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Abstract

Background: The commercially available 10x Genomics protocol to generate
droplet-based single cell RNA-seq (scRNA-seq) data is enjoying growing
popularity among researchers. Fundamental to the analysis of such scRNA-seq
data is the ability to cluster similar or same cells into non-overlapping groups.
Many competing methods have been proposed for this task, but there is
currently little guidance with regards to which method to use.

Methods: Here we use one gold standard 10x Genomics dataset, generated
from the mixture of three cell lines, as well as multiple silver standard 10x
Genomics datasets generated from peripheral blood mononuclear cells to
examine not only the accuracy but also running time and robustness of a dozen
methods.

Results: We found that Seurat outperformed other methods, although
performance seems to be dependent on many factors, including the complexity
of the studied system. Furthermore, we found that solutions produced by
different methods have little in common with each other.

Conclusions: In light of this we conclude that the choice of clustering tool
crucially determines interpretation of scRNA-seq data generated by 10x
Genomics. Hence practitioners and consumers should remain vigilant about
the outcome of 10x Genomics scRNA-seq analysis.
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[:5757:3 Amendments from Version 1

We thank all three reviewers for reviewing our manuscript and
their constructive comments. In response, we have made the
following modifications to the manuscript:

- Added a discussion which summarize the overall
performance of all methods
- Clarified the design underlying the gold standard dataset

- Included 2 further datasets generated from fresh PBMCs
available in the TENxPBMCsData package

- Clarified Cell Ranger approach to preprocessing
- Elaborated on failed methods
- Elaborated on use of performance metrics

- Summarized use of method and similarity metric by
different clustering tools

- Investigated whether different similarity metrics relate to
performance

- Included boxplots for stability assessment using ARI_truth

- Added a table explaining the various performance
assessments

- Changed the stability assessment with regards to genes to
be more realistic

- Included a list with all parameters in the code repository
In addition, the text has been clarified in several places. Detailed

responses to all points raised by the reviewers are available
below.

Since the inclusion of the TENxPBMCsData package required
an update of the R version, we decided to assess all clustering
methods for a second time using their newer versions.

See referee reports

Introduction

Single-cell RNA-sequencing (scRNA-seq) studies have opened
the way for new data-driven definitions of cell identity and
function. No longer is a cell’s type determined by arbitrary hier-
archies and their respective predefined markers. Instead, a cell’s
transcriptional and epigenomic profile can now be used' to
accomplish this task. This is achieved using computational meth-
ods for scRNA-seq that characterize cells into novel and known
cell types. Characterization consists of two steps: (i) unsupervised
or semi-supervised clustering of same or similar cells into non-
overlapping groups, and (ii) labeling clusters, i.e. determining
the cell type, or related cell types, represented by the cluster.
Here, we focus on the first step of this process.

Research into clustering has produced many algorithms for
the task, including over 90 tools specifically designed for
scRNA-seq’. Due to the relative youth of the field, there are
currently no rules guiding the application of these clustering
algorithms. If tools’ performances have been tested outside
synthetic scenarios, testing seems to be confined to scenarios
with limited biological variability. Furthermore, most tools were
developed and consequently tested only on the Fluidigm Cl1
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protocol, despite considerable differences in throughput
capabilities and sensitivities® in the different sScRNA-seq platforms.
Here we focus solely on clustering performance on medium-sized
scRNA-seq data generated by 10x Genomics as it is currently
the most widely used platform. Commercially available scRNA-
seq platforms, like 10x Genomics’ Chromium, are being widely
adopted due to their ease of use and relatively low cost per
cell’. The 10x Genomics protocol uses a droplet-based system
to isolate single cells. Each droplet contains all the necessary
reagents for cell lysis, barcoding, reverse transcription and
molecular tagging. This is followed by pooled PCR amplifica-
tion and 3’ library preparation, after which standard Illumina
short-read sequencing can be applied’. Unlike other commercially
available scRNA-seq protocols, like Fluidigm CI, 10x Genom-
ics allows for sequencing of thousands of cells albeit at much
shallower read depths per cell, and without allowing the use of
fluorescence markers to establish cell identity. As such the
10x Genomics platform is particularly suited to detailed
characterization of heterogeneous tissues.

Methods

In this study, we performed comprehensive evaluation of a dozen
clustering methods (Table 1). We focused on analysis methods
available in the R language, as this is one of the most commonly
used programming languages for scRNA-seq data analysis. The
exception to this is the 10x Genomics software Cell Ranger.
Since many methods are still being actively developed, we include
assessment of program versions available in October 2017 and
April 2018. Our evaluation comprised four core aspects: (i) accu-
racy of clustering solutions compared to a gold standard (near
absolute truth, limited variability and complexity), (ii) per-
formance of clustering methods using silver standard data (no
absolute truth, realistic variability and complexity), (iii) stability
of clustering solutions, and (iv) miscellaneous characteristics,
such as time and practicality.

Data

Gold standard. Three human lung adenocarcinoma cell lines,
HCCS827, H1975 and H2228, were cultured separately®. The
cell lines were obtained from ATCC and cultured in Roswell
Park Memorial Institute 1640 medium with 10% fetal bovine
serum (FBS, catalog number: 11875-176; Thermo Fisher Gibco)
and 1% penicillin-streptomycin. The cells were grown inde-
pendently at 37°C with 5% carbon dioxide until near 100%
confluence. Before mixing cell lines, cells were dissociated into
single-cell suspensions in FACS buffer (phosphate-buffered
saline (PBS), catalog number: 14190-144; Thermo Fisher Gibco)
with 5% FBS (catalog number: 35-076-CV; Corning), stained
with propidium iodide (catalog number: P21493; Thermo Fisher
FluoroPure) and 120,000 live cells were sorted for each cell
line by FACS (BD FACSAria III flow cytometer, BD FACSDiva
software version 7.0; BD Biology) to acquire an accurate equal
mixture of live cells from the three cell lines. The resulting
mixture was then processed by the Chromium Controller
(10x Genomics) using single Cell 3* Reagent Kit v2 (Chromium
Single Cell 3’ Library & Gel Bead Kit v2, catalog number: 120237,
Chromium Single Cell A Chip Kit, 48 runs, catalog number:
120236; 10x Genomics) (see Table 2). Afterwards the library
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Table 1. Overview of the clustering tools included in this study, and several

characteristics thereof.

Software Year Similarity Metric
ascend 2017  Euclidean distance
Cell Ranger 2016 Euclidean distance
CIDR 2017 Imputed dissimilarity
countClust 2014 none

RacelID 2015 Pearson correlation
RaceID2 2016 Pearson correlation
RCA 2017 Pearson correlation
SC3 2016 Euclidean distance
scran 2016 Euclidean distance
Seurat 2015 Euclidean distance
SIMLR 2016  Multikernel learning
TSCAN 2016 none

Clustering Method Ref
Hierarchical clustering 7
Graph-based clustering

Hierarchical clustering 8
Grade of membership models 9
K-means clustering 10
K-means clustering 11

Supervised hierarchical clustering = 12

Consensus clustering 13
Hierarchical clustering 14
Graph-based clustering 15
Spectral clustering 16
Model-based clustering 17

Table 2. Properties of all benchmarking datasets used in the study.

Benchmark standard Gold Silver

Dataset Dataset 1 Dataset 2/2a Dataset 3/3a Dataset4  Dataset5
Tissue Cell lines PBMCs PBMCs PBMCs PBMCs PBMCs
Source GSE111108 GSE115189  Website*/* Website/- Website” Website®
Instrument Chromium Chromium GemCode Chromium GemCode  Chromium
Number of cells 1,039 3,372 2,691/2,700 4,337/4,340 5,419 8,381
Total genes detected 29,451 24,654 20,693/16,634  25,820/19,773 28,117 21,425
After preprocessing

Number of cells 925 3,205 2,590/2,592 4,292/4,310 5,310 8,352
Mean counts per cell 114,426 3,818 2,605/2432 4,528/4,368 2,057 4,650
Median genes detected g ;o 1,158 877/824 13181237 721 1,209

per cell

*https://support. 10xgenomics.com/single-cell-gene-expression/datasets/1.0.0/pbmc3k

&https://support. 10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.2.0/pbmc4k

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc4k

*https://support. 10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc6k

Shttps://support.10xgenomics.com/single-cell-gene-expression/datasets/2.1.0/pbmc8k

was sequenced using Illumina NextSeq500 and V4 chemistry
(NextSeq 500/550 High Output Kit v2.5, 150 Cycles, catalog
number: 20024907; Iluumina) with 100bp paired end reads.
RTA (version 1.18.66.3; Illumina) was used for base calling.

Silver standard. We consider five fresh human peripheral
blood mononuclear cells (PBMCs) scRNA-seq datasets to be
the silver standard (Table 2). All datasets were generated using
the 10x Genomics droplet system combined with Illumina

sequencing. The Australian Genome Research Facility in part-
nership with CSL generated one dataset using the 10x Genomics
Chromium system (Dataset 1). Four datasets were generated by
10x Genomics and are publicly available (Datasets 2-5). Of
these, Datasets 2 and 4 were generated with an earlier version
of the microfluidics instrument, the 10x Genomics GemCode
Controller (Dataset 2, Dataset 4). Datasets 3 and 5 were gener-
ated with the latest instrument, the 10x Genomics Chromium
Controller (Dataset 3, Dataset 5).
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For Dataset 1, PBMCs were isolated from whole blood
obtained through the Australian Red Cross Blood Service in the
following manner. First, 50ml of blood was diluted using 50ml
of PBS (catalog number: D8537-500ml; Sigma-Aldrich). We then
added 30ml of Ficoll-Paque medium (catalog number: Catalog:
17-1440-03; GE Healthcare). We then centrifuged at room
temperature for 20 minutes at 400 g and carefully removed the
interface layer containing PBMCs, located between the top
plasma layer and middle layer (Heraeus Multifuge 3 S-R Centri-
fuge, Thermo Fisher Scientific). To remove the supernatant, we
further centrifuged at 400 g for 10 minutes at room temperature.
This process was repeated to remove the contaminating Ficoll
medium or platelets. Finally, cells were resuspended in 20ml
of cell culture media with 5% FBS (RPMI-1640 Medium, cata-
log number: R0884-500ml, Sigma-Aldrich) and counted (Nikon
Eclipse TS100 Microscope, Nikon). The resulting mixture was
then processed by the Chromium Controller (10x Genomics)
using single Cell 3’ Reagent Kit v2 (Chromium Single Cell 3’
Library & Gel Bead Kit v2, catalog number: 120237; Chromium
Single Cell A Chip Kit, 48 runs, catalog number: 120236;
10x Genomics). Afterwards the library was sequenced using
HiSeq2500 (Illumina) and V4 chemistry (HiSeq PE Cluster
Kit v4 cBot, catalog number: PE-401-4001; HiSeq SBS Kit
V4 50 cycles, catalog number: FC-401-4002; Illumina) with
101bp paired end reads. RTA (version 1.18.66.3, Illumina) was
used for base calling.

Preprocessing

For Datasets 1-3, we used the 10x Genomics software
version 2.0.0, Cell Ranger to align to the GRCh38 (version 90)
genome annotation, de-duplicate, filter barcodes and quantify
genes. Note that, Cell Ranger filters any barcode that contains
less than 10% of the 99" percentile of total UMI counts per bar-
code, as these are considered to be barcodes associated with empty
droplets. The barcode by design can take one of 737,000 dif-
ferent sequences that comprise a whitelist. This feature allows
the performance of error correction when the observed barcode
does not match any barcode on the whitelist due to sequencing
error. Using the Bioconductor package scater'® (version 1.6.3),
we then removed low quality data from cells with low library
size or low number of expressed gene transcripts. We also
removed cells with a high mitochondrial read proportion as this
can indicate apoptosis, also known as programmed cell death.
Stressed cells undergoing apoptosis have an aberrant transcrip-
tome profile in comparison to a living cell and have previously
been acknowledged to adversely influence transcriptome studies'”.

Preprocessed versions of Datasets 2-5 were available in the
R package TENxPBMCData. However, preprocessing was
conducted with a CellRanger modified version of GRCh38
(version90) genome annotation resulting in slightly different
versions for Dataset 2 and 3, referred to as Dataset 2a and
Dataset 3a.

Criteria for inclusion of clustering tool

We based our selection of method on the online list within wuww .
scRNA-tools.org” in October 2017. We only considered
methods with an R package that had sufficient documentation
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to enable easy installation and execution and had at least one
preprint or publication associated with it. Note that for some of
the R packages the primary focus is not clustering, but the pack-
age authors explicitly describe how their packages can be applied
to achieve clustering of the scRNA-seq data. We also excluded
any methods that required extensive prior information not
provided in the package. We also excluded any methods that
continually failed to run (e.g. Linnorm' because computation
would time out and Monocle” because calculation of dispersion
resulted in errors). This resulted in the evaluation of 12 methods
(see Table 1 and for further details see Supplementary Table 1)
in the first evaluation (R version 3.4.3). During the second
evaluation of the methods (R version 3.5.0) only 11 methods
were still functional. STMLR resulted in R aborting and had
to be excluded.

The aim of this study is to provide guidance for the use of
clustering methods to non-experts. Hence, we used all clustering
methods with their default parameters as this represents the
most common use case. In the case of countClust and
SIMLR parameters included the number of clusters, which we
set to 3, 8 and 20 for the gold standard, silver standard datasets
in evaluation 1 (R version 3.4.3) and silver standard datasets in
evaluation 2 (R version 3.5.0), respectively. Marker genes
were required for the analysis with scran, which we obtained
by performing differential expression analyses on GSE86337
and an in-house dataset of isolated cell types in PBMCs’' for
the gold standard and silver standard datasets, respectively.
Furthermore, we also followed upstream data handling, such as
filtering of genes and normalization, as described in the documen-
tation of the respective clustering method. We concede that it is
possible that more care in the upstream data handling and selec-
tion of parameters could result in different results. However,
confronted with the extremely large number of parameter
choices, we believe that this evaluation suffices to identify
strengths and weaknesses of each method.

Methods for the comparison of clustering solutions

To evaluate the similarity of different clustering solutions, we
rely on two different metrics. We use the adjusted Rand index
(ARI)* and the normalized mutual information (NMI)*, two
metrics routinely applied in the field of clustering, to assess
the similarity of clustering solutions or their similarity to a
known truth. Both metrics can take values from O to 1, with 0
signifying no overlap between two groupings and 1 signifying
complete overlap. These metrics are also applicable in the
absence of known cluster labels. Furthermore, they share the
following advantages: bounded ranges, no assumptions regarding
cluster structures and symmetry.

To evaluate the performance of the different clustering methods
with regards to an underlying truth, we use the ARI as well as a
homogeneity score*’. The homogeneity score takes the value
1 when all of its clusters contain only data points that are mem-
bers of a single known group. Values of this score closer to 0
indicate that clusters contain mixed known groups. Unlike ARI,
this score does not penalize members of a single group being
split into several clusters and thus serves as a complimentary

Page 5 of 29


https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
https://bioconductor.org/packages/release/bioc/html/scater.html
https://bioconductor.org/packages/devel/data/experiment/html/TENxPBMCData.html
https://www.scrna-tools.org/
https://www.scrna-tools.org/

score to the ARI. Furthermore, bounded ranges and no assump-
tions regarding cluster structures are properties of both the ARI
with regards to ground truth and the homogeneity score.

Let X be a finite set of size n. A clustering solution C is a set
C,, ..., C, of non-empty disjoint subsets of X such that their
union equals X. Let C'=C;,..,C, be a second clustering solu-
tion or the supervised labeling solution with the same proper-
ties. The contingency table M = (m,; ) of the pair of sets C, C’
is a k x [ matrix whose i, j-th entry equals the number of
elements in the intersection of clusters C, and Cj’:

m;=|C,AC)[.1<i<k 1< /<L
ARI
k 1
zizlzjzl(rgij)_t3

cch= ,
(%(tl +t2)_13)

ad]

t 1,
7(,1 1)" For ease of notation this

and 37

where 2;[‘2"], ’z=21=w[?‘
is referred to as ARI in the text, dropping the reference to spe-
cific pairs of sets. Furthermore, we also distinguish between
ARI_truth as a comparison of a clustering solution to an under-
lying known or suspected truth and ARI_comp, which refers to
a comparison between two clustering solutions.

NMI
1(C,C")

Ml = ————
JH(CO)H(C)

where H(C ) = I(C, C) is the entropy of C. Note that

P@,))
I(C,C")= P, j)log
ZZ *POP()
m, C| . . .
where P(i,j)=—= and P(i)="", is the mutual information of
n n

Cand C°.

Homogeneity. Now let us assume C’ is the known and correct
grouping of the cells. Then,

’
Homogeneity = M
H(C)
Performance assessment
We evaluated accuracy, robustness and running time for all
methods (for detailed benchmarking plan see Supplementary
Table 2). For some assessments we tested methods both in
R version 3.4.3 and R version 3.5.0, other assessments were
only performed for one R version.

Gold standard. The gold standard dataset consists of a
mixture of three human lung adenocarcinoma cell lines in equal
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proportions. As the library preparation requires mixing these
cells, the origin of each sequenced cell is technically unknown.
By exploiting the genetic differences between the three
different cell lines we were able to establish the cell line of
origin for each cell in the gold standard dataset. To this end we
first called single nucleotide variants (SNVs) in publicly avail-
able bulk RNA-seq of the same cell lines (GSE86337)”. Draw-
ing on these SNVs, we then apply demuxlet™ (version 0.0.1),
which harnesses the natural genetic variation between the cell
lines to determine the most likely identity of each cell. We
observe almost complete concordance between the result from
demuxlet and clustering of cells seen in dimension reduction
visualizations of the data (compare Supplementary Figure 1).
Note that the gold standard dataset was only used during the
first evaluation (R version 3.4.3).

Silver standard. For the silver standard data, we compared
clustering solutions to a cell labeling approach by 10x Genomics’
for PBMCs. This approach finds the cell type in a reference
dataset which most closely resembles the expression in the cell.
The reference dataset contains 11 isolated cell types sequenced
using the 10x Genomics system. While this labeling does
not constitute truth, it has been found to be perform well in
comparison with marker-based classification’. Furthermore, the
proportions of cells assigned to the 11 cell types by the super-
vised labeling approach were consistent with the literature (see
Supplementary Table 3)*72.

Note that the first evaluation (R version 3.4.3) was performed
with Datasets 1-3. The second evaluation (R version 3.5.0)
was performed on Datasets 2-5, as these were available in the
R package TENxPBMCData.

Stability assessment

To test the robustness of different clustering methods we
pursued a sampling strategy in terms cells. We also investigated
the robustness of different methods with regards to different
stringency of gene filtering. Finally, the impact of different
aligners and preprocessing was assessed using all possible
combinations of programs (i.e. some clustering methods did
not run with scPipe output).

Cells. In the first evaluation (R version 3.4.3) we used
Dataset 3 for the robustness evaluation with regards to cells.
We randomly sampled 3,000 cells in Dataset 3 (out of the total
of 4,292 that were available after filtering), generating five (non-
independent) datasets. For every combination of two datasets
(10 combinations in total) we then investigated for each clus-
tering method separately how often cells contained in all five
sampled datasets were assigned to the same cluster using the
ARI_comp. In the second evaluation (R version 3.5.0) we used
Dataset 5. Here, we randomly sampled 4,000 cells (out of the
total of 8,381 that were available after filtering), generating five
(non-independent) datasets. We then repeated the evaluation
procedure described above. We also investigated the variability
of ARI_truth for all methods in both evaluations.

Genes. Impact of gene filtering was only investigated for
methods available in R version 3.5.0 during the second evalu-
ation. We analyzed Dataset 4, as it had the most detected genes,
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with 10%, 20%, 30%, 40% and 50% of the most expressed genes
(total counts). We investigated both the ARI_comp with regards
to the clustering solution produced on a version of the dataset
with no gene filtering, as well as the ARI_truth.

Aligners and preprocessing pipelines. In order to assess the
effect of using different preprocessing pipelines on the data,
we applied the Bioconductor package scPipe” (version 1.0.6)
to the raw data. Like Cell Ranger, scPipe can be used to align,
de-duplicate, filter barcodes and quantify genes. Since scPipe is
modular, we tried it with both the STARY (version 020201) and
Subread®" (version 1.5.2) aligners. In order to ensure compara-
bility we aligned reads to the same GRCh38 genome annota-
tion and repeated quality control with scater. We investigated the
similarity of clustering solutions applied to the differently
preprocessed and aligned versions of the same dataset by
ARI_comp. Note that this was only done for the evaluation
with methods available in R version 3.4.3.

Run time assessment

Each execution of a method on a dataset was performed in a
separate R session. Each task was allocated as many CPU cores
of a 24 core Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz
as specified by the default parameters, but less than 10 cores.
The base::set.seed was set for all steps involving stochasticity
(i.e. dimension reduction and clustering). Timings for each
method include any preprocessing steps.

Influence assessment

We also investigated what properties of each cell’s data
were driving the clustering solutions produced by the differ-
ent methods as well as the inferred cell labels. Properties of a
cell’s data refer to features such as the number of total reads that
included the cell’s barcode, the total number of detected
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genes found for this cell, etc. To this end, we used linear mixed
models where cell data properties were predicted using the
indicators for cluster membership. We predicted cell data
properties and not cluster membership for modeling ease.
The adjusted R*> of these models was used to assess which
properties influenced the clustering solutions. Properties inves-
tigated included: (i) the total number of detected genes, (ii) the
total read count, and (iii) the percentages of reads aligning
respectively to ribosomal proteins, mitochondrial genes and
ribosomal RNA (only Datasets 1-3).

Results

Evaluation of clustering tools

Gold standard dataset. For the gold standard dataset consisting
of three cell types, half of the tested clustering methods
overestimated the true number of different cell types in the
data. Methods with cluster number estimations close to the cor-
rect number of different cell types included methods with prior
information, such as SIMLR, countClust and scran,
as well as ascend, Cell Ranger, RaceID and CIDR
(Figure 1). The clustering solutions produced by these meth-
ods, with the exception of countClust, largely reflected cell
types. This is indicated by ARI_truth >0.8. The remaining
methods overestimated the number of clusters by 2 to 85 clus-
ters, with SC3 and RaceID2 representing the extremes,
both estimating more than 20 clusters (see t-SNE plots in
Supplementary Figure 1 for the impact). As a consequence of
the greater number of estimated clusters, the ARI_truth of the
other clustering methods is lower than 0.8. To see whether these
methods split cell types into several clusters or instead assign
cells types randomly to clusters, we also investigate the
homogeneity of the clustering solutions with respect to the
known labeling. Apart from countClust and RCA, all meth-
ods have extremely high homogeneity, indicating that they split
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2
5
5
 0.50
o
€
(s}
I
0.25 I
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& 3 & & © v X » S > & >
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&oqa \Q.,b(\ e \\:\{g\ & dez} <& B s o %\Q )@0
N o
54 ©

Method

Figure 1. Performance on the gold standard dataset. (a) ARI_truth of each method with regards to the truth versus the number of clusters.
The dashed line indicates the true number of clusters. (b) Homogeneity of clusters of each method, given the truth.
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cell types into more subtypes, rather than randomly creating
more cell types, which is reassuring.

Silver  standard  datasets. 'We labeled the cells in
each of the silver standard datasets as one of 11 different PBMC
cell populations. When using the ARI_truth to compare the
likeness of the clustering solutions and the labels, no method
produced solutions that were uniformly the most similar to the
inferred labels (Figure 2) in either the first or second evaluation.
In both evaluations, ascend tended to estimate smaller number
of clusters and consequently did not agree with the labeling.
Only Seurat, SC3 and Cell Ranger achieved an ARI_truth
above 0.4 for at least two datasets in each of the evaluations. All
methods considerably improved their ARI_truth when we subset
to more confidently labeled cells (see Supplementary Figure 2).
RCA and SC3 were particularly affected, showing much
greater similarity for more confidently labeled cells. We also
calculated the homogeneity of each method in each dataset
with respect to the inferred labeling (compare Figure 3). Gener-
ally, most methods exhibited significantly lower performance on
datasets generated with the older version of the 10x Genomics
technology. Most methods had much lower accuracy than
for the gold standard data, indicating that most clusters repre-
sent mixtures of different inferred cell types. The exceptions are
SC3’s clustering solution of Dataset 3 in the first evaluation
and Seurat’s clustering solution on Datasets 3a and 5 in the
second evaluation, which all achieved an homogeneity score
above 0.7.

Interestingly, similar performance when compared to the
labeling did not imply that cluster solutions were similar
(compare Figure 4). Furthermore, similar algorithms did not
result in more similar solutions. This is probably due to the vast
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differences in filtering and data normalization between the
methods.

Most methods had comparable performance on Datasets 2/2a
and 3/3a in the first and second evaluation. Consistent
performance increases were only noted for countClust
and Seurat (compare Supplementary Figure 3).

Stability. We evaluated the stability of the clustering
methods by examining three different features: (i) filtering of
cells Figure 5), (ii) filtering of genes (Figure 6 and Supplementary
Figure 4), and (iii) use of different aligners (Supplementary
Figure 5). When assessing the stability with regards to input
in both evaluations 1 and 2, RaceID and RaceID2 did not
appear very robust. Due to its reliance on reference profiles
RCA is extremely robust, achieving ARI_comp above 0.9
consistently in both evaluations. In contrast, changes to gene
filtering seemed to result in method specific effects, probably
owing to individual filtering and normalization procedures. The
performance of Seurat improved dramatically with the inclu-
sion of more genes, whereas it deteriorated for RaceID. In
contrast, both Cell Ranger and SC3 exhibited stable
performance when the percentage of highly expressed genes
was varied.

We also investigated how the stability of the clustering method
was affected by the use of different aligners (Supplementary
Figure 5) in evaluation 1 (R version 3.4.3). In particular, we
used Cell Ranger and ScPipe” with Subread’’, or STAR™.
We found that different aligners largely result in the same gene
counts, but with some notable exceptions for processed pseu-
dogenes (see Supplementary Figure 6, Supplementary Figure 7
and Supplementary Figure 8). Not all methods were able

1
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Figure 2. ARI_truth of each method in each dataset, as indicated by different shapes, with regards to the supervised cell labeling
versus the number of clusters. The dashed line indicates the number of cell populations estimated by the supervised cell labeling approach.
(a) First evaluation with methods available in R 3.4.3. (b) Second evaluation with methods available in R 3.5.0.
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Figure 3. Homogeneity of clusters with regards to the inferred cell labeling for each method and each dataset. Different datasets are
indicated by transparency. (a) First evaluation with methods available in R 3.4.3. (b) Second evaluation with methods available in R 3.5.0.

to be used in conjunction with scPipe. This included ascend
and SIMLR, which failed to run, and Cell Ranger, which
requires output from its own preprocessing pipeline. However
we were able to evaluate eight methods. Apart from RaceID2
and RCA, all tested methods appeared robust.

Miscellaneous properties. Running time varied substantially
between different methods. RaceID2 took prohibitively long
and thus does not lend itself to interactive analysis when applied
to 10x Genomics data (Figure 7). The fastest methods was RCA,
with both taking less than 25 seconds on average for the entire
dataset analysis. Considerable faster running times in evaluation 2
(R version 3.5.0) than in evaluation 1 (R version 3.4.3) were
reported for Seurat and SC3 (compare Supplementary
Figure 9). They were the second and third fastest methods in

evaluation 2 respectively, despite offering more intermediate steps
than most methods. Also note that methods differed in the quality
of their documentation. For example, tools like Cell Ranger
and Seurat offer detailed documentation, with many different
use cases as well as tutorials (compare Supplementary
Table 1). Tools, which are not found on Bioconductor, such as
RaceID2, ascend and RCA have more limited documentation.

Factors influencing clustering solutions

The variation in the percentage of reads aligning to ribosomal
protein genes strongly predicted all clustering solutions as
well as the inferred cell labels (see Figure 8, Supplementary
Figure 10, Supplementary Figure 11). Expression of ribosomal
protein genes has been successfully used to discriminate cell
types belonging to different hematopoietic lineages®. Hence,
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feature by the clustering solution is presented.

it may be the case that overall mRNA amount of ribosomal
protein genes can also serve as a discriminator. Furthermore,
differences in abundance of ribosomal protein genes are likely to
drive variation in PBMC scRNA-seq datasets, as they typically
account for a large proportion of reads (around 40% in all three
datasets). In combination with ribosomal protein genes being
less affected by dropout due to their relatively high expression,
it is perhaps unsurprising that clustering solutions of all
methods foremost reflect differences in the amount of
ribosomal protein genes between cells.

Most methods’ solutions were much more driven by the total
number of detected genes and total number of counts than the
inferred solution. TSCAN was particularly affected (R*> = 0.52 in
evaluation 1 and R?> = 0.68 in evaluation 2), but for RaceID2
similar effects were observed. It can be speculated that this
strong influence of total number of features and total number
of counts on their clustering solutions points to a failure to
appropriately normalize the data.

Discussion

We also summarized the performance of each method across
all evaluations (see Figure 9). This summary suggests that
Seurat provides the best clustering solutions for 10x Genomics
scRNA-seq data in terms of running time, robustness and
accuracy. The next best performing methods were RCA, SC3,
Cell Ranger and CIDR. However, it should be noted that
RCA performed particularly poorly on the gold standard dataset.
This highlights that RCA’s performance hinges on the studied
cell types being represented in the reference used during the
supervised clustering approach. These results closely mimic
benchmarking results observed by Dud et al.** on independent
silver standard and simulated datasets across multiple single
cell technologies.

We also investigated whether properties of the clustering
method correlated with their performance. We found that nei-
ther the type of clustering method used nor the similarity metric
used seemed to correlate with the performance. However, our
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Figure 9. Summary of the performance of each method across all evaluations. Note that 1 refers to evaluation 1 (R version 3.4.3) and

2 refers to evaluation 2 (R version 3.5.0).

ability to identify patterns might have been impacted by the
small sample size. A recent paper by Kim er al’, which
systematically studied the effect of different similarity metrics
on performance of scRNA-seq clustering methods, found that
correlation-based similarity metrics outperformed distance-based
metrics.

Conclusion

Most biological conclusions obtained from droplet-based
scRNA-seq data crucially rely on accurate clustering of cells
into homogeneous groups. Indeed, one can argue that it is the
very act of clustering that unlocks the technology’s potential for
discovery. Therefore it is not surprising that according to several
repositories, such as www . omicstools.organd www.scRNA-
tools.org’, many of the tools developed for scRNA-seq
specifically focus on clustering. With so many choices, it is
thus important to evaluate their performance for droplet based
protocols, such as 10x Genomics, specifically.

In this study, we presented our evaluation of a dozen clustering
method on scRNA-seq 10x Genomics data. The results of
our investigations will be useful for method users, as we
provide practical guidelines. Nonetheless, our evaluation has
several limitations:

¢ Inclusion of methods limited to R packages and
methods published before October 2017

e Parameter selection limited to defaults

* No assessment of robustness to noise and parameter
changes

¢ No assessment of ability to discover rare cell populations

¢ Evaluation of more silver standard datasets from systems
other than PBMCs

¢ No evaluation of ability to deal with batch effects or
other more complex designs
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* No evaluation of quality of code and documentation

* No assessment of scalability of methods

While Seurat performed slightly better than the next best
methods, in our opinion, the choice of clustering method should
be informed by the user’s familiarity with statistical concepts
and R programming. Many methods, including Seurat,
require the user to make informed parameter choices and occa-
sionally troubleshoot code. Methods requiring no parameter
choices, like Cell Ranger, may offer a better choice for
non-experts.

In general, we recommend that practitioners and consumers of
results generated from 10x Genomics scRNA-seq data alike
remain vigilant about the outcome of their analysis, and acknowl-
edge the variability and likelihood of undesired influences.
The choice of clustering tool for scRNA-seq data generated by
the 10x Genomics platform crucially determines interpreta-
tion. Hence, we suggest using several clustering methods ideally
with multiple parameter choices on 10x Genomics scRNA-seq
data in order to ensure that biological results are not artifacts of
method or parameter choice. This should help guard against
subjective interpretation of the data and thus increase robustness
of and confidence in results.

Data availability

Repository: Gold Standard Dataset. Single cell profiling of
3 Human Lung Adenocarcinoma cell lines, GSE111108
Repository: Silver Standard Dataset 1. Single cell profiling of
peripheral blood mononuclear cells from healthy human donor,
GSE115189

Repository: Silver Standard Dataset 2. 3k PBMCs from a
Healthy Donor, Version 1.0.0: https://support.10xgenomics.com/
single-cell-gene-expression/datasets/1.0.0/pbmc3k, Version 1.1.0:
https://support.10xgenomics.com/single-cell-gene-expression/
datasets/1.1.0/pbme3k

Repository: Silver Standard Dataset 3. 4k PBMCs from a
Healthy Donor, Version 1.2.0 https://support.10xgenomics.com/
single-cell-gene-expression/datasets/1.2.0/pbmc4k, Version 2.1.0
https://support.10xgenomics.com/single-cell-gene-expression/
datasets/2.1.0/pbmc4k

Repository: Silver Standard Dataset 4. 6k PBMCs from a
Healthy Donor, https://support.10xgenomics.com/single-cell-gene-
expression/datasets/1.1.0/pbmc6k

Repository: Silver Standard Dataset 5. 8k PBMCs from a Healthy
Donor, https://support.10xgenomics.com/single-cell-gene-expres-
sion/datasets/2.1.0/pbmc8k
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We also provide versions in the R Single-CellExperiment
format of all datasets at https:/github.com/bahlolab/cluster
benchmark_data

Software availability
All code is available for download at: https:/github.com/
SaskiaFreytag/cluster_benchmarking_code.

Archived code at time of publication: 10.5281/zenodo.2008645
License: MIT License

Consent

Written informed consent for publication of the participant’s

transcriptomic information was obtained (Australian Red Cross
Blood Service Supply Agreement 1803VIC-07).
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? Stephanie Hicks
Johns Hopkins Bloomberg School of Public Health (JHSPH), Baltimore, MD, USA

Freytag et al. have produced a nice research article on assessing methods for clustering scRNA-seq data
from the 10x Genomics platform. | was excited to read the article to learn about what they recommend
using. | have made some suggestions below for improvements that are mostly related to providing more
intuition and higher-level summaries. This is mostly because as a user of these methods, at the end of the
paper, | still felt a little confused about which method the authors would recommend using. | hope the
authors can update the article with some of the suggestions:

While the authors have provided detailed comparisons (running time, cluster stability, use of different
aligners, different genes, etc), the biggest suggestion would be that the authors provide a higher-level
summary of what the authors would suggest a user use to cluster his/her data. At the end of reading this
paper, | felt a little overwhelmed at the amount of comparisons across various datasets. It's hard to look at
Figs 1-7 and get an overall summary of which method to use. The authors do state in the abstract "We
found that some methods, including Seurat and Cell Ranger, outperform other methods, although
performance seems to be dependent on the complexity of the studied system", but it would be great if the
authors could somehow provide a visual high-level summary of how they came to that conclusion, or
elaborate in the discussion on that.

For the "gold standard" data, what was the percent of each human lung cell lines (HCC827, H1975,
H2228) that were mixed together? Equal proportions? Was the reason you needed to use demuxlet was
because the cell lines were mixed up for sequencing? It would be great if the authors could elaborate on
the experimental design.

Is the "gold standard" data available with the SNVs called for each cell. It would be useful to have this
count matrix and corresponding phenotypic information about each cell in a SingleCellExperiment object
for others to have access to.

It would be great if the authors could include another example dataset with a batch effect in it or
something with a slightly less clean design, given most datasets are not quite this "clean". Also, maybe
different clustering methods would perform better / worse depending on they data contained rare vs
common cell types or included more or less diversity.

There is a TENxPBMCsData package (https://github.com/kasperdanielhansen/TENxPBMCData) that has
been submitted to Bioconductor (similar to the TENxBrainData). This includes all PBMC 10X datasets
currently listed on their site and loads in a SingleCellExperiment object into R. For the Silver Standard
Datasets, you might incorporate this into your workflow.

How did you (or Cell Ranger) deal with empty droplets or swapped barcodes on the 10x platform? This
seems relevant for discovering cell types using some form of clustering.

Supplemental Table 1 could use a caption and a label at the top saying "Supplemental Table 1". | had
many tabs open with different supplemental figures and tables, and was getting confused about which
was which one.

Why did Linnorm and Monocle "continually failed to run"? Did the authors contact the original authors of
Linnorm and Monocle to determine if there was a problem with the actual software or if it was a problem
with the implementation of the software? It would be great if the authors could elaborate.
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| agree with this statement: " We concede that it is possible that more care in the upstream data handling
and selection of parameters could result in different results." This is true for almost all benchmarking
papers. Given the authors are working within the R/Bioconductor framework, it would be great if the
authors could use something like SummarizedBenchmark
(http://bioconductor.org/packages/release/bioc/vignettes/SummarizedBenchmark/inst/doc/SummarizedBe
to keep track of these parameters.

Could the authors elaborate on how they decided which performance metrics to use?

What does this mean: "The impact of different aligners and preprocessing was assessed using all
appropriate combinations of programs"? Could the authors be more specific?

I'm a little concerned about how much the solutions differ between methods and parameter choices. |
understand the point of this paper is to make comparisons between already published methods, but as

the authors are now very familiar with these methods, it would be great if they could provide some more
practical guidance. What would the authors suggest using?

Fig 1 -- Could the authors hypothesize on why Seurat, TSCAN, RCA, SC3, RacelD, RacelD2 are
estimating so many clusters? Also, why does countClust tend to underestimate the number of clusters? It
would be great if the authors could provide some intuition.

Fig 3 -- If I'm understanding, ascend and countClust produce clusters that are very different than the rest?
Thank you to the authors for making their code publicly available!

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Referee Expertise: Statistics, genomics, analysis of single-cell data
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| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Saskia Freytag, Walter and Eliza Hall Institute of Medical Research, Australia

We would like to thank the reviewer for reviewing our manuscript and for their constructive
comments. Below are point-by-point responses to the individual comments.

While the authors have provided detailed comparisons (running time, cluster stability, use of
different aligners, different genes, etc), the biggest suggestion would be that the authors provide a
higher-level summary of what the authors would suggest a user use to cluster his/her data. At the
end of reading this paper, | felt a little overwhelmed at the amount of comparisons across various
datasets. It's hard to look at Figs 1-7 and get an overall summary of which method to use. The
authors do state in the abstract "We found that some methods, including Seurat and Cell Ranger,
outperform other methods, although performance seems to be dependent on the complexity of the
studied system", but it would be great if the authors could somehow provide a visual high-level
summary of how they came to that conclusion, or elaborate in the discussion on that.

We have added a discussion section in which we summarize the results across all evaluations.
This discussion section includes a visual high-level summary (Figure 9).

For the "gold standard" data, what was the percent of each human lung cell lines (HCC827, H1975,
H2228) that were mixed together? Equal proportions? Was the reason you needed to use
demuxlet was because the cell lines were mixed up for sequencing? It would be great if the authors
could elaborate on the experimental design.

We mixed the cell lines in equal proportions. Due to using 10x Genomics technology, the cell lines
were mixed up in the process but could be deconvoluted using demuxlet (ref?). We have
elaborated on this further in the manuscript to clarify the experimental design.

Is the "gold standard" data available with the SNVs called for each cell. It would be useful to have
this count matrix and corresponding phenotypic information about each cell in a
SingleCellExperiment object for others to have access to.

We have made all datasets as SingleCellExperiment objects, including their phenotypic
information, available on Github at https://github.com/bahlolab/cluster_benchmark_data . We have
added information regarding the availability of all processed datasets to the manuscript.

It would be great if the authors could include another example dataset with a batch effect in it or
something with a slightly less clean design, given most datasets are not quite this "clean”. Also,
maybe different clustering methods would perform better / worse depending on they data
contained rare vs common cell types or included more or less diversity.

We agree that investigating the performance of clustering approaches on "messy” scRNA-seq
designs would be very interesting. However, this is beyond the scope of this paper, as it requires
the application of sophisticated batch correction methods. Such methods should generally be
performed by experts rather than beginners, who were the target audience of this paper. We have
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added a discussion to this effect.

Finally, in order to investigate whether methods perform better or worse in more or less diverse
situations, one requires either simulations or mixture experiments. These were beyond the scope
of this paper. However, we now refer the readers of our manuscript to the recent benchmarking
study of scRNA-seq clustering methods by Dud et al, which investigates just such a scenario. For
most methods they did not observe overt differences.

There is a TENxPBMCsData package (https://github.com/kasperdanielhansen/TENxPBMCData)
that has been submitted to Bioconductor (similar to the TENxBrainData). This includes all PBMC
10X datasets currently listed on their site and loads in a SingleCellExperiment object into R. For the
Silver Standard Datasets, you might incorporate this into your workflow.

We decided to incorporate all moderately large fresh PBMC samples included in the TENxPBMCs
into our workflow. This also provided us with an opportunity to update the package versions for the
individual clustering tools for our silver standard benchmarking and stability analyses.

How did you (or Cell Ranger) deal with empty droplets or swapped barcodes on the 10x platform?
This seems relevant for discovering cell types using some form of clustering.

We added the following explanation: “Cell Ranger filters any barcode that contains less than 10%
of the 99th percentile of total UMI counts per barcode, as these are considered to be barcodes
associated with empty droplets. The barcode by design can take one of 737,000 different
sequences that comprise a whitelist. This feature allows the performance of error correction when
the observed barcode does not match any barcode on the whitelist due to sequencing error.”

Supplemental Table 1 could use a caption and a label at the top saying "Supplemental Table 1". |
had many tabs open with different supplemental figures and tables, and was getting confused
about which was which one.

We added a caption on the top of all Supplemental Tables.

Why did Linnorm and Monocle "continually failed to run"? Did the authors contact the original
authors of Linnorm and Monocle to determine if there was a problem with the actual software or if it
was a problem with the implementation of the software? It would be great if the authors could
elaborate.

Linnorm failed because its calculations would time out. Monocle failed because the dispersion
could not be calculated. However, neither of the programs was tried using their newer package
versions corresponding to R version 3.5.0 nor were any of the packages’ authors contacted. We
have included a statement in the manuscript to this regard.

| agree with this statement: " We concede that it is possible that more care in the upstream data
handling and selection of parameters could result in different results." This is true for almost all
benchmarking papers. Given the authors are working within the R/Bioconductor framework, it

would be great if the authors could use something like SummarizedBenchmark
(http://bioconductor.org/packages/release/bioc/vignettes/SummarizedBenchmark/inst/doc/Summarize
to keep track of these parameters.
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We did take a look at the SummarizedBenchmark package, but did not find it suitable for our
needs. However, we understand the need to provide all parameters (including defaults) used in the
individual analyses and thus have added additional files providing this information to the GitHub
respository.

Could the authors elaborate on how they decided which performance metrics to use?

We used performance metrics commonly used in the clustering literature. We also made sure that
the selected metrics were applicable in the absence of known cluster labels. Furthermore, they
share the advantages of bounded ranges and no assumptions regarding cluster structures.
Ad(ditionally they offer complementary insights. We have added this explanation to the manuscript.

What does this mean: "The impact of different aligners and preprocessing was assessed using all
appropriate combinations of programs"? Could the authors be more specific?

We meant to say that we assessed the impact of combinations of different aligners and
preprocessing (i.e. CellRanger or scPipe) for all possible clustering methods. Some clustering
methods, like ascend, failed to run for scPipe generated output and it was too challenging to run
the CellRanger clustering approach on scPipe generated output.

I'm a little concerned about how much the solutions differ between methods and parameter
choices. | understand the point of this paper is to make comparisons between already published
methods, but as the authors are now very familiar with these methods, it would be great if they
could provide some more practical guidance. What would the authors suggest using?

We suggest using several clustering methods ideally with multiple parameter choices in order to
ensure that biological results are not artifacts of method or parameter choice. Unfortunately, we do
not feel in a position to give specific practical advice for the specific use of individual methods, as
optimal parameter choices depend on many different factors including the type of biological system
studied.

Fig 1 -- Could the authors hypothesize on why Seurat, TSCAN, RCA, SC3, RacelD, RacelD2 are
estimating so many clusters? Also, why does countClust tend to underestimate the number of
clusters? It would be great if the authors could provide some intuition.

We believe that many methods tended to overestimate the number of clusters in the gold standard
dataset, because the cell lines may be heterogeneous with regards to other biological factors, such
as cell state. Consequently, in such a scenario methods may split cells of the same population but
in different cell states into multiple clusters.

We have no intuition as to why countClust underestimates the number of clusters.

Fig 3 -- If I'm understanding, ascend and countClust produce clusters that are very different than
the rest?

Yes that is correct.

Competing Interests: No competing interests were disclosed.
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Referee Report 29 August 2018

https://doi.org/10.5256/f1000research.17256.r37231

? Shila Ghazanfar
School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia

Freytag and colleagues provide a comprehensive comparison of clustering methods - specifically
designed for scRNA-Seq data - on data collected using the popular droplet-based 10x Genomics
platform. A total of four datasets, comprising a Gold standard mixture of cell lines as well as three Silver
standard PBMC datasets, were compared in terms of accuracy, stability as well as other metrics like
runtime and ease of use. Freytag et al also perform an analysis to try to determine the factors influencing
the resulting clusterings for the Silver standard datasets.

It is a very challenging task to perform a comprehensive characterization and comparison of clustering
methods on such types of high-dimensional data, due to the sheer number of choices that need to be
made, the difficulty in establishing ideal performance, and the relative lack of ground truth. Freytag et al
do a great job of addressing these challenges and working towards providing an overall recommendation
of clustering methods for non-expert practitioners, while stressing the need for careful interpretation of
such results.

With this in mind, | have some comments/suggestions, as well as a number of minor
comments/suggestions, as follows:

*Comments to authors**

Linnorm and Monocle failed - expand on why? | understand that this is indeed a limitation especially for a
non-expert practitioner, but it would be good to have an understanding towards what the issue might have
been.

Could use a flowchart to summarise the study and various comparisons, as well which methods could no
longer be compared (e.g. methods that could not work within the scPipe framework).

Different upstream data handling was performed for each clustering method. How much of a difference
was observed just due to this preprocessing, as opposed to the actual clustering step? | understand that
each method provides their own preprocessing as *part* of the method, but at least some of these
methods would have been developed with plate-based and/or non-UMI-based scRNA-Seq in mind, so
may not be intended for the context of 10x Genomics data. Again | understand that you're comparing
methods 'out of the box' but it would be insightful to see what differences there are. | suggest a figure like
an upsetR plot for the genes/cells filtered and a correlation heatmap of the expression values themselves.

Could you summarise the distance metrics used in the clustering and if there is a general flavour to the
clustering algorithm? e.g. hierarchical, k-means, density-based etc. How do these relate in terms of
overall accuracy, stability and other metrics?

Stability assessment - mentions that half of the 58,302 genes were randomly selected, but Table 1 says
24,654 total genes detected. There's a big discrepancy between these two so please clarify; if half of the
58,302 genes were selected then a large proportion of genes would have identically zero rows. Also
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Table 1 shows Dataset 3 had the highest number of 'total genes detected’, so how was Dataset 1 the one
with "most number of non-zero genes after filtering"?

Run time section - What do you mean by 'overridden'? And for which aspects of the analysis steps was
this done?

Figure 4 - These boxplots show ARl among multiple clustering solutions, so a method that gives a
consistently bad result is still high (e.g. in this case the RCA method). Suggest an analogous set of
boxplots but with ARI_truth, is there a similar variability observed, as seen in these boxplots?

Gene-wise stability analysis - I'm actually unsure how realistic this particular comparison is. It would be
insightful to assess clusterings depending on different levels of gene filtering stringency (in the initial Cell
Ranger read processing), or stringency on selection of features based on various criteria like highly
variable genes.

Figure 7 - Please clarify how 'total number of features' is a cell-specific quantity. Do you mean total
number of non-zero features? Was this analysis also performed on the Gold Dataset and what overall
similarities could be observed?

Factors influencing clustering solutions - It would be interesting to consider the factors associated with
‘correct’ cluster assignment for cells. Optionally suggest to perform this for either the Gold Dataset or the
Silver datasets and perform a logistic regression with the response being success/failure of a cell to
belong to the cluster most associated with the 'true' cell type group. There is an added subtlety as far as
matching clusters with cell type groups goes, but | think there are a few reasonable ways to perform this
(e.g. assign candidate clusters to the 'true’ groups by taking the higher proportion of cell overlap, and
allow multiple candidate clusters to match to a single true group). Performing this kind of analysis could
shed light on properties of cells that don't tend to cluster correctly, and if there is consistency in this
across multiple disparate datasets.

**Minor comments**
Table 1 - countClust 'version' formatted with verbatim.

Table 1 - | would suggest the 'properties' column could be better presented in a checklist format, with
ticks/crosses for fulfilling various criteria listed.

Section beginning "silver standard" - 10x is capitalised.

Supplementary Figure 1 - legend fallen off panel a), needs a higher resolution or larger points

NMI definition - trailing parenthesis in denominator

typo - assess the effect**

Figure 2a - | found this quite busy, hard to interpret. Suggest to add shading that covers the points for
same method or to facet by dataset. | don't believe the ARI values are particularly comparable between

datasets so | would prefer facetting by dataset.

Figure 3 - rows/columns are ordered differently between panels, what's driving this difference?
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Supplementary Figure 3 was not mentioned in the main text
Supplementary Figure 4 is a two page pdf, with the first page blank

Figure 6 - Figure caption says Dataset 1 but reports 29,151 genes. Do you mean the Gold Dataset and
29,451 genes? If not, please clarify which data and how many genes.

Discussion - One instance of "Seurat" is missing verbatim format

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
Referee Expertise: Statistics, statistical bioinformatics

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Saskia Freytag, Walter and Eliza Hall Institute of Medical Research, Australia

We would like to thank the reviewer for reviewing our manuscript and for their constructive
comments. Below are point-by-point responses to the individual comments.

Linnorm and Monocle failed - expand on why? | understand that this is indeed a limitation
especially for a non-expert practitioner, but it would be good to have an understanding towards
what the issue might have been.

Linnorm failed because its calculations would time out. Monocle failed because the dispersion
could not be calculated. However, neither of the programs was tried using their newer package
versions corresponding to R version 3.5.0. We have included a statement in the manuscript to this
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regard.

Could use a flowchart to summarize the study and various comparisons, as well which methods
could no longer be compared (e.g. methods that could not work within the scPipe framework).

While we were unable to summarize our study design effectively in a flowchart, we have
summarized it in a table (see Supplementary Table 2). We hope that this will clarify the various
assessments performed in this paper.

Different upstream data handling was performed for each clustering method. How much of a
difference was observed just due to this preprocessing, as opposed to the actual clustering step? |
understand that each method provides their own preprocessing as *part* of the method, but at
least some of these methods would have been developed with plate-based and/or non-UMI-based
scRNA-Seq in mind, so may not be intended for the context of 10x Genomics data. Again |
understand that you're comparing methods 'out of the box' but it would be insightful to see what
differences there are. | suggest a figure like an upsetR plot for the genes/cells filtered and a
correlation heatmap of the expression values themselves.

We agree that different data handling influences the performance of each clustering method, which
were indeed designed with different single cell technologies in mind, and that the effect of this
would be interesting to further investigate. However, the “black-box’ nature of some of the
investigated methods means that even recording these differences is challenging. Take Seurat as
an example it is unclear whether to report the number of genes passing the filtering step or the
number of genes that are used in the clustering. Instead, we would like to refer you to the recent
benchmarking study of clustering methods for scRNA-seq by Duo et al, where the authors
investigated the effects of different gene filtering on clustering solutions.

Could you summarise the distance metrics used in the clustering and if there is a general flavour to
the clustering algorithm? e.g. hierarchical, k-means, density-based etc. How do these relate in
terms of overall accuracy, stability and other metrics?

Thank you for the suggestion. We have updated the table summarizing the properties of the
different clustering methods and added a discussion regarding how different flavors of clustering
methods relate to overall performance (see Table 1 and Discussion).

Stability assessment - mentions that half of the 58,302 genes were randomly selected, but Table 1
says 24,654 total genes detected. There's a big discrepancy between these two so please clarify; if
half of the 58,302 genes were selected then a large proportion of genes would have identically zero
rows. Also Table 1 shows Dataset 3 had the highest number of 'total genes detected’, so how was
Dataset 1 the one with "most number of non-zero genes after filtering"?

You are correct. We randomly selected half of 58,302 genes of which many were zero. We have
since replaced this analysis, as per your suggestion, with an analysis that assesses stability when
keeping only the top 10th, 20th, 30th, 40th, and 50th percentile of all genes including the ones not
detected.

With regards to the number of detected genes in dataset 1 and dataset 3, indeed dataset 3 had
more detected genes. Thank your for correcting this.
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Run time section - What do you mean by 'overridden'? And for which aspects of the analysis steps
was this done?

We meant to say that a seed had been set to provide reproducibility of all parts of the analysis that
involve randomness. This has been corrected in the manuscript.

Figure 4 - These boxplots show ARI among multiple clustering solutions, so a method that gives a
consistently bad result is still high (e.g. in this case the RCA method). Suggest an analogous set of
boxplots but with ARI_truth, is there a similar variability observed, as seen in these boxplots?

Thank you for the suggestion, we have included a boxplot with ARI_truth.

Gene-wise stability analysis - I'm actually unsure how realistic this particular comparison is. It
would be insightful to assess clusterings depending on different levels of gene filtering stringency
(in the initial Cell Ranger read processing), or stringency on selection of features based on various
criteria like highly variable genes.

We have replaced the gene-wise stability analysis with an assessment of the performance when
keeping only the top 10th, 20th, 30th, 40th, and 50th percentile of all genes (compare Figure 6).
We think that this is more insightful as it is closer to filtering performed during analysis.

Figure 7 - Please clarify how 'total number of features' is a cell-specific quantity. Do you mean total
number of non-zero features? Was this analysis also performed on the Gold Dataset and what
overall similarities could be observed?

Indeed we do mean the number of non-zero genes and we have replaced this in the figure with
‘number of detected genes”. We also include the same analysis on the gold standard dataset in
the Supplementary (Supplementary Figure 11).

Factors influencing clustering solutions - It would be interesting to consider the factors associated
with ‘correct’ cluster assignment for cells. Optionally suggest to perform this for either the Gold
Dataset or the Silver datasets and perform a logistic regression with the response being
success/failure of a cell to belong to the cluster most associated with the 'true' cell type group.
There is an added subtlety as far as matching clusters with cell type groups goes, but | think there
are a few reasonable ways to perform this (e.g. assign candidate clusters to the 'true' groups by
taking the higher proportion of cell overlap, and allow multiple candidate clusters to match to a
single true group). Performing this kind of analysis could shed light on properties of cells that don't
tend to cluster correctly, and if there is consistency in this across multiple disparate datasets.

We did perform the suggested analysis. However, results from this analysis did not give any
insights beyond the already conducted analysis (see
https://github.com/SaskiaFreytag/cluster_benchmarking_code/tree/master/revision_figure).
Hence, we chose not to include this in the manuscript.

Table 1 - countClust 'version' formatted with verbatim.

Thank you for noticing, this has been corrected.

Table 1 - | would suggest the 'properties' column could be better presented in a checklist format,
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with ticks/crosses for fulfilling various criteria listed.

Table 1 is now Supplementary Table 1. Unfortunately, properties differ too much to adequately
represent these in a checklist.

Section beginning "silver standard" - 10x is capitalised.

Thank you for noticing, this has been corrected.

Supplementary Figure 1 - legend fallen off panel a), needs a higher resolution or larger points
We have increased the resolution.

NMI definition - trailing parenthesis in denominator

Thank you for noticing, this has been corrected.

typo - assess the effect™™

Thank you for noticing, this has been corrected.

Figure 2a - | found this quite busy, hard to interpret. Suggest to add shading that covers the points
for same method or to facet by dataset. | don't believe the ARI values are particularly comparable
between datasets so | would prefer facetting by dataset.

We agree with the reviewer and now use faceting.

Figure 3 - rows/columns are ordered differently between panels, what's driving this difference?

The difference by clustering on the similarity across methods, i.e. more similar methods are closer
to each other. We have included a statement explaining this in the figure description.

Supplementary Figure 3 was not mentioned in the main text

We now mention this Supplementary Figure.

Supplementary Figure 4 is a two page pdf, with the first page blank

We have corrected this error.

Figure 6 - Figure caption says Dataset 1 but reports 29,151 genes. Do you mean the Gold Dataset
and 29,451 genes? If not, please clarify which data and how many genes.

Note that this figure has been replaced. We indeed meant Dataset 1, but with only half the genes.

Discussion - One instance of "Seurat" is missing verbatim format

Thank you for noticing, this has been corrected.

Competing Interests: No competing interests were disclosed.
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Victor Chang Cardiac Research Institute (VCCRI), Darlinghurst, NSW, Australia

This paper presents a well-designed and comprehensive evaluation of widely used clustering algorithms
for medium-sized 10x Genomics scRNA-seq data. Clustering is a highly active area of research in
scRNA-seq data analysis. With so many published clustering tools available, it is often difficult to choose
the most appropriate tool. This paper attempts to address this problem by systematically comparing the
performance of 12 commonly used clustering tools. The evaluation results should serve as an important
guide to bioinformatics practitioners. This paper is a very useful contribution to the field.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.
Referee Expertise: Bioinformatics, single-cell transcriptomics

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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