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H-bonded reusable template assisted para-
selective ketonisation using soft electrophilic vinyl
ethers
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In nature, enzymatic pathways generate Caryl−C(O) bonds in a site-selective fashion. Syn-

thetically, Caryl−C(O) bonds are synthesised in organometallic reactions using pre-

functionalized substrate materials. Electrophilic routes are largely limited to electron-rich

systems, non-polar medium, and multiple product formations with a limited scope of general

application. Herein we disclose a directed para-selective ketonisation technique of arenes,

overriding electronic bias and structural congestion, in the presence of a polar protic solvent.

The concept of hard–soft interaction along with in situ activation techniques is utilised to

suppress the competitive routes. Mechanistic pathways are investigated both experimentally

and computationally to establish the hypothesis. Synthetic utility of the protocol is highlighted

in formal synthesis of drugs, drug cores, and bioactive molecules.
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Carbon−Carbon bonds constitute the major backbone of
organic molecules. Prudent construction of such linkages
facilitates structural manipulation and complex total

synthesis.1 Synthetic methodologies, thriving to transform robust
C−H bonds into diverse functional motifs, can potentially shift
the retrosynthetic paradigm. Recent exercise on C−H bond
functionalization prompted us to sketch a generalised route of
site-selective C−C bond formation at a distal para position of an
arene, attenuating structural and electronic constraints. Although
statistically such transformations are highly probable, inert nature
and minimal reactivity distinction impose significant synthetic
challenges to target a particular C−H bond. In nature, para-
toluene monooxygenase functionalise para C−H bonds of
toluene distinctively.2,3 Although synthetic reproduction of such
transformation can be attained for biased substrates, it falters in
recapitulating the enzymatic efficiency with unbiased and deac-
tivated substrates.

In biosynthetic pathways, ketoacyl-synthase and benzo-
phenone synthase transfer R−C(O) groups to form C−C(O)
connectivity.4–6 Synthetically carbonyl cores can be accessed
using organometallic reagents and cross-coupling at the
expense of sensitive reagents and prefunctionalized reac-
tants.7–13 On the contrary, electrophilic substitutions
(Friedel–Crafts acylation) are more atom economical yet
biased to electron-rich systems and sensitive to substituents.
Electronic effect of the substituents often leads to the inse-
parable mixtures of isomers whereas it mostly fails
with electron-deficient systems. Broadly, the need of non-

nucleophilic solvent medium further confines the scope.14–16

In the present work, we intend to circumvent such limitations
both in terms of selectivity as well as reactivity of the reagents.
Over the last few decades directed C−H activation has offered
a promising strategy for superior regioselectivity.17–39 How-
ever, directed carbonyl insertion is mostly explored for ortho
C−H bonds.40–44 Expanding the idea to distal para positions,
spans larger separation and thus tunnels through bulky
and strained intermediates, vulnerable to subtle manifold
modification.45–49

Comprehending the significance of carbonyl scaffold50 and
synthetic challenges, herein we disclose directed para-selective
ketonisation of arenes by overriding the electronic bias, in the
presence of a polar solvent (Fig. 1).

Results
Design of template and optimisation. Initially acylation reaction
was chosen as the prototype transformation with a toluene model
substrate, appended with the first-generation biphenyl nitrile
directing template (Fig. 2). A series of different acylating agents
were screened. Interestingly, the usage of protic solvent under
elevated temperature consumed electrophilic acid chlorides and
anhydrides. Therefore, selection of a compatible acylating agent
was imperative. In view of competitive nucleophilicity of the
solvent and metallacycle, we envisioned to identify a soft masked
acylating agent to facilitate interaction with soft metallacycles
(Fig. 2). In this regard, first breakthrough was obtained with ethyl
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vinyl ether in the presence of catalytic Pd(OAc)2 and hexa-
fluoroisopropanol (HFIP) solvent with an overall yield of 11%
and 2:1 para-selectivity. Notably, vinyl ethers are electron rich
and less reactive and thus less pronounced as cross-coupling
partner.51–66 Additionally, the possibility of linear and branched
isomer formation along with an additional hydrolysis step to
release the carbonyl unit is noteworthy.67 However, in stark
contrast, vinyl ether worked satisfactorily under the current
condition in a one-pot process. To seek better selectivity and yield
different directing groups were tested. Replacement of the linear
nitrile group by heterocyclic metal coordinating motifs such as
pyridine (DG5), pyrimidine (DG6), and methoxy quinoline sys-
tems (DG7) improved yield yet compromised the selectivity.
Apparently, methoxy quinoline (DG7), due to its increased bulk,
destabilises the necessary orientation by pushing the toluene
nucleus away exposing the meta-C–H bond for reaction. In stark
contrast, alteration of the electronic environment of the nitrile-
based directing group (DG1, DG3, and DG4) offered significant
improvement both in yield and selectivity. A yield of 52% with
11:1 para-selectivity was obtained with a second-generation
hydrogen-bonded para-directing template (DG4). In particular,
the presence of two methoxy groups triggered facile metal-CN
binding offering better yield, whereas template-solvent H-bond-
ing interaction generated optimum rigidity to ensure superior
selectivity.46 Under optimised condition Pd(OAc)2 along with
N-Cbz-Gly gave 80% yield and 16:1 para-selectivity in the

presence of NaOAc and Ag2CO3. Control experiment with a
simple toluene substrate under the optimised reaction condition
gave a mixture of products with no signature of desired para-
acylated product formation.68 Such a phenomenon clearly indi-
cates the significant role of the directing template in selective para
functionalization.

Scope of the methodology. Once optimised, the scope of vinyl
ether was tested (Table 1). Both cyclic and acyclic alkenyl ethers
offered good yield (1a–1c, 1g, 1h, and 1k). No competitive pro-
duct formation was observed for allyl vinyl ether, divinyl poly-
ether, and free −OH group (1d, 1i, 1j, and 1l). Interestingly, vinyl
silane and vinyl borane were found to be compatible (1e and 1f).
A number of substituents both aliphatic and aromatic moieties
around the vinyl group were tested successfully. Both electron-
rich and -deficient arene rings were tolerated under the standard
condition (1u–1r and 1w–1z). Di-substitution vinyl ether led to
the formation of corresponding α−di (1z) substituted ketonised
product.

Following the diversification on alkoxy and vinyl substitu-
ents, the scope of arenes was explored (Tables 2–4). With
electron-rich systems (Tables 2; 2a–2i) a predictable para-
selectivity was obtained by virtue of the directing group.
Despite the possibility of random electrophilic functionaliza-
tion, para-ketonised product was obtained in synthetically
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useful yield and selectivity. However, ortho-trifluoromethoxy
toluene (2d) offered a moderate selectivity as compared to
methyl (2b) substituent. Although the reason of such an
anomaly is unclear, it is worth mentioning that −OCF3 can
influence the outcome of a transformation not just by electronic
effect but also distorting the planer alignment with the benzene
ring which can have a significant impact on the transformation,
relied on the appropriate spatial orientation.69,70 Nevertheless,
the current methodology complemented the electrophilic route
with excellent para-selectivity.

Although electron-deficient systems are not susceptible
towards electrophilic substitution reaction, para-ketonisation
generated the desired product with excellent yield and selectivity
(Table 3: 3a–3k). Poly-halo compounds, specially poly-fluoro,
which is having significant medicinal values can be functionalized
using the current protocol. Notably, comparable results for both
the electron-rich and electron-deficient arenes re-establish the
prominent influence of the directing template over other
paraphernalia.

Arenes with both electron-rich and electron-deficient sub-
stituents were also found to be compatible (Table 4). T4 template

played the key role to dictate the selectivity. Substrates with
benzylic substitution (4k–4m) underwent mono para-acylation
successfully (4m).

Experimental mechanistic evidences. Following the scope of the
reaction, a series of control experiments were conducted to gain
better insight of the mechanism (Fig. 3). As the vinyl moiety of
ether rearranges to the carbonyl group, we were intrigued to
understand the stepwise pathway. NMR titration showed a slow
hydrolysis of vinyl ether in the presence of HFIP, generating
multiple products including aldehyde which was accelerated upon
heating. The control experiment revealed that the hydrolysed
product is ineffective as the acylation agent. Upon replacement
HFIP by d2-HFIP or isopropanol, less acidic variant of HFIP,
neither decomposition nor the desired product formation was
observed. Seemingly, the protonation of the ether by HFIP is
responsible for the generation of the reactive intermediate of
ketonisation.

During the scope of the reaction thiovinyl ether, unlike vinyl
ether, failed completely (Fig. 4a) to deliver the desired carbonyl

Table 1 The scope of vinyl ether

para: others selectivity for entries 1a–1p is 16:1; yields in parenthesis are based on the recovered starting material.
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Table 2 The scope of electron-rich arenes

Table 3 Scope with electron-deficient arenes
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product which further strengthens the hypothesis of protonation
by HFIP. Once insertion into the palladacycle, vinyl ether can
undergo either nucleophilic pathway (P1) or elimination pathway
(P2) of hydrolysis to generate the target molecule. The possibility
of both hydrolytic pathways can be rationalised from the
reactivity of different alkoxy substituted vinyl ethers (Fig. 4a).
Product distribution and kinetic isotope effect study of the
deuterated substrates (kH/kD= 3.1; PH/PD= 3.4) revealed C−H
activation as the rate-limiting step (Fig. 4b).69

DFT calculations and mechanistic cycle. Based on these
mechanistic experiments, a plausible catalytic cycle for para-
ketonisation was proposed (Fig. 5b). The pathway was evaluated
by density functional theory calculations (Fig. 5a). Initial steps of
the para-selective ketonisation was found to resemble para-
selective C–H silylation of 1.46 Compared to para-C–H pallada-
tion, meta-C–H palladation is disfavoured due to greater ring
strain and distortion of the 15-membered palladacycle in the
transition state.46,68 The para-C–H metalation occurs via the
CMD mechanism directed by the Si-based T4-directing group to
form palladacycle 5. Subsequent olefin migratory insertion (TS1)
requires a relatively low activation free energy of 16.0 kcal/mol.
The β-elimination of the benzylic hydrogen (TS2) is facile,
requiring only 10.4 kcal/mol, to form the Pd hydride species 8,
which upon reductive elimination yields the alkenyl ether product
9. Finally, hydrolysis of alkenyl ether 9 leads to the desired

product formation via pathway P1 or P2. It is noteworthy that
apart from generating the activated vinyl ether, HFIP solvent
molecule forms H-bonding with the methoxy group of the tem-
plate (T4) which favours the bent geometry of C–H metalation
transition state, thus metal binding and improved para
selectivity.46

Template recovery and applications. During para-ketonisation,
the presence of the template (T4) was essential for improved
selectivity and yield, yet its removal is required for further syn-
thetic applications (Fig. 6). Almost a quantitative amount of
directing was recovered from the 1q (96%) along with the for-
mation of (p-tolyl)-1-propanone (5b) which was further used for
α- functionalization and cyclization. Recovery of T4 from
4m led to the formation of mono ketonised benzhydryl cores
(5a).68

Discussion
Therefore, we have developed a reusable template-assisted para-
selective ketonisation of toluene derivatives with vinyl ethers in
the presence of polar protic HFIP. The protocol allows a broad
spectrum of vinyl ether and arenes. Also, it can withstand elec-
tron deficiency and steric congestion, which is likely to diminish
reactivity significantly. The sequence of activation, insertion, and
hydrolysis was experimentally investigated and was further sup-
ported by computational studies.

Table 4 Scope of arenes

aN-Ac-Gly used as ligand
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Methods
Procedure of para-ketonisation. In an oven-dried screw-capped reaction tube was
charged with a magnetic stir-bar, benzylsilyl ether substrate (viscous benzylsilyl
ether was weighed first), Pd(OAc)2 (10 mol%), ligand (N-CBZ-Gly or N-Ac-Gly;
20 mol%), Ag2CO3 (3 eq.) and NaOAc (2 eq.). About 1.2 mL (for 0.1 mmol scale)
of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) was added followed by vinyl ether
(3 eq.). The reaction tube was capped and stirred (900 rpm) on a preheated oil-bath
at 80 °C for 24/36 h. Upon completion the mixture was cooled and diluted

with EtOAc and filtered through a celite pad. The filtrate was evaporated
under reduced pressure and the crude mixture was purified by column chroma-
tography using silica (100–200 mesh size) and petroleum ether/ethyl acetate as
the eluent. The selectivity was monitored using 1H-NMR signal in the
presence of 1,3,5-trimethoxybenzene as an internal standard. The
regioselectivity was determined from 1H-NMR signals of aromatic region
and benzylic position.

In the substrate scope table, selectivity was obtained from 1H-NMR.
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