPCs) or acinar cells. GLIS3 
protein remains expressed 
in preductal and ductal cells 
and in endocrine progenitors. 
When the endocrine progeni-
tors differentiate into the five 
endocrine cell types, it remains 
expressed in β and PP cells, 
but is repressed in α, γ, and ∂ 
cells. GLIS3 deficiency inhibits 
differentiation of BPCs into 
NGN3+ endocrine progeni-
tors and as a consequence the 
generation of endocrine cells. In 
addition, loss of GLIS3 function 
inhibits β cell maturation and 
greatly reduces insulin gene 
expression. GLIS3 deficiency 
also causes dilation of the pan-
creatic ducts and repression of 
Ppy expression in PP cells
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and in the adult pancreas: regulating the development of 
endocrine progenitors, the generation and maturation of 
pancreatic β cells, regulation of insulin and Ppy expression, 
as well as in maintaining normal duct morphology (Fig. 4).

Although global knockout of Glis3 results in neonatal 
diabetes, a pancreas-specific knockout of Glis3 in Glis3fl/fl/
RipCre mice, expressing Cre under control of the rat insulin 
promoter, does not cause a diabetic phenotype [125, 126]. 
However, Pdx1Cre-mediated knockout of Glis3 yielded a 
mixed phenotype depending on the efficiency of the Pdx-
1Cre with 30% of the mice developing severe diabetes 
around PND21, 55% became mildly diabetic with aging, 
while 15% did not develop diabetes. The diabetic phenotype 
correlated with the degree by which GLIS3 was knocked out 
indicating that it is dose dependent. These observations are 
consistent with the conclusion that GLIS3 is required for the 
maintenance of postnatal pancreatic beta cells.

Several studies have provided evidence for a possible role 
of GLIS3 in the control of pancreatic β cell proliferation and 
apoptosis. This is indicated by studies showing that Glis3 
heterozygous mice exhibit increased susceptibility to high 
fat diet-induced hyperglycemia and age-induced diabetes 
that appears to be associated with impaired proliferation and 
expansion of pancreatic β cells [126]. Tamoxifen-inducible, 
β cell-specific knockout of GLIS3 in Glis3fl/fl/Pdx1CreERT2 
mice led to hypoinsulinemia and hyperglycemia and was 
associated with decreased insulin expression and an increase 
in apoptotic β cells [125–127]. Using a model of pancreatic 
β cell-selective endoplasmic reticulum (ER) stress in NOD 
mice, an association was found between increased apopto-
sis and the down-regulation of Glis3 and the anti-apoptotic 
gene, Manf [127]. This study further showed that GLIS3 
heterozygous mice exhibit increased sensitivity to ER-stress 
induced apoptosis and diabetes. A different study reported 
that down-regulation of GLIS3 expression by siRNAs in 
rat pancreatic β cells INS-1E enhanced cell death via the 
intrinsic apoptotic pathway that involved modulation of the 
alternative splicing of the pro-apoptotic favoring the expres-
sion of BIMs, its pro-apoptotic form BIM [128]. Further 
studies are needed to understand the molecular mechanisms 
by which GLIS3 regulates various pancreatic β cell func-
tions and how this relates to the development of diabetes in 
GLIS3-deficiency.

GLIS3 and regulation of insulin transcription

In addition to regulating pancreatic β cell generation, GLIS3 
plays a critical role in the regulation of mouse insulin 
(mIns2) gene expression [1, 19, 20, 28, 45, 119]. The β cells 
in postnatal pancreas from GLIS3-deficient mice contain 
fewer and smaller insulin-containing granules than WT cells 
and exhibit a greatly reduced expression of mIns2 mRNA 
[119]. This is further supported by data showing that ectopic 

expression of GLIS3 can induce Ins2 expression in β cell 
lines. Ins2 expression is under complex control and a num-
ber of transcription factors, including Pdx1, MafA, and Neu-
roD1, which bind, respectively, A-, C-, and E-boxes in the 
proximal Ins2 promoter, have been implicated in the regula-
tion of Ins2 transcription [123, 129]. Ins2 promoter analysis 
showed that GLIS3 can efficiently activate the Ins2 promoter 
by binding two GLISBS in its proximal promoter region. 
Mutation of both GLISBS sites abolishes the GLIS3-medi-
ated activation [19]. The transcriptional activation by GLIS3 
was mediated through its interaction with the co-activator 
CBP/p300. ChIP-Seq analysis supported the conclusion 
that GLIS3 regulates Ins2 transcription directly. Moreover, 
GLIS3 binding is required for optimal activation of the Ins2 
promoter by PDX1, MAFA, and NEUROD1 [19, 20]. We 
proposed that GLIS3–CBP/p300 coactivator complex might 
help recruiting PDX1, MAFA, and NEUROD1 or stabilize 
their interaction with their respective DNA binding sites. 
GLIS3 was also shown to directly regulate MafA expression 
[20, 28]. Thus, the down-regulation of MAFA in GLIS3-KO 
islets likely contributes to the repression of Ins2 activation. 
Together, these data suggest that GLIS3 appears to regulate 
Ins2 transcription through several different mechanisms.

GLIS3 is essential for spermatogenesis

Glis3 is highly expressed in the testis where it plays a criti-
cal role in the regulation of early postnatal spermatogen-
esis [16, 130]. In the mouse testis at PND1, nondividing 
gonocytes migrate to the basal compartment of the semi-
niferous tubule where they differentiate into self-renewing 
spermatogonial stem cells (SSCs), which are distinguished 
by the high expression of inhibitor of DNA binding 4 (Id4) 
[131–134]. The SSCs sequentially differentiate into several 
subsets of spermatogonial progenitor cells (SPCs) that are 
classified as A-single (As), A-paired (Apr), and A-aligned 
spermatogonia (Aal4, Aal8, Aal16) consisting of 1, 2, 4, 8 and 
16 cell(s), respectively (Fig. 5). The SSCs and SPCs together 
are referred to as undifferentiated spermatogonia and share 
the expression of a number of genes implicated in SSC main-
tenance and self-renewal, and PGC development, including 
Pax7, Etv5, Gfra1, Zbtb16 (Plzf), Lhx1, Sall4, Lin28, and 
Nanos2. The Apr and Aal SPCs are transient amplifying cells 
that become irreversibly committed to differentiation into 
type B spermatogonia [131–134]. This is accompanied by 
down-regulation of the expression of various genes, includ-
ing Gfra1, Zbtb16, E-cadherin (Cdh1), Nanos2, and FoxO1 
and induction of cKit. The type B spermatogonia then give 
rise to meiotic spermatocytes, which after meiosis is com-
pleted, differentiate into spermatids and ultimately mature 
spermatozoa. During postnatal spermatogenesis, GLIS3 
protein is detectable in gonocytes, and most GFRA1+ and 
PLZF+ SSCs and SPCs, but not in differentiated c-Kit+ 



3483GLIS1–3 transcription factors: critical roles in the regulation of multiple physiological…

1 3

spermatogonia and germ cells at later stages [130] (Fig. 5). 
GLIS3 expression is lost during the Aal stages, after the 
down-regulation of GFRA1, but before the suppression of 
PLZF. GLIS3 is not detectable in Sertoli or Leydig cells. 
The number of undifferentiated PLZF+ spermatogonia is sig-
nificantly decreased in testes from PND1 and PND7 GLIS3-
deficient mice [130]. This decrease appeared not to be due to 
increased apoptosis, but to inhibition of differentiation and/
or cell proliferation of SSCs and SPCs. As a consequence, 
the number of differentiated c-Kit+ spermatocytes, as well 
as the number of HSPA2+ cells, representing meiotic and 
post-meiotic cells, was greatly diminished in testes of Glis3-
KO mice. Histological observations showed that sperma-
tids and spermatozoa were largely absent in 3–5 weeks old 
Glis3-KO testes. This was accompanied by a dramatically 
reduced expression of genes associated with meiosis, sper-
matids and spermatozoa, including aurora kinase C (Aurkc), 
protamines 1 and 2 (Prm1, Prm2), sperm motility kinase 2a 
(Smok2a), and spermatogenesis associated 3 (Spata3) [130]. 
Together, these studies identify GLIS3 as a key regulator of 
early stages of postnatal spermatogenesis and demonstrate 
that loss of GLIS3 function greatly impairs the generation 
of spermatozoa, thereby rendering the Glis3-KO males 
infertile.

GDNF produced by Sertoli cells plays a critical role 
in regulating the proliferation and differentiation of SSCs 
and SPCs through action of its receptor, the GFRA1–RET 

complex [131, 133]. The expression of GFRA1 and RET was 
significantly decreased in Glis3-KO testis as was the expres-
sion of several GDNF-dependent genes that are important 
in SCC maintenance, including Etv5, Lhx1, and Brachyury 
homolog (T) [130]. The expression of the transcription fac-
tors, Cxcr4, Zbtb16, Ngn3 and Dmrt1, and the RNA binding 
proteins, Nanos2, Nanos3 and Lin28a, which are involved 
in the regulation of the maintenance proliferation, and dif-
ferentiation of undifferentiated spermatogonia was also 
diminished in Glis3-KO testis. NANOS2 and LIN28A have 
been reported to be important in regulating self-renewal of 
SSCs and proliferation of SPCs, respectively [135, 136]. The 
expression of Piwi Like RNA-Mediated Gene Silencing 4 
(Piwil4), which is expressed in gonocytes and SSCs [137], 
as well as several other genes involved in retrotransposon 
silencing suggest that GLIS3 might be involved in regulating 
the repression of transposable elements [130]. These stud-
ies suggest that GLIS3 may play a critical role in regulating 
the dynamics of the gonocytes–SSC–SPC transition and the 
proliferation and differentiation of these cells. The observa-
tion that the translocation of FoxO1 to the nucleus, which 
marks the gonocyte-to-SSC transition and is required for 
SSC proliferation [138], was significantly inhibited in Glis3-
KO testes consistent with the hypothesis that GLIS3 might 
positively regulate the gonocyte-to-SSC transition and SCC 
self-renewal [130]. This is supported by data showing that 
the expression of FoxO1 target genes, Lhx1 and Sall4, and 

Fig. 5   GLIS3 is required for early postnatal spermatogenesis. At 
PND1, non-mitotic gonocytes differentiate into spermatogonial stem 
cells (SSCs), which give rise to several spermatogonial progenitor 
(SPCs) subpopulations (As, Apr, Aal) with decreasing self-renewal 
capacity. These cells subsequently give rise to c-KIT+ differentiated 

spermatogonia and eventually mature spermatozoa. GLIS3 expres-
sion is restricted to gonocytes, SSCs, and SPCs. Loss of GLIS3 
expression affects self-renewal of SSCs and early differentiation and 
impairs the generation of c-KIT+ differentiated spermatogonia lead-
ing to infertility
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that of Id4, a specific marker of SSCs, were greatly reduced 
in Glis3-KO testes.

GLIS1 functions

Relatively little is known about the physiological functions 
of GLIS1. In postnatal mouse testis, Glis1 is expressed in 
spermatogonia, but not in pachytene spermatocytes and 
spermatids [15]. Glis1 null mice are fertile and display 
abnormalities in spermatogenesis upon aging. Glis1 is also 
highly expressed in mouse and bovine oocytes and 1-cell 
embryos. Glis1 mRNA expression is significantly reduced 
in 2-cell embryos and is no longer detectable in 4-cell mouse 
embryos and blastocysts or 8-cell bovine embryos [100, 
139]. Down-regulation of GLIS1 in 4-cell bovine embryos 
by siRNAs resulted in defective development of embryos 
beyond the 16-cell stage, a time at which the developmental 
control by maternal transcription factors is shifted to embry-
onic control, a process referred to as zygotic gene activation 
(ZGA). The expression of PDHA1 and HSPA8, which are 
induced after ZGA, was significantly decreased in Glis1-
downregulated bovine embryos suggesting that ZGA is 
not proceeding [139]. Together these observations suggest 
that GLIS1 is important for preimplantation development; 
however, whether GLIS1 is required for ZGA or whether it 
affects development at a preceding stage needs further study.

A recent study reported a positive role for GLIS1 in 
brown adipocyte differentiation [140]. This was indicated 
by data showing that exogenous expression of GLIS1 in 
mouse myoblast C2C12 cells decreases the expression of 
myogenic markers and enhances adipogenic marker expres-
sion, whereas down-regulation of GLIS1 by siRNAs has 
the inverse effects. This association was supported by the 
observed increase in Glis1 expression during brown adipo-
cyte differentiation in C2C12 cells in which Kdm1a (Lsd1) 
expression was down-regulated.

Functions of GLIS2 in the kidney

During embryonic kidney development, Glis2 is well 
expressed in the ureteric bud, which subsequently forms the 
collecting ducts, but at low levels in S-shaped bodies that 
will form the nephrons [2, 88]. However, at later stages of 
development Glis2 is also detectable in renal tubules. Glis2 
is highly expressed in the adult kidney [8]. As discussed 
above, loss of GLIS2 function causes nephronophthisis, a 
cystic kidney disease characterized by cyst formation, renal 
atrophy, inflammation, and fibrosis [2, 88–91]. GLIS2 defi-
ciency in mice is also associated with an increase in apop-
totic tubular cells and interstitial infiltration of inflammatory 
cells [2]. Progression of the disease leads to the develop-
ment of proteinuria, elevated blood levels of urea nitrogen 
and creatine, and ultimately end-stage renal disease. Gene 

expression profiling showed that kidneys from Glis2-null 
mice exhibited increased expression of several inflamma-
tory genes (e.g., Cxcl10, Ccl2, Cx3cl1) and genes related 
to fibrosis (e.g., Col1a1, Col3a1, Ltbp1), apoptosis (e.g., 
Casp4), and EMT (e.g., Snai1, Fsp1/S100A4, Ctgf, Tgfβ1) 
[2, 88]. The increased expression of these genes at least par-
tially explains the development of inflammation, fibrosis, 
and renal atrophy in Glis2-deficient kidneys. The increased 
inflammatory response likely contributes significantly to the 
progression of nephronophthisis.

Observations showing that kidney tubule cells in Glis2-
knockout mice express a number of mesenchymal markers 
is consistent with the concept that they undergo EMT [2, 
88]. This is further supported by studies showing that down-
regulation of GLIS2 expression in murine inner medullary 
collecting duct IMCD3 cells, in which GLIS2 is abundantly 
expressed, leads to increased cell migration and changes 
in gene expression that are characteristic of EMT [18]. 
This includes suppression of E-cadherin and induction of 
FSP1. In addition, down-regulation of GLIS2 significantly 
increased the expression of Gli1 as well as two GLI1 tar-
get genes, Snai1 and Wnt4. The transcription factor SNAI1 
promotes EMT by inhibiting E-cadherin (Cdh1) transcrip-
tion and inducing the expression of mesenchymal markers, 
such as vimentin and fibroblast-specific protein 1 (FSP1 
or S100A4). ChIP analysis demonstrated that GLIS2 was 
associated with the upstream promoter regulatory region of 
Snai1 and Wnt4 and repressed the activation of the Snai1 and 
Wnt4 promoter. Together, these findings led to the hypoth-
esis that GLIS2 negatively regulates Snai1 and Wnt4 tran-
scription through both an indirect and direct mechanism by, 
respectively, repressing the expression of the positive regula-
tor Gli1 and by directly binding to GLISBS in the Snai1 and 
Wnt4 promoters thereby competing with GLI1 for the same 
sites [18]. Thus, GLIS2 acts as a suppressor of the SHH/
GLI signaling pathway and thereby helping to maintain the 
epithelioid phenotype of renal tubule cells.

A recent study showed that deficiency in GLIS2 function 
suppresses the growth of cysts in Kif3a knockout kidneys 
[141]. Kidney-specific knockout of Kif3a (Ksp-CreKif3af/−), 
one of the kinesins required for primary cilium formation, 
causes loss of primary cilia and development of polycystic 
kidneys [142]. This leads to increased blood urea nitrogen 
and serum creatinine levels, renal failure and death around 
the age of 6 weeks. Crossing these mice with Glis2-defi-
cient mice suppressed proliferation of renal tubule cells, 
decreased DNA damage and apoptosis, and led to reduced 
growth of renal cysts and improved kidney function. Thus, 
GLIS2 deficiency was able to partially rescue the polycystic 
phenotype in Ksp-CreKif3af/− mice [141]. Immortalized tubu-
lar epithelial cells derived from these Kif3a null mice also 
exhibited accelerated cell cycle progression, decreased p53 
stability, and increased DNA damage and apoptosis, while 
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down-regulation of GLIS2 by shRNA reversed this pheno-
type. In addition, loss of GLIS2 function in Kif3a null as 
well as wild-type kidney tubule cells induced senescence as 
indicated by the positive staining for the senescence mark-
ers, H3K9me3 and β-galactosidase.

Unilateral ureteral obstruction, a mouse model of kidney 
injury, caused more severe injury and dilated tubules in kid-
neys of heterozygous Glis2 null mice than WT mice [143]. 
Glis2 mutant tubular epithelial cells appeared less differen-
tiated and interstitial collagen depositions were increased, 
which was at least in part related to enhanced proliferation of 
pericytes and interstitial fibroblasts due to increased expres-
sion of SHH in heterozygous Glis2-deficient kidneys.

Functions of GLIS3 in the kidney

Glis3 is highly expressed in the kidney, where it localizes 
to the epithelial cells of renal tubules, collecting ducts, and 
Bowman’s capsule [2]. Although not in all human patients, 
GLIS3 deficiency in humans and mice leads to the devel-
opment of polycystic kidney disease [5, 13, 45, 46, 49]. 
Glis3-KO mice develop prominent glomerulocysts as well 
as dilated distal tubules and collecting ducts. Deficiency in 
Zinc Finger E-Box Binding Homeobox 2 (ZEB2), a SMAD-
interacting transcription factor, also causes glomerulocystic 
kidney disease [144]. This is associated with decreased 
GLIS3 expression suggesting that it might be part of the 
mechanism by which ZEB2 deficiency causes glomerulocyst 
formation. Similarly, knockout of hepatocyte nuclear factor 
1b (HNF1b) in mice causes polycystic kidney disease as 
well as cyst formation in pancreatic ducts [121, 145]. The 
down-regulation of Glis3 expression in HNF1b-KO pancreas 
may be causally related to the development of dilated ducts.

MRI studies of polycystic kidneys from GLIS3-deficient 
mice showed that kidney volume, cyst volume and cyst-to-
kidney volume ratio, increased significantly with age and 
progression of the disease [51]. Treatment of Glis3 null 
mice with rapamycin inhibited the progression of polycystic 
kidney disease, but did not improve renal functions signifi-
cantly. The molecular mechanism(s) involved in polycystic 
kidney disease are still poorly understood. Changes in cell 
proliferation, planar cell polarity, and defects in primary 
cilium structure or signaling have been implicated in poly-
cystic kidney disease [146–150]. Inflammation and fibrosis 
also play an important role in the pathogenesis of cystic 
renal disease [151].

GLIS proteins, the primary cilium, and cystic kidney 
disease

The primary cilium is a non-motile, microtubule-based orga-
nelle that protrudes from the surface of many eukaryotic 
cells [150, 152–155] (Fig. 6). It constitutes a subcellular 

compartment that allows enrichment of membrane receptors 
and their downstream signaling molecules, thereby serving 
as an important sensory organelle and signaling hub. An 
increasing number of membrane receptors for a wide variety 
of signals as diverse as peptide hormones, neurotransmit-
ters, odorants, lipids, and light, have been associated with 
the primary cilium. These include many G protein-coupled 
receptors (GPCRs), including receptors for Sonic Hedgehog 
(SHH), WNT, and PDGFA, somatostatin, dopamine, and 
serotonin [152, 156, 157]. In addition to GPCRs, several 
Ca2+ channels have been reported to localize to the primary 
cilium, including the transient receptor potential (TRP) 
channels, TRPM4 and TRPV4, and the calcium-activated 
chloride channel ANO1 [158–160]. The primary cilium 
plays a key role in the regulation of embryonic development, 
proliferation, and autophagy. Disruption of the primary cil-
ium or associated signaling pathways has been implicated 
in a broad range of genetic disorders, collectively referred 
to as ciliopathies. This includes autosomal recessive and 
autosomal dominant polycystic kidney disease (ARPKD 
and ADPKD, respectively), nephronophthisis (NPHP), Bar-
det–Biedl syndrome, Joubert syndrome and Meckel–Gru-
ber syndrome, cancer, and several neuropsychiatric disor-
ders [152, 153, 161–164]. Polycystin PC2, a member of the 
TRP family, forms with polycystin PC1 a receptor-channel 
complex that is localized to the primary cilium [147, 165]. 
Mutations in PC1 and PC2 are implicated in the majority of 
autosomal dominant polycystic kidney disease PKD1 and 
PKD2, respectively, while PKHD1, encoding fibrocystin, 
is associated with autosomal recessive polycystic kidney 
disease.

Study of the subcellular localization of GLIS3 protein 
has indicated that it largely localizes to the nucleus in cells 
in vivo and when it is ectopically expressed in cultured cells 
[16, 23, 24, 119]. Immunohistochemistry using proximal 
tubule TKPTS cells ectopically expressing GLIS3-EGFP 
and kidney sections from transgenic mice expressing an 
GLIS3-EGFP fusion protein, showed that in addition to its 
nuclear localization, GLIS3 is also detectable in the tip of 
the primary cilium [49]. This is supported by proteomics 
identifying GLIS3 as a primary cilium-associated protein 
[166]. A recent study showed that the localization of GLI1–3 
proteins to the primary cilium is mediated by transportin 
1 (TNPO1, also named importin 1 or karyopherin beta-2), 
which recognizes a primary cilium localization signal (CLS) 
in the NCR of GLI1–3 proteins [167]. Interestingly, GLIS3 
also contains this CLS consensus motif within its NCR 
(Fig. 1) suggesting that its primary cilium localization might 
be mediated by a similar mechanism. It is further interest-
ing to note that GLIS3 interacts with SUFU, a protein that 
has been demonstrated to interact and co-localize with GLI 
proteins to the tip of the primary cilium [9, 10, 28, 166]. The 
ciliary localization of GLIS3 raises the question whether 
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GLIS3 activity is under the control of an external signal that 
acts through a specific primary cilium-associated GPCR, as 
has been demonstrated for the hedgehog-GLI pathway [4, 
155, 168]. We hypothesize that GLIS3 activity is regulated 
by an as-yet unknown external signal that activates a dis-
tinct GPCR signaling pathway that subsequently modulates 
GLIS3 activity and promotes GLIS3 nuclear localization [4] 
(Fig. 6). This modulation of GLIS3 activity might involve 
posttranslational modification (e.g., phosphorylation) and/
or proteolytic cleavage of GLIS3. Further studies are needed 
to identify such upstream signal(s) to understand the role 
of the primary cilium in the control of GLIS3 activity. The 
identification of such a signal might open possibilities to 
regulate GLIS3 activity in vivo and as such might provide 
opportunities for the development of new therapeutic strate-
gies for diabetes, hypothyroidism, and other diseases.

Deficiency in GLIS2 function leads to the development 
of nephronophthisis, a different type of renal ciliopathy 
[49, 88]. Evidence has been provided indicating that GLIS2 

interacts with SUFU and might localize to the primary 
cilium [18]; however, GLIS2 does not contain a CLS con-
sensus sequence similar to that of GLIS3. Whether GLIS2 
localizes to the primary cilium in vivo and whether this is 
part of a physiologically relevant signaling pathway needs 
further study. Nothing is known about the potential ciliary 
localization of GLIS1.

Summary and conclusions/concluding 
remarks

Recent studies revealed that the GLIS1–3 transcription fac-
tors function as critical regulators of embryonic develop-
ment and many biological processes. Significant molecular 
insights have been obtained about the mechanisms by which 
GLIS3 regulates of thyroid hormone biosynthesis, pancre-
atic β cell generation and insulin expression, and spermato-
genesis, as well as the role of GLIS2 in the maintenance of 

Fig. 6   Regulation of GLIS3 
activity and function by an 
upstream primary cilium-
associated signaling pathway. 
Several studies have provided 
evidence for the localization of 
GLIS3 to the primary cilium. 
TNPO1-GLIS3 interaction 
allows GLIS3 to enter the 
primary cilium, where it is 
transported to the tip of the 
primary cilium by the antero-
grade intraflagellar transport 
(IFT) system. We hypothesize 
that activation of a GPCR local-
ized to the ciliary membrane 
by an external signal modulates 
GLIS3 activity possibly through 
posttranslational modification or 
proteolytic cleavage. This may 
lead to the generation of either 
a GLIS3 activator (GLIS3A) 
or GLIS3 repressor (GLIS3R). 
The retrograde IFT mediates the 
transportation of GLIS3 out of 
the primary cilium. GLIS3 then 
regulates target gene transcrip-
tion after its translocation to the 
nucleus
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normal kidney functions. These studies have provided not 
only a better understanding of these biological processes, 
but also provided insights into the mechanisms by which 
GLIS3 dysfunction leads to hypothyroidism, diabetes, and 
infertility and GLIS2-deficiency results in nephronophthisis. 
Future studies are needed to elucidate the roles of GLIS1–3 
in other biological processes and pathologies, such as the 
role of GLIS3 in the development cystic kidney disease, 
as well as their emerging regulatory functions of GLIS1–3 
in different stem/progenitor populations. Progress would 
highly benefit from the availability of good GLIS antibod-
ies, which have been a limiting factor in these studies. In 
addition, future studies have to determine the roles of dif-
ferent posttranslational modifications and GLIS-interacting 
proteins in the modulation of GLIS1–3 activity and function. 
Increasing evidence showing that GLIS2 and GLIS3 localize 
to the primary cilium and might be part of a primary cilium-
associated GPCR signaling pathway is very exciting. Further 
insights into the nature of this upstream signaling pathway 
may allow regulation of GLIS activity by small molecules 
and provide opportunities for the development of new thera-
peutic strategies for diabetes, hypothyroidism, cystic kidney 
disease and other pathologies.
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