Skip to main content
. 2018 Jun 4;46(7):2558–2568. doi: 10.1177/0300060518760463

Table 3.

Multiple logistic regression analysis of effects of BPV on 90-day neurological outcome of sICH


SD

CV

Max–Min
Variables Max–Min< 60 60 ≤Max–Min< 80 Max–Min≥ 80 Max–Min< 60 60 ≤Max–Min< 80 Max–Min≥ 80 Max–Min< 60 60≤ Max–Min< 80 Max–Min≥ 80
SBP
 OR (95% CI) 2.31 (1.63–3.64) 4.99 (3.86–6.12) 4.16 (3.05–5.13) 4.37 (2.57–6.72) 1.26 (0.95–2.61) 4.39 (4.01–6.34)
p value 0.0012 0.0008 0.0056 0.0032 0.0001 0.0001

Max–Min< 20

20 ≤Max–Min< 40

Max–Min≥ 40

Max–Min< 20

20 ≤Max–Min< 40

Max–Min≥ 40

Max–Min< 20

20 ≤Max–Min< 40

Max–Min≥ 40
DBP
 OR (95% CI) 1.36 (1.06–1.78) 2.02 (1.86–3.61) 1.95 (1.36–3.97) 3.87 (3.02–5.12) 1.03 (1.09–2.52) 1.41 (1.35–1.99)
p value 0.81 0.009 0.23 0.0002 0.96 0.0005

The variables adjusted for in the multivariate model were hypertension, diabetes, metabolic syndrome, smoking, and stroke history. BPV, blood pressure variability; CI, confidence interval; CV, coefficient of variation; DBP, diastolic blood pressure; Max, maximum; Min, minimum; OR, odds ratio; SBP, systolic blood pressure; SD, standard deviation; sICH, spontaneous intracerebral hemorrhage.