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using an established mouse model of PND.

C3a receptor blocker.

beneficial to attenuate neuroinflammation and PND.

Background: The complement system plays an important role in many neurological disorders.

Complement modulation, including C3/C3a receptor signaling, shows promising therapeutic effects on cognition
and neurodegeneration. Yet, the implications for this pathway in perioperative neurocognitive disorders (PND) are
not well established. Here, we evaluated the possible role for C3/C3a receptor signaling after orthopedic surgery

Methods: A stabilized tibial fracture surgery was performed in adult male C57BL/6 mice under general anesthesia
and analgesia to induce PND-like behavior. Complement activation was assessed in the hippocampus and choroid
plexus. Changes in hippocampal neuroinflammation, synapse numbers, choroidal blood-cerebrospinal fluid barrier
(BCSFB) integrity, and hippocampal-dependent memory function were evaluated after surgery and treatment with a

Results: C3 levels and C3a receptor expression were specifically increased in hippocampal astrocytes and microglia
after surgery. Surgery-induced neuroinflammation and synapse loss in the hippocampus were attenuated by C3a
receptor blockade. Choroidal BCSFB dysfunction occurred 1 day after surgery and was attenuated by C3a receptor
blockade. Administration of exogenous C3a exacerbated cognitive decline after surgery, whereas C3a receptor
blockade improved hippocampal-dependent memory function.

Conclusions: Orthopedic surgery activates complement signaling. C3a receptor blockade may be therapeutically
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Background

Cognitive impairments are common problems especially
amongst older surgical patients [1]. These neurological
complications, termed as perioperative neurocognitive
disorders (PND) [2], associate with poor functional re-
covery and increased mortality after major surgery [3].
Although the pathogenesis of PND remains unclear, pre-
clinical studies suggest that surgery triggers acute sys-
temic inflammation [4] followed by neuroinflammation
[5-7] and synaptic dysfunction [8, 9], which appear to
contribute to hippocampal-dependent cognitive deficits.
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Recent human studies describe similar pathological
hallmarks after major surgery including biomarkers of
systemic inflammation, neuroinflammation, and neur-
onal damage [10, 11]. Strategies aimed at modulating
this immune response have shown promising effects in
animal models; however, no effective strategies for the
treatment and/or prevention of PND are available for
clinical use yet.

The complement system is well-known to play an im-
portant role in innate immunity regulation [12]. Emer-
ging evidence shows that the complement system also
serves many pivotal functions in the central nervous
system (CNS) [13, 14]. Under homeostatic conditions,
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complement pathways help eliminating cellular debris,
apoptotic cells, and pathogens [13], as well as regulating
synaptic pruning during brain development [15]. In con-
trast, abnormal activation of the complement system has
been related to several CNS pathologies and neurodegen-
erative conditions [16, 17].

The central component of the complement system,
C3, has been extensively investigated in the CNS [16-21].
C3a, a cleavage product of C3, binds to the G protein-
coupled receptor named C3a receptor (C3aR) [22]. Both
pharmacological blockade and genetic deficiency in C3aR
have therapeutic effects in models of neuroinflamma-
tion, synapse loss, and cognitive dysfunction in rodents
[17, 19, 20]. Herein, we hypothesize that orthopedic
surgery induces C3/C3aR signaling activation in the
CNS, thus contributing to PND pathogenesis. Further,
we demonstrate that administration of C3a can trigger
neuroinflammation whereas C3aR blockade provides
therapeutic benefits that may inform about novel clini-
cal trials.
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Methods

Mice

All experiments were approved by Institutional Animal
Care and Use Committee at Capital Medical University
(Beijing, China) and performed under the regulations of
Medical Research Center of Beijing Chao-Yang Hospital
(Beijing, China). Twelve- to 14-week-old male C57BL/6
mice were purchased from Vital River Laboratory (Beijing,
China). All mice were housed under a 12 h light/dark
cycle with free access to food and water in the vivarium of
Beijing Chao-Yang Hospital.

Experimental design
The study design is presented in Fig. 1.

Surgery

Orthopedic surgery was performed as previously described
[23]. Briefly, mice received an open tibia fracture with intra-
medullary pinning under 2% isoflurane anesthesia. Bupre-
norphine (0.1 mg/kg) was administered subcutaneously
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Fig. 1 Study design. a Mice were randomly assigned to three groups: naive, sham, and surgery. Mice were sacrificed for tissues harvesting at 6 h,
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treatment; at 6 h after intranasal rmC3a or vehicle administration, mice were sacrificed for tissue harvesting. f Mice were randomly assigned to
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after anesthesia induction. Sham mice underwent exactly
the same anesthesia and analgesia but without surgical
intervention.

Intraperitoneal administration of C3a receptor antagonist
C3aR antagonist (C3aRa) (Millipore, #559410) was dis-
solved in phosphate-buffered saline (PBS) containing 0.5%
dimethyl sulfoxide (DMSO). 1 h before surgery, mice were
intraperitoneally administered C3aR antagonist (1 mg/kg,
IP). Vehicle-treated mice received IP administration of 0.5%
DMSO in PBS. This antagonist has been extensively used
for C3aR blockade in treating CNS disorders in rodents
[17, 19, 21].

Intranasal administration of recombinant mouse C3a
Intranasal drug administration was performed as previously
described [24] with minor modifications. Mice were accli-
mated for handling to minimize stress response before
drug administration. Recombinant mouse C3a (rmC3a)
(10 pg/kg, R&D systems, #8085-C3-025) was dissolved
in PBS and intranasally given to each restrained awake
mouse in a total volume of 10 pL. Drugs were ejected as
small droplets using a pipettor and inhaled through the
mouse’s nostril. Vehicle-treated mice were given an equal
volume of PBS. Timepoints for intranasal C3a delivery in
each experiment were described in Fig. 1d—f. This intrana-
sal approach has been successfully used to deliver exogen-
ous C3a to the mouse brain in previous studies [25, 26].

Enzyme-linked immunosorbent assay

Mice were transcardially perfused with ice cold PBS. Hip-
pocampal tissues were harvested and homogenized. Col-
lected supernatants were quantified by bicinchoninic acid
(BCA) assay (Thermo Scientific, #23225). Enzyme-linked
immunosorbent assays (ELISA) were performed to detect
hippocampal levels of C3, interleukin-1f (IL-1p), and
interleukin-6 (IL-6) using commercially available ELISA kits
(Abcam, #ab157711; R&D Systems, #MLB00C; Thermo
Scientific, #KMC0061).

Western blotting

Homogenized hippocampal tissues were quantified by
BCA assay. Denatured proteins were separated by 10%
sodium dodecyl sulfatepolyacrylamide gel electrophoresis
(Bio-Rad) and transferred onto polyvinylidene fluoride
membranes (Thermo Scientific). Membranes were blocked
for 1 h at room temperature (RT) and subsequently incu-
bated at 4 °C overnight with primary antibodies against
synaptophysin (SYP) (1:1000, Sigma, #S5768), postsynaptic
density protein 95 (PSD-95) (1:1000, Cell Signaling, #2507),
or beta-actin (1:1000, Thermo Scientific, # MA5-15739).
After washing, membranes were incubated with horse-
radish peroxidase (HRP) conjugated secondary anti-
bodies (1:5000, Thermo Scientific) at RT for 1 h. Finally,
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membranes were incubated with chemiluminescent HRP
substrate (Thermo Scientific) and imaged by ChemiDoc
XRS" system (Bio-Rad). The intensity values of target
bands were measured by Image Lab software (Bio-Rad).

Immunohistochemistry

Mice were perfused with ice-cold PBS containing 4% para-
formaldehyde (PFA). Harvested brains were post-fixed
with 4% PFA in PBS for 24 h at 4 °C. After washing with
PBS, brains were immersed in 30% sucrose/PBS solution
for 48 h at 4 °C. A freezing microtome was used to cut
brains into 30-pm-thick free-floating sections. The sec-
tions were blocked with 1% bovine serum albumin plus
0.2% Triton X-100 (Sigma, #T8787) in PBS for 1 h at
RT. After blocking, the sections were incubated with pri-
mary antibodies against C3 (1:100, Abcam, #ab11862),
C3aR (1:100, Hycult Biotech, #HM1123), ionized calcium-
binding adapter molecule 1 (IBA1) (1:500, Wako, #019-
19741), glial fibrillary acidic protein (GFAP) (1:1000, Dako,
#70334), CD68 (1:200, Bio-Rad, #MCA1957), intercellular
adhesion molecule-1 (ICAM-1) (1:200, R&D Systems, #AF
796), vascular cell adhesion molecule-1 (VCAM-1) (1:100,
Abcam, #134047), myeloperoxidase (MPO (1:100, Abcam,
#ab9535), or mouse immunoglobulin G (IgG) (1:200, Invi-
trogen, #A-21203) overnight at 4 °C. After washing with
PBS, the sections were incubated with fluorophore-
conjugated secondary antibodies (1:200, Invitrogen) at
RT for 2 h. The sections were washed again with PBS,
mounted on slides, and sealed with Fluoroshield mounting
medium (Sigma, #F6057) and 0.17-mm-thick coverslips. Im-
ages were acquired using a Leica SP8 confocal microscope
and then processed by Adobe Photoshop software (version
CS6). Images from different experimental groups were cap-
tured and adjusted under the same conditions. Quantitative
analyses were done using Image] software (version 2.00).

Trace fear conditioning

Trace fear conditioning has been widely used for assessing
hippocampal-dependent memory in PND [4]. 30 min after
C3aR antagonist, rmC3a, or vehicle administration, mice
received a training session to associate a conditional stimu-
lus (context) with an unconditional stimulus (two periods
of 2-s foot-shocks of 0.75 mA each). 30 min after training,
mice were subjected to tibia fracture or sham surgery. One
or 3 days after training, mice were tested in the same con-
text but received no unconditional stimulus (foot shocks).
Freezing behavior for each mouse was recorded and ana-
lyzed by a camera-based monitoring system (Xeye Fcs sys-
tem, Beijing MacroAmbition S&T Development Co., Ltd.,
Beijing, China).

Statistics
Statistical analysis was performed with GraphPad Prism V6
(GraphPad Software, La Jolla, CA). Comparisons between
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different groups were made using one-way analysis of
variance (ANOVA) with repeated measures followed by
Tukey’s or Student-Newman-Keuls test. Unpaired Stu-
dent’s ¢ test was used for comparisons between two
groups. Relationships between two variables were eval-
uated using linear regression. Statistical significance
was indicated when p < 0.05. Data are means + standard
error of the mean.

Results

Orthopedic surgery induces astrocytic C3 and microglial
C3aR upregulation in the hippocampus

To determine whether major surgery activates the comple-
ment system we assessed the level of the central comple-
ment component, C3, in the hippocampus after orthopedic
surgery. Hippocampal C3 was elevated at 6 h (87.16 +
7.35 ng/mg, p < 0.05; Fig. 2a), peaking on postoperative day
1 (140.20 £ 12.68 ng/mg, p <0.01; Fig. 2a), and returning
to baseline by postoperative day 3 (49.95 + 6.29 ng/mg vs.
45.30 £ 2.74 ng/mg, p > 0.05; Fig. 2a).

Next, we interrogated the cellular distribution of C3 in
the hippocampus focusing on three cell types: astrocytes,
microglia, and neurons on postoperative day 1, the peak
of surgery-induced C3 elevation in this model. Compared
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to the naive group, C3 was found significantly elevated in
GFAP" astrocytes after surgery (surgery vs. naive: p < 0.001;
Fig. 2b, ¢) but was absent in neurons (Additional file 1).
Notably, we found no co-localization of C3 with the micro-
glial marker IBA1 (Fig. 2d); however, IBA1" cells expressed
higher C3aR after surgery (surgery vs. naive: p <0.0001;
Fig. 2e, f). In contrast, sham surgery did not trigger either
astrocytic C3 (sham vs. naive: p > 0.05; Fig. 2b, c) or micro-
glial C3aR upregulation (sham vs. naive: p > 0.05; Fig. 2e, ).

Orthopedic surgery-induced neuroinflammation is
attenuated by C3aR blockade

To illustrate the role of C3/C3aR signaling in surgery-
induced neuroinflammation, we examined the effects of a
selective C3aR antagonist on pro-inflammatory cytokines,
microglial activation, and neutrophil infiltration in the
hippocampus.

Pro-inflammatory cytokines IL-1f and IL-6 in the
hippocampus were measured using ELISA. Compared to
the sham group, orthopedic surgery increased both IL-1p
(surgery + vehicle vs. sham + vehicle: 22.30 + 2.58 pg/mg vs.
10.64 + 1.52 pg/mg, respectively, p < 0.05; Fig. 3a) and IL-6
(surgery + vehicle vs. sham + vehicle: 19.22 + 1.895 pg/mg
vs. 8.33 £ 0.86 pg/mg, respectively, p <0.01; Fig. 3) at 6 h.
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Fig. 2 Orthopedic surgery induces complement activation in the hippocampus. a C3 was assayed by ELISA in hippocampal homogenates of naive
and surgery mice (one-way analysis of variance followed by Student-Newman-Keuls test; n =5). b Representative confocal images of C3 (green) and
astrocytic marker GFAP (red) immunostaining in the hippocampus of naive, surgery, and sham mice on postoperative day 1. ¢ Quantification of C3
occupancy in GFAP™ astrocytes (one-way analysis of variance followed by Tukey post hoc test; n = 5). d Representative confocal images of C3 (green)
and microglial marker IBAT (red) double immunostaining in the hippocampus 1 day after surgery. e Representative confocal images of C3aR (green)
and IBAT (red) labeling in the hippocampus of naive, surgery, and sham mice at 1 day. f Quantification of C3aR occupancy in IBA1" microglia,
normalized to the level in the naive group (one-way analysis of variance followed by Tukey post hoc test; n = 5). Scale bar =30 pym (b, d, and e).
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In contrast, treatment with the C3aR antagonist abolished
the upregulation of hippocampal IL-1p (surgery + C3aRa vs.
surgery + vehicle: 10.87 £2.15 pg/mg 22.30 + 2.58 pg/mg,

respectively, p < 0.05; Fig. 3a) and IL-6 (surgery + C3aRa vs.
surgery + vehicle: 9.67 + 2.50 pg/mg vs. 19.22 + 1.90 pg/mg,
respectively, p < 0.01, Fig. 3b).
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Microglial activation was evaluated by IBA1 immuno-
reactivity in the hippocampus. Compared to sham mice,
orthopedic surgery caused significant increase in IBA1
expression (surgery + vehicle vs. sham + vehicle: p < 0.01;
Fig. 3c, d) on day 1 as previously shown in this model
[23]. In contrast, C3aR blockade ameliorated hippocam-
pal microglial activation after surgery (surgery+ C3aRa
vs. surgery + vehicle: p < 0.01; Fig. 3¢, d).

Next, we evaluated hippocampal neutrophil infiltration
using ICAM-1 and MPO immunostainings. ICAM-1, a
well-characterized adhesive molecule that mediates
leukocyte trafficking [27], was significantly elevated after
surgery (surgery + vehicle vs. sham + vehicle: p <0.01;
Fig. 3e, f) and co-localized with the endothelial cell
marker CD31 (Fig. 3e). Notably, ICAM-1 elevation was
reversed by C3aR antagonist treatment (surgery + C3aRa
vs. surgery + vehicle: p <0.01; Fig. 3e, f). Orthopedic sur-
gery also induced infiltration of MPO" neutrophils in
the hippocampus (Fig. 3g), which was blocked by C3aR
antagonist (Fig. 3g).

C3aR antagonist reduces microglial phagocytic activity
and synapse loss after orthopedic surgery
Complement-induced synapse loss has been implicated
in the development of cognitive impairment [16, 20].
To evaluate whether orthopedic surgery-induced C3/
C3aR signaling activation contributes to synaptic dys-
function we assessed the effects of C3aR blockade on
microglial phagocytic activity and synapse loss. Ortho-
pedic surgery increased microglial phagocytic activity
as measured by CD68 at 1 day postoperatively (surgery
+ vehicle vs. sham + vehicle: p < 0.0001; Fig. 4a, b). Not-
ably, surgery-induced microglial CD68 upregulation
was attenuated by C3aR antagonist (surgery + C3aRa vs.
surgery + vehicle: p <0.001; Fig. 4a, b). To further
evaluate the effects on synapse numbers, we measured
hippocampal levels of the presynaptic protein SYP and
postsynaptic protein PSD-95. Orthopedic surgery re-
duced both SYP (surgery + vehicle vs. sham + vehicle:
0.71 £ 0.04 vs. 1.00 + 0.04, p < 0.01; Fig. 4c, d) and PSD-95
(surgery + vehicle vs. sham + vehicle: 0.57 +0.03 vs.
1.00 + 0.05, p <0.0001; Fig. 4e, f). In contrast, the C3aR
antagonist improved surgery-induced reduction in SYP
(surgery + C3aRa vs. surgery + vehicle: 1.08 + 0.05 vs. 0.71
+0.04, p <0.001; Fig. 4c, d) and PSD-95 (surgery + C3aRa
vs. surgery + vehicle: 1.09 + 0.05 vs. 0.57 + 0.03, p < 0.0001;
Fig. 4e, f).

Notably, upregulation of microglial phagocytic activ-
ity has been related to increased synapse engulfment
[16, 20, 28]. Here, we showed a significant correlation
between microglial CD68 expression and synapse numbers
(SYP: r=-0.606, p = 0.017, Fig. 4g; PSD-95: r = — 0.875,
p <0.0001, Fig. 4h), suggesting that microglial phagocytic
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activity associates with synapse loss in the hippocampus
after surgery.

C3aR blockade attenuates blood-CSF barrier dysfunction
in the choroid plexus after orthopedic surgery

C3/C3aR activation can induce impairments in blood-
cerebrospinal fluid barrier (BCSFB) in the choroid plexus,
which has been implicated in cognitive decline [21, 29].
Thus, we assessed choroidal BCSFB dysfunction on postop-
erative day 1. First, we examined changes in choroidal C3
level by surgery. Compared to naive, there was a significant
elevation of C3 level in the choroid plexus in the surgery
group (surgery vs. naive: p < 0.001; Fig. 5a, b) but not sham
group (sham vs. naive: p >0.05; Fig. 5a, b). Next, we
evaluated changes in IgG, ICAM-1, and VCAM-1
immunostainings in the choroidal BCSFB. Orthopedic
surgery upregulated levels of IgG, ICAM-1, and VCAM-1
(Fig. 5¢c—g) compared to sham mice. In contrast, C3aR
blockade decreased the choroidal levels of these markers
(Fig. 5c—g) after surgery, suggesting surgery impairs
BCSEFB in the choroid plexus.

C3aR blockade improves cognition after orthopedic
surgery

Abnormal activation of C3/C3aR signaling has been
correlated with memory deficits [17]. To evaluate the
impact on cognition, we assessed the effects of C3aR
blockade on freezing behavior using trace fear condi-
tioning. On postoperative day 3, mice that underwent
surgery showed lower freezing to the context compared to
sham mice (surgery + vehicle vs. sham + vehicle: 23.29% +
3.80 vs. 64.96% + 3.89, p <0.0001; Fig. 6). Notably, treat-
ment with C3aR antagonist significantly improved freezing
behavior (surgery + C3aRa vs. surgery + vehicle: 55.38% +
5.51 vs. 23.29% + 3.80, p < 0.01; Fig. 6).

Exogenous administration of C3a triggers PND-like
features

We further evaluated the role of C3/C3aR signaling in
PND by administering exogenous C3a. First, we investi-
gated whether rmC3a treatment caused neuroinflamma-
tion. 3 days after surgery, both IL-1p and IL-6 in the
hippocampus were decreased to sham levels (surgery +
vehicle vs sham + vehicle: p>0.05 for both IL-1p and
IL-6; Fig. 7a, b). However, mice exposed to rmC3a
showed prolonged upregulation of hippocampal IL-1B
(surgery + rmC3a vs. surgery + vehicle: 25.56 + 6.56 pg/
mg vs. 11.88 + 1.51 pg/mg, p <0.05; Fig. 7a) and IL-6
(surgery + rmC3a vs. surgery + vehicle: 15.60 + 1.32 pg/mg
vs. 8.17 + 0.97 pg/mg, p <0.001; Fig. 7b). Furthermore,
MPQO" neutrophils were detected in the hippocampus in
rmC3a-treated naive mice (Fig. 7c), overall suggesting ex-
ogenous C3a prolongs surgery-induced neuroinflamma-
tion in this 2-hit model. We then examined the impact of
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Fig. 4 C3aR blockade reduces microglial phagocytic activity and synapse loss at 1 day after orthopedic surgery. Mice were randomly assigned to
three groups (n = 5/group): sham + vehicle, surgery + vehicle, and surgery + C3aR antagonist (C3aRa). a Representative confocal images of double
immunostaining of CD68 (green) and IBAT (red); scale bar = 30 um. b Quantification of CD68 occupancy in IBAT* microglia. Representative images from
western blotting of presynaptic marker SYP (c) and postsynaptic marker PSD-95 (e). Quantification of SYP (d) and PSD-95 (f). Linear regression analyses of
the relationship between microglia CD68 reactivity and synaptic marker SYP (g) or PSD-95 (h). Data analyses were performed using one-way analysis of
variance followed by Tukey post hoc test (b, d, f) or regression analysis (g, h). **p <0.01, **p < 0.001, ***p < 0.0001

exogenous C3a on choroidal BCSEB. Naive mice treated
with rmC3a showed evident BCSFB disruption with ele-
vated IgG deposition in the choroid plexus compared to
vehicle-treated mice (rmC3a vs. vehicle: p<0.0001;
Fig. 7d, e). Finally, we evaluated the effect of exogenous
C3a on memory. Orthopedic surgery induced a reduction

of freezing behavior on postoperative day 1 compared to
sham (surgery + vehicle vs sham + vehicle: 57.73% +2.41
vs. 84.54% +4.76, p < 0.01; Fig. 7f). This reduction was ex-
acerbated when mice were subjected to both surgery and
exogenous C3a (surgery+rmC3a vs. surgery + vehicle:
23.64% + 3.30 vs. 57.73% + 2.41, p < 0.001; Fig. 7f).



Xiong et al. Journal of Neuroinflammation (2018) 15:254 Page 8 of 13

Naive Surgery Sham

c3

Mean gray value of C3 immunostaining
in the choroid plexus
a - N
o o o v o
T i
¥
J *
¥

€3/ DAPI

e ) &
. . . D ’ go@ 6}\

Sham + Vehicle Surgery + Vehicle Surgery + C3aRa

... |

Surgery + C3aRa

Cc

in the choroid plexus
a
B

1gG
Mean gray value of IgG immunostaining

»
S
*
%
*
*

1gG / DAPI

w
S

in the choroid plexus
N
S

-
o

Sham + Vehicle Surgery + Vehicle

Mean gray value of ICAM-1 immunostaining

& < <@
¢ > 2
s . : & & &
§ 2 &x dx 6’(
2 (3 2!
2 Y &
- -

VCAM-1

20

o

Mean gray value of VCAM-1 immunostaining
in the choroid plexus

ICAM-1 /VCAM-1/ DAPI

Fig. 5 C3aR blockade attenuates BCSFB disruption in the choroid plexus after surgery. a Representative images of C3 labeling in the choroid
plexus of naive, surgery, and sham mice at 1 day after surgery or sham. b Quantification of C3 fluorescence intensity. ¢ Representative images of
IgG staining in the choroid plexus of 3 groups: sham + vehicle, surgery + vehicle, and surgery + C3aRa. d Quantification of IgG fluorescence
intensity. e Representative images of ICAM-1 (green) and VCAM-1 (red) labelings in the choroid plexus. Quantification of ICAM-1 (f) and VCAM-1
(g) fluorescence intensity. Nuclear counterstaining with DAPI (blue) (a, ¢, and e). Scale bar= 100 um (a, ¢, and e). Data analyses were performed
using one-way analysis of variance followed by Tukey post hoc test (b, d, f, and g); **p < 0.01, ***p < 0.001

Discussion BCSFB permeability changes, and cognitive decline in dif-
Complement cascade, specially C3/C3aR signaling acti- ferent models of neurological disorders [16-21]. In the
vation, underlies several neurological conditions featur-  present study, we used biochemical, immunohistochemi-
ing CNS inflammation, synapse dysfunction, choroidal cal, and behavioral assays to demonstrate that C3/C3aR
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Fig. 6 Hippocampal-dependent memory dysfunction after orthopedic
surgery is ameliorated by C3aR blockade. Quantification of the percentage
of freezing behavior during the context test on postoperative day 3. Data
analyses were performed using one-way analysis of variance followed by
Tukey post hoc test. **p < 0.01, ***p < 00001

signaling contributes to surgery-induced neuroinflamma-
tion, synapse loss, choroidal BCSFB dysfunction, and
memory deficits in a mouse model of PND-like behavior.

Orthopedic surgery and C3/C3aR signaling in the
hippocampus
Under pathological conditions, excessive hippocampal
C3 deposition has been implicated in the development
of many neurological disorders [13, 14]. In the current
model, we found an early and significant elevation of
hippocampal C3 levels after orthopedic surgery, support-
ing the involvement of complement activation in the
pathophysiology of PND. Notably, we found C3 was pri-
marily expressed in astrocytes, but not in microglia or
neurons. Previous studies have shown that potent in-
ducers of C3 synthesis are IL-1f for astrocytes [30] and
tumor necrosis factor-a (TNF-a) for microglia ex vivo
[31] while the former but not the latter is elevated in the
hippocampus after orthopedic surgery [32, 33]. Thus, astro-
cytes might be major source of C3 in the current model,
which needs further interrogation by future studies.
Microglia are the main cell type that express C3aR in the
CNS [19]. Microglial C3aR has been reported to mediate
neuroinflammation, f-amyloid pathology, and synapse loss
[19, 20]. Here, we showed that C3aR expression in micro-
glia in the hippocampus increased at 1 day after surgery,
suggesting orthopedic surgery activates microglial C3aR.
These findings also implicate the potential crosstalk be-
tween astrocytes and microglia through C3/C3aR signaling.
In fact, activated microglia are potent inducers of reactive
Al astrocytes following secretion of pro-inflammatory
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cytokines like TNF-a, IL-1f3, and Clq [34]. This may pro-
vide additional targets for upstream modulation of comple-
ment signaling and glia activation in PND.

C3aR activation and neuroinflammation

Postoperative neuroinflammation involves elevation of
pro-inflammatory cytokines [32, 33], neutrophil infiltra-
tion [35], and glia activation [23]. In the hippocampus,
pro-inflammatory cytokines are acutely, yet transiently,
elevated after surgery and return to baselines by postop-
erative day 3 [33, 36]. This increase is partially due to
local de novo synthesis, with higher mRNA and protein
levels of IL-1p and IL-6 in the hippocampus [36]. In a
mouse model of Alzheimer’s disease, C3 knockout re-
duced pro-inflammatory cytokine expressions in the brain,
indicating a key role for C3 and/or its downstream signal-
ing in cytokine productions. Here, we found that C3aR
blockade also reduced IL-1B and IL-6 levels already at 6 h
while C3aR activation by both exogenous C3a and surgical
insult prolonged the IL-1f and IL-6 upregulation at 3 days
after orthopedic surgery. Of note, activated microglia are
one of the primary sources of pro-inflammatory cytokines
in the inflamed CNS [37]. Thus, our findings suggest that
C3aR activation contributes to hippocampal IL-1f and
IL-6 elevations after orthopedic surgery, possibly through
microglial activation, although impaired endothelial
function with infiltration of peripheral immune cells is
also observed following surgery [5, 36, 38]. In fact, neu-
roinflammation can be also triggered by peripheral fac-
tors, including immune cells like macrophages and
neutrophil infiltration [39], which is associated with
PND [35]. Microgliosis has long been implicated in
PND, although the underlying mechanisms for micro-
glial activation remain unclear [3]. We found microglia
activation at 1 day after surgery was effectively reduced
by pretreatment with C3aR antagonist. Consistent with
our finding, previous work showed that C3aR blockade
attenuates hippocampal microgliosis in a mouse model
of Alzheimer’s disease [19]. Notably, C3aR is expressed
in brain endothelial cells [40] and C3/C3aR signaling
has been reported to mediate neutrophil infiltration
into the brain following lipopolysaccharide administration
[41]. Under neuroinflammatory conditions, increased ex-
pression of adhesion molecules in activated endothelial
cells can mediate the recruitment of neutrophils into the
brain parenchyma [42]. Here, we showed that C3aR acti-
vation after orthopedic surgery contributes to neutrophil
infiltration in the hippocampus, possibly by modifying ad-
hesion molecule expressions in hippocampal endothelium
and disrupting BCSFB function.

Complement activation and synapse loss
Microglia-mediated synapse loss has been implicated in
the pathophysiology of PND [8]. Upregulation of CD68
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immunoreactivity indicates enhanced phagocytic activity
in microglia and can be related to increased synapse en-
gulfment [16, 28]. In the current study, we showed a lin-
ear relationship between loss of synaptic proteins and
CD68 immunoreactivity, suggesting orthopedic surgery
increases microglial phagocytosis of hippocampal synap-
ses. Furthermore, surgery-induced microglial CD68 up-
regulation and synapse loss were both attenuated by
C3aR blockade. Previous work investigating the role of
complement-microglia axis in synapse elimination dem-
onstrated both C3 and C3aR knockout were protected
by synapse loss after West Nile virus infection, implicating
a pivotal role for C3/C3aR signaling in microglia-mediated
synapse elimination [20]. Although we do not have direct
evidence showing surgery-activated microglia to engulf
synapses in the present study, our findings provide initial
evidence that C3aR activation contributes to synapses loss
after orthopedic surgery.

C3aR signaling and choroidal BCSFB dysfunction
The choroid plexus consists of an organized structure of
epithelial cells regulating blood-CSF interactions and pro-
moting the clearance of noxious molecules [43]. Choroidal
BCSFB dysfunction underlies leukocyte infiltration, re-
duced neurogenesis, and cognitive decline in many neuro-
logical diseases [43]. In the current study, we found
orthopedic surgery significantly induced C3 deposition in
the choroid plexus. Furthermore, BCSFB permeability, as
assessed by IgG deposition, was increased after surgery
and normalized by C3aR blockade. Pharmacological acti-
vation of C3aR in naive mice mimicked surgery-induced
IgG elevation in the choroidal BCSFB, suggesting C3/
C3aR is involved in BCSFB disruption after surgery.
Choroidal BCSFB is a common entry point for leukocyte
infiltration into the brain [43] and may allow systemic fac-
tors to enter the CNS and contribute to neuroinflammation
in PND. Indeed, peripheral neutrophils, macrophages, and
T cells can migrate into the brain through BCSFB as
shown in animal models of stroke, traumatic brain in-
jury, and Alzheimer’s disease [44]. The choroid plexus
also constitutively expresses markers of epithelial cells
such as ICAM-1 and VCAM-1 [45]. Upon activation,
they mediate leukocyte infiltration into the CNS [46].
Here, we found that ICAM-1 and VCAM-1 were mark-
edly increased in the choroid plexus postoperatively,
suggesting surgery activates choroidal epithelium. This
surgery-induced epithelial activation may further contrib-
ute to neutrophil and macrophage infiltration [5, 36].

Memory deficits and C3 signaling modulation

Orthopedic surgery has been increasingly shown to im-
pair memory processes in rodent models [5, 32, 36, 47],
and it commonly affects the recovery of patients after pro-
cedures like hip joint replacement [48]. Here, we show that
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surgery-induced cognitive impairment can be attenuated by
prophylactic C3aR blockade and, conversely, we could ex-
acerbate cognition by exogenous C3a administration. The
effects of C3aR signaling manipulation on cognition may
be due to several factors including changes in neuroinflam-
mation, synapse numbers, and choroidal BCSFB function
as reported in this study. Additional cognitive testing may
provide insights into the role of complement signaling in
PND. Notably, a preliminary clinical trial in cardiac surgical
patients found no significant improvement in global cogni-
tion following administration of a monoclonal antibody di-
rected against the C5 complement component, although
some improvements were observed in the visuo-spatial do-
main testing [49]. Future studies should further evaluate
the components of the complement cascade as well as the
timing for possible interventions.

Some limitations of our study must be pointed out.
First, we could not exclude the possibility that the thera-
peutic effects of C3aRa were partially due to its systemic
effects as macrophages, which also expressed C3aR [50],
are recruited into the hippocampus after surgery to ex-
acerbate neuroinflammation and cognitive dysfunction
[5, 36]. Second, further studies are needed to understand
the neuro-glia crosstalk in this model and the contribu-
tion of astrocytic C3-microglial C3aR signaling on syn-
aptic pruning and postoperative neuroinflammation.
Third, we only studied the relatively short-term effects
of C3/C3aR signaling manipulations on neuroinflamma-
tion and cognition. Although this may inform about the
pathogenesis of acute cognitive deficits, like postopera-
tive delirium, longer-lasting assessments combined with
more clinically relevant models (i.e., aging, diabetes)
should be sought in future studies.

Conclusions

In summary, activation of C3/C3aR signaling after ortho-
pedic surgery contributes to postoperative neuroinflam-
mation, synapse loss, BCSEB dysfunction, and ensuing
cognitive impairment. C3aR blockade may represent a
promising target for PND and future studies should fur-
ther evaluate the role of complement signaling after major

surgery.
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