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Correlating nuclear morphometric patterns with estrogen
receptor status in breast cancer pathologic specimens
Rishi R. Rawat 1, Daniel Ruderman 1, Paul Macklin 2, David L. Rimm3 and David B. Agus 1

In this pilot study, we introduce a machine learning framework to identify relationships between cancer tissue morphology and
hormone receptor pathway activation in breast cancer pathology hematoxylin and eosin (H&E)-stained samples. As a proof-of-
concept, we focus on predicting clinical estrogen receptor (ER) status—defined as greater than one percent of cells positive for
estrogen receptor by immunohistochemistry staining—from spatial arrangement of nuclear features. Our learning pipeline
segments nuclei from H&E images, extracts their position, shape and orientation descriptors, and then passes them to a deep
neural network to predict ER status. After training on 57 tissue cores of invasive ductal carcinoma (IDC), our pipeline predicted ER
status in an independent test set of patient samples (AUC ROC= 0.72, 95%CI= 0.55–0.89, n= 56). This proof of concept shows that
machine-derived descriptors of morphologic histology patterns can be correlated to signaling pathway status. Unlike other deep
learning approaches to pathology, our system uses deep neural networks to learn spatial relationships between pre-defined
biological features, which improves the interpretability of the system and sheds light on the features the neural network uses to
predict ER status. Future studies will correlate morphometry to quantitative measures of estrogen receptor status and, ultimately
response to hormonal therapy.
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INTRODUCTION
Machine vision holds the promise to transform solid tumor
pathology. It can correct variations in stain intensity that bias
interpretation, calculate correlations between tissue morphology
and outcome, and quantify stromal features that are not
traditionally studied. For example, Beck et al. used machine vision
to identify stromal correlates to breast cancer outcomes,1 and the
recent CAMELYON challenges showcase the power of machine
vision for detection tasks within pathology.2 A natural next step
for machine-defined morphometrics is to demonstrate the
potential to define visual features that correlate to molecular
markers, or biologic pathway activation.
It is critical to characterize growth receptor pathways in breast

cancer via hormone receptor and HER2 status for patient
management in breast cancer. In the US, the standard of care
uses multiple immunohistochemistry (IHC) stains for estrogen
receptor (ER), progesterone receptor (PR), and HER2 to categorize
the breast tumor, determine prognosis and select treatment
regimens.3,4 However, these assays may be inconsistent across
laboratories,5 and they are somewhat expensive and often
challenging in low resourced settings. However, the marker status
is one of the oldest companion diagnostic tests, even though it
has relatively low sensitivity and specificity.3,6 For example, only
50% of women with ER-positive tumors and 60–70% of women
with ER-positive and PR-positive tumors show partial or complete
response to tamoxifen therapy.7–9 While pathologists have long
seen a correlation between low grade morphology and ER+
status, new developments raise the possibility that quantitative
deep-learning based morphology may be able to predict

molecular ER status, or perhaps even response to hormonal
therapy. In this pilot study, we explored how deep learning on
H&E-based morphometric features could distinguish ER-negative
breast cancer from ER-positive cancer.

RESULTS
Nuclear morphometric features predict ER status
We obtained publicly available H&E images and corresponding
clinical ER status (positive/negative, determined by IHC) for a
tissue microarray of 131 treatment-naïve invasive ductal carci-
noma (IDC) patients10 (Table 1). After segmenting nuclei and
applying a quality control step to exclude over-segmented images
(Supplemental Figure 1), we randomized images into a training set
(57 patients) and a test set (56 patients). We extracted nuclear
morphometric features (shape and orientation) from each nucleus
in the training set and fed these measurements into a deep
convolutional neural network to learn spatial patterns that
correlate to ER-positive or ER-negative status. The DNN was
designed to produce a spatial heatmap of ER-positive or negative
status. When an input image is fed into the DNN, the output is a
heatmap of predictions where intense regions correspond to ER-
negative status. The overall ER-status prediction for a patient is the
average value of the heatmap.
After training the neural network, we tested the pipeline on the

test set and measured area under the receiver operating
characteristic curve (AUC) scores of 0.70 (95%CI= 0.56–0.85) and
0.72 (95%CI= 0.55–0.89) on the training and test sets, respectively
(Fig. 1). This result suggests our pipeline learned to predict ER
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status significantly. The similarity between the AUC scores on the
training and test sets suggests that the pipeline is not overfitting
the training data (in such a scenario training AUC would be
significantly higher than test AUC), and that it generalizes well to
unseen data.

A correlation between nuclear size, heterogeneity, and ER status
While deep networks are typically considered to be uninterpre-
table “black boxes,” we applied several techniques to reverse-
engineer the system and understand the morphometric patterns
the DNN used to classify ER status. Our first step was to visualize
the heatmap the DNN learned to predict. This analysis is similar to

laying an IHC image over an H&E image; however, while an IHC
image shows the real protein expression, the DNN heatmap shows
regions estimated by the DNN to be ER-positive or negative.
Because the DNN was trained to predict an accurate patient-level
classification (not the spatial pattern of ER-staining), the regions
predicted on the heatmap may be different from regions
predicted by IHC. However, regions on the DNN heatmap contain
information that leads to an accurate ER+/− prediction, and are
thus diagnostic regions for ER-assessment.
For this analysis, we selected several cases that were classified

correctly and overlaid the predicted heatmaps on the H&E image
to form a “digital stain” where ER-negative regions are colored red
and ER-positive regions are uncolored (Fig. 2). By visual inspection,
we observed a subset of epithelial areas were predicted ER-
negative. Thus, it appears that features in epithelial regions are
used by the DNN to classify ER status.
Next, we used the DNN to define spatial parameters related to

the specific nuclear features linked to the ER prediction. We
divided all of the training images (n= 57) into small image
patches (64 × 64 pixels, 128 × 128 µm, 11,161 total). Then we
predicted the ER score for each patch and sorted the patches by
the score from ER-positive to ER-negative. When we looked at the
patches most strongly predicted to be ER-positive or ER-negative,
we noticed a difference in nuclear size and the variation in nuclear
features: ER-negative seemed correlated to larger, more variable
nuclei than ER-positive. To formally investigate whether our
pipeline learned features related to nuclear size and hetero-
geneity, we divided the sorted list of image patches into 15
groups ranked by predicted ER score (744 patches per group.
Randomly chosen patches from these 15 groups are illustrated in
Fig. 3a). For each patch, we calculated the mean value of each
nuclear feature (intra-patch mean) and the variance of the feature
(intra-patch variance). We also calculated the inter-patch mean
and standard error across all patches in each group (Fig. 3b). This
revealed that several nuclear morphometric quantities, such as
mean height, width, area and perimeter were elevated in patches
classified as ER negative. Additionally, nuclear heterogeneity
(variance of nuclear features) is correlated to an ER-negative
prediction.

Table 1. Summary of data

Descriptor Value

Dataset name IDC

Source Biomax.us, BM140-sur0111

Total patients* 140

Number of patients with known ER status 131

Patients excluded via quality control step 18

Patients after Quality Control Step 113

Grade I 8

Grade I–II 21

Grade II 79

Grade II–III 4

Grade III 1

Number of patients in train set 57

Number of images in train set 57

Number of patients in test set 56

Number of images in test set 56

Approx. image size (pixels) 3000 × 3000

Resolution 20 × (0.5 µm/pixel)

Fig. 1 Receiver operating characteristic (ROC) curves for the training dataset (AUC= 0.70, 95%CI= 0.56–0.85) (left), and test dataset (AUC=
0.72, 95%CI= 0.55–0.89) (right)
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Based on these observations, we directly tested if the mean and
variance of nuclear features in a patch could predict ER status. We
randomly sampled 5000 patches from the training set, calculated
the intra-patch means and variances of nuclei within each patch
and trained a logistic regression model on these features. Next, we
applied the trained logistic regression model to full-sized images
in the test set. We divided each image into equally-spaced non-
overlapping patches, calculated an ER score for each patch, and
averaged the ER score from all patches in each test image. On the
training set, we obtained an AUC of 0.648 (95% CI: 0.498–0.799).
On the test set, we obtained an AUC of 0.672 (95%CI: 0.494–0.850).
While these linear classifiers are less accurate than the DNN, the
trend suggests that these features capture information about ER
status. Analyzing a DNN trained on expert-defined features helped
us interpret the DNN in terms of biological relationships.

DISCUSSION
We aimed to test feasibility of predicting ER status in breast cancer
specimens based on nuclear morphometric features in H&E
stained specimens as a way of identifying molecular markers
and/or pathway activation without DNA sequencing or other
molecular studies. For this pilot study, we define ER-positive by
clinical ER status (greater than one percent of cancer cells staining
positive for ER on an IHC stain). Using deep learning and labeled
tissue images, we trained a learning pipeline to correlate patterns
of nuclei to ER status and found that it learned to predict ER with
statistical significance. Analysis of the trained model revealed that
the network learned an association between large pleomorphic
nuclei and ER-negative tumors. While this finding is not novel,11 it
is significant that this is the first time a neural network learned this
relationship without human supervision. As the size of the training
dataset grows, we anticipate that it may learn novel patterns not
currently recognized in the field. In fact, the ultimate goal of this
work would be to evolve to a highly sensitive and specific
theragnostic of clinical benefit to hormonal therapy.
A core factor in this work was the development of a hybrid

machine-learning approach that combined expert-defined local
features with the powerful feature-learning framework of con-
volutional neural networks. While convolutional neural networks
can learn high-order features from the raw image data, training

these models typically requires thousands to millions of training
images to minimize the impact of noise and color variations. To
reduce the impact of stain variation, our study introduced a pre-
processing step to extract nuclear morphometric data and
developed a novel method for deep learning on these features
instead of the raw RGB image pixels. Preprocessing effectively
compresses each training image into a vector of morphometric
data. While this constrains the types of features the neural
network can learn, it also prevents the learning of spurious
correlations between nonsensical variables (e.g., staining varia-
tion). Thus, we believe using expert-defined features as input
allowed the network to learn patterns that generalized well
between the training and test datasets.
There are a number of limitations to this work that can be

expected in a proof-of-concept study. Most significant is the
relatively low AUC achieved, compared to the molecular methods
to predict expression of estrogen receptor. We recognize that in
this early stage, this test is not close to being a replacement for
immunohistochemistry. However, similarly, the best molecular
tests for ER status also have a relatively low AUC with respect to
prediction of response to hormonal therapy.12,13 Furthermore,
AUC may not be the best way to evaluate predictive tests, since in
treating patients, specificity is always sacrificed for increased
sensitivity to prevent any patient from missing the opportunity to
benefit from the drug. It is possible that with further effort, deep
learning on larger, more comprehensively annotated cohorts will
be able to improve the specificity without sacrificing sensitivity.
Another weakness of the work is the relatively small sample size

and pilot nature of the study, which focuses on tissue microarray
cores. This work focused on the generation of the algorithms and
the approach, prior to going through the challenging process of
obtaining images from large, comprehensively annotated whole
slide images from cooperative group studies. The publication of
these pilot studies represents a prerequisite in order to obtain and
scan whole sections from the valuable multi-institutional, evi-
dence level 1 trials.
This proof-of-concept demonstrates a technique to correlate

morphometric features to a clinical ER receptor status and
provides a means to begin understanding the relationships
between morphometry and variables of potentially greater clinical
significance, such as ER staining heterogeneity or anti-estrogen

Fig. 2 Digital stain for regions predicted to be ER-negative. Pixels are shaded red in regions predicted to be ER-negative with probability
greater than 50%. Enlarged regions of ER-negative tissue (left) reveal that the network classifies sub-regions of epithelial tissue as ER-negative.
For comparison, ER-positive tissue is shown (right)
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response. Our hybrid system is not a “black-box” learning system.
It learns high-order features based on lower-order, human-defined
features that can be reverse-engineered to capture morphologic
features that are highly correlated to molecular biology. In this
study, we used digital staining and patch analysis to visualize the
correlation between large pleomorphic nuclei with ER negative
tumors. In future work that incorporates subcellular or extra-
cellular features, we can explore how the spatial distribution of
nuclei and other features (e.g., nucleoli, mitotic figures, collagen,
lymphocytes) correlate to subtypes and outcomes. In fact, the
results of the C-Path study1 suggest that the information we may
extract for the extra-cellular features may be more informative for
prediction of response than that cellular features. We believe such
algorithms will help researchers understand how the spatial
relationships between different types of cells correlate to disease
severity and clinical outcomes.

METHOD
We hypothesized that the combination of (1) spatial arrangement of cells
combined with (2) nuclear morphometric properties would capture
important information about the underlying molecular biology of breast
cancer and provide clinically useful predictions. Thus, we constructed a
learning pipeline to classify cancers by molecular markers. Here, we test
this hypothesis on the pathological classification of a tumor as ER+ or ER−.
Our method comprises five steps: (1) data acquisition, (2) image pre-
processing, (3) quality control, (4) designing and training the neural
network, and (5) testing the neural network.

Step 1: Data acquisition
Data. The first set of H&E images we acquired were from the website of
the tissue microarray supplier, US Biomax, Inc. (Derwood, MD 20855). As a
service to customers, US Biomax, Inc. provides JPEG-compressed H&E
images of many tissue microarrays along with immunohistochemistry (IHC)
staining information, such as ER receptor status. With permission from US
Biomax, Inc., we used the array titled “HBre-Duc140Sur-01” (http://www.

Fig. 3 Correlating nuclear morphometric features with ER predictions from the neural network. Image “patches” were extracted from the
training dataset, ranked by predicted probability of ER-status, and divided into 15 groups by prediction status. a Two representative patches
classified as ER positive and ER negative are shown. b (Left) The mean of each nuclear feature was calculated within each patch (intra-patch
mean); within each group, intra-patch means were averaged to calculate the inter-patch mean. b (Right) The variance of each nuclear feature
was calculated in each patch (intra-patch variance); within each group, intra-patch variances were averaged. The x-axis in b indicates group
number, higher group numbers correspond to ER negative predictions
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biomax.us/tissue-arrays/Breast/HBre-Duc140Sur-01), which contains 140
tissue cores (1.5 mm diameter) from 140 patients diagnosed with invasive
ductal carcinoma. We chose this particular microarray because the H&E
images displayed minimal staining artifacts and included molecular marker
staining status. To collect the data, we used the digital slide viewer on the
US Biomax, Inc. website, zoomed in to 20× resolution (0.5 µm per pixel) and
took screenshots of each core. These images were correlated to ER status
(from the US Biomax, Inc. website), and then fed into the pre-processing
pipeline. Following a quality control step (described below), we were left
with 113 tissue cores, with one core per patient. We randomly divided these
patients into the “Training” (n= 57) and “Test” (n= 56) datasets.

Step 2: Image pre-processing
We implemented an automated nuclear segmentation pipeline using
Python (version 2.7.12) and Fiji14 (version 1.0, a distribution of ImageJ15).
The steps consist of the following:

1. Scale images as necessary to a resolution 0.5 µm per pixel, using
bicubic interpolation.

2. Transform the RGB image into hue, saturation, brightness channels,
retaining only the brightness channel for downstream analysis.

3. Apply an automatic, global Otsu threshold16 to roughly identify
cellular regions.

4. Apply a local adaptive threshold with a radius of 20 pixels (10 µm) to
provide fine-scale local separation of nuclei.

5. Use the built-in Fiji watershed transform to separate overlapping
nuclei.

6. Calculate the following morphometric parameters for each detected
nucleus using the particle analysis functions in ImageJ: center of
nucleus (x,y coordinates), major axis length, minor axis length, major
axis to minor axis ratio, area, perimeter, and circularity.

7. Convert data into a MultiCellDS digital tissue snapshot (a
standardized XML representation for spatial multicellular data)17

for storage.

The pre-processing image scripts are available in the supplementary
materials. We identified on average 4960 nuclei per image (95% CI=
4650–5270, n= 140).

Step 3: Quality control
We performed a label-blind quality control step in which 200 × 200 pixel
patches were extracted from each H&E image and overlaid with ellipses
representing the extracted nuclei. Visually, RR assigned a Boolean value (0
or 1) to each image corresponding to whether the image appeared well
segmented (defined as greater than 70% concordant, Supplemental Figure
1). Patients with unknown ER status were excluded from the analysis. As a
result of the quality control step, we used 113 out of 140 cases.

Step 4: Designing and training the neural network
We converted each MultiCellDS digital tissue snapshot into a sparse 12
channel image (Fig. 4), consisting of zeros everywhere except at the cell
centers, which contain information about the nuclei. The first six channels
correspond to cellular shape features (major axis, minor axis, major: minor
ratio, area, perimeter, circularity). In addition, we constructed 6 “binary

Fig. 4 Construction of a sparse 12-channel image. a Hematoxylin and eosin-stained tissue are processed by a nuclear segmentation algorithm.
Each nuclear feature is measured and represented on a single 2D array, where individual cells are represented as points. Arrays are stacked to
form a 12D image. b Detailed view of 12 individual channels that would be stacked to form a 12-channel image
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angle” features from the nuclear angle measurement, leading to a total of
12 feature channels; if the major axis of cell i has an angle θi (0 < θi < 180)
with the positive x-axis, we define six orientation features φi,j (1 ≤ j ≤ 6) by

φi;j ¼ 1 if 30´ j� 1ð Þ<θ i � 30 ´ j
φi;j ¼ 0 otherwise:

The rationale for constructing binary features relates to the training
process for the neural network. We wanted the network to learn
rotationally invariant features, which are robust to flips and rotations (in
the spatial image coordinates) of the 12-D image. Using binary angle
channels allowed us to flip or rotate the image while keeping the cell angle
information properly oriented.
The final step before training involved downscaling the sparse images

4× via nearest-neighbor scaling to reduce downstream computation. Thus,
the DNN sees cell features at a resolution of 2 µm per pixel. Following
downsampling, cells positioned at physical coordinates (x1,y1), are
positioned at matrix indices (x2,y2) such that

x2 ¼ floor x1=4ð Þ
y2 ¼ floor y1=4ð Þ

Network design
The overall structure of our neural network was inspired by previous work
applying deep learning to image segmentation18 and high-content
screening.19 Our network has approximately 4.6 × 105 parameters arranged
in six fully convolutional layers, 5 max pooling layers, one global mean
layer, and one batch-normalization layer (Fig. 5). Through cross-validation
on the training set, we decided to use leaky rectifying linear neurons with
cross-entropy loss. Importantly, we found that using a batch normalization
layer20 was necessary for convergence. Over one batch of training data, a
batch normalization layer produces outputs with zero mean and unit
variance. In training, this leads to a well-distributed set of output
predictions, which accelerates the learning process. In addition, we used
a dropout layer, which randomly eliminates 50% of the neurons during
each round of training to prevent co-adaptation of neurons (a form of
over-fitting).21

Using a global mean layer gives us the option of training the network on
images of arbitrary size. However, we chose to train on small patches
extracted from sparse images to increase the relative size of the training

set. Thus, during the training process, we randomly extracted small
patches (100 × 100 pixels, 200 × 200 µm) from the downscaled feature
maps (approx. 750 × 750 pixels, 1500 × 1500 µm) and assigned them the
same class as the overall image. At runtime, these patches were randomly
flipped and rotated (in multiples of 90 degrees) to augment the dataset
and promote the learning of rotationally invariant features. Theoretically,
the augmented training set consists of 108 different patches; however only
a subset of these images was actually used to train the network.
Each layer in the neural network combines features from the previous

layer, and deeper layers can learn higher order features. The model uses a
fully convolutional architecture, which means that it can process images of
arbitrary size, producing output in the form of a spatial map that scales
with the size of the input image.18 Thus, the final classification layer
produces a spatial map for ER score over the image, and the average
prediction over the map is treated as the score for the image.
All experiments were conducted on an Nvidia K80 GPU using the Deep

Learning libraries Theano22 and Lasagne.23

Network training
We randomly split 113 patients from into training (n= 57) and test (n= 56)
datasets. From the training set, we held out 20% data for cross validation
during the training process. From the training set, we subsampled small
patches (100 × 100 pixels, 200 × 200 µm) and trained the network using
image-level labels (ER+, ER−) for the patches and a cross-entropy loss
function. After approximately 450 epochs (corresponding to training on
approx. 7 × 104 individual patches), the training loss began to plateau
(Supplemental Fig. 2). The loss had plateaued by epoch 825, so we added
back the held-out cross-validation data and trained the net for
approximately 1000 epochs to maximize accuracy on the entire training
dataset.

Step 5: Testing the neural network
Following training, all parameters and weights in the neural network were
fixed. Full sized images were classified and the predictions were stored in a
text file for analysis. The test sets were held out during training and were
only evaluated after the network had been trained.

Fig. 5 Schematic of the deep neural network. a The 12 Channel Image is loaded into a fully convolutional network with six convolutional and
max-pooling layers (not shown for simplicity). The output is a 1D map of ER predictions, which is averaged and normalized (not shown) to
produce an ER score for the image. The size of the matrix that holds the convolutional weights is indicated in red, where a matrix N × C × X × Y
has N Kernels that act on a C channel input of size X × Y × C. b An example of convolutional and max pooling operations. In convolution, the
starting image (left) is convolved by four kernels (middle) to produce four feature maps (right). In max pooling, the maximum value of each
2 × 2 square is used to produce an output image
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Code availability
We used custom python and R scripts, which are provided in the
supplementary materials.

DATA AVAILABILITY
The nuclear segmentations that were used to train the neural network are freely
available under the Creative Commons CC-BY 4.0 license as MultiCellDS digital
snapshots17 and are available upon request. In addition, the raw H&E images used to
generate cell segmentations are available from the website of Biomax.us (IDC, http://
www.biomax.us/tissue-arrays/Breast/HBre-Duc140Sur-01).
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