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Introduction
Researchers have been attempting to “teach” computers to perform complex tasks since the 1970s. With 
the falling cost of  hardware and availability of  open-source software packages, machine learning has 
experienced something of  a renaissance. This has led to the development of  several deep-learning meth-
ods, so named as they use neural networks with a complex, layered architecture. Fully convolutional 
neural networks (fCNNs) have provided state-of-the-art performance for object classification and image 
segmentation (1). Of  306 papers surveyed in a 2017 review on deep learning in medical imaging (2), 
240 were published in the last 2 years. Of  those using 3D data, most used relatively small amounts of  
labeled “ground-truth” data sets for training (n = 10; median, 66;,range, 20–1,088). The Dice similarity 
coefficient (DSC, an index representing similarity between predicted and manually estimated data) in 
these studies was variable (median, 0.84; range, 0.72–0.92) and dependent on the difficulty of  the seg-
mentation task and imaging modality used. The key advantage of  fCNNs is their robust performance 
when dealing with very heterogeneous input data, a particular challenge in ultrasound imaging. Efforts 
to segment the fetal skull in 3D ultrasound (3D-US) have obtained a DSC of  0.84 (3). A deep-learning 
method to segment the placenta in MRI with a training set of  50 cases obtained a DSC of  0.72 (4). How-
ever, for fCNNs to be trained effectively, large data sets are required that reflect the diversity of  organ 
appearance. Obtaining ground-truth data sets is challenging due to the laborious nature of  data labeling, 
which typically is performed by clinicians experienced with the particular imaging modality. Efforts to 
segment the placenta using different fCNNs have been recently presented, but both used small data sets 
(5, 6). A pilot study performed by the authors of  this study using a different, simpler architecture and 

We present a new technique to fully automate the segmentation of an organ from 3D ultrasound 
(3D-US) volumes, using the placenta as the target organ. Image analysis tools to estimate organ 
volume do exist but are too time consuming and operator dependant. Fully automating the 
segmentation process would potentially allow the use of placental volume to screen for increased 
risk of pregnancy complications. The placenta was segmented from 2,393 first trimester 3D-US 
volumes using a semiautomated technique. This was quality controlled by three operators to 
produce the “ground-truth” data set. A fully convolutional neural network (OxNNet) was trained 
using this ground-truth data set to automatically segment the placenta. OxNNet delivered state-
of-the-art automatic segmentation. The effect of training set size on the performance of OxNNet 
demonstrated the need for large data sets. The clinical utility of placental volume was tested 
by looking at predictions of small-for-gestational-age babies at term. The receiver-operating 
characteristics curves demonstrated almost identical results between OxNNet and the ground-
truth). Our results demonstrated good similarity to the ground-truth and almost identical clinical 
results for the prediction of SGA.
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only 300 cases obtained a DSC of  0.73 (5), while another demonstrated a DSC of  
0.64 using 104 cases (6). While promising, what remains unclear is whether the 
DSC value, which is analogous to segmentation performance, is a result of  the 
fCNN used or a reflection of  the size the training set used.

First trimester placental volume (PlVol) has long been known to correlate with 
birth weight at term (7–9), and it was suggested as early as 1981 that PlVol measured 
with B-mode ultrasound could be used to screen for growth restriction (10). Since 
then many studies have demonstrated that a low PlVol between 11 and 13 weeks of  
gestation can predict adverse pregnancy outcomes, including small for gestational 
age (SGA) (11) and preeclampsia (7). As PlVol has also been demonstrated to be 
independent of  other biomarkers for SGA, such as pregnancy-associated plasma 
protein A (PAPP-A) (8, 11) and nuchal translucency (11), a recent systematic review 
concluded that it could be successfully integrated into a future multivariable screen-
ing method for SGA (12) analogous to the “combined test” currently used to screen 
for fetal aneuploidy. As PlVol is measured at the same gestation as this routinely 
offered combined test, no extra ultrasound scans would be required, making it more 
economically appealing to healthcare providers worldwide.

Until now, the only way to estimate PlVol was for an operator to examine the 3D-US 
image, identify the placenta and manually annotate it. Commercial tools, such as Virtu-
al Organ Computer-aided AnaLysis (VOCAL; General Electric Healthcare) and a semi-
automated random walker–derived (RW-derived) method, have been developed (13) to 
facilitate this process, but they remain too time consuming and operator dependent to 
be used as anything other than research tools. For PlVol to become a useful imaging bio-
marker, a reliable, real-time, operator-independent technique for estimation is needed.

This study has three major contributions to the application of  deep learning to 
medical imaging. First, we applied a deep-learning fCNN architecture (OxNNet) to 
a large amount of  quality-controlled ground-truth data to generate a real-time, ful-
ly automated technique for estimating PlVol from 3D-US scans. Second, the rela-

tionship of  segmentation accuracy to size of  the training set was investigated to determine the appropriate 
amount of  training data required to optimize segmentation performance. Finally, the performance of  the 
PlVol estimates generated by the fully automated fCNN method to predict SGA at term was assessed.

Results
The performance of  models trained end to end on training sets with 100, 150, 300, 600, 900, and 1,200 cas-
es is shown in Figure 1. The mean squared error on the validation set decreased monotonically from 0.039 
to 0.030 and increased monotonically from 0.01 to 0.025 on the training set. The median (interquartile 
range) DSC obtained on the validation set throughout training increased monotonically from 0.73 (0.17) to 
0.81 (0.15). Statistical analysis demonstrated a significant improvement in the DSC values with increasing 
training set size (ANOVA, P < 0.0001).

The distributions of  the metrics used to evaluate the performance of  the automated segmentation are 
shown in Figure 2. The median (interquartile range) of  the DSC, relative volume difference (RVD), Haus-
dorff  distance, and mean Hausdorff  distance were 0.84 (0.09), –0.026 (0.23), 14.6 (9.9) mm and 0.37 (0.46) 
mm, respectively. The correlation coefficients for the 4 metrics (Table 1), demonstrated a closer correlation 
between the mean Hausdorff  distance and the DSC compared with the Hausdorff  distance and DSC or the 
absolute value of  the RVD and DSC.

A visual comparison of  the ground-truth (RW) segmentation and the OxNNet segmentation with post-
processing applied, as described above, is shown for a typical case (51st DSC centile in Figure 2) in Figure 3 
and Supplemental Video 1 (supplemental material available online with this article; https://doi.org/10.1172/
jci.insight.120178DS1), showing the rotation and different slicing through the 3D-US volume.

Figure 1. OxNNet Training. Learning curves of mean squared error (MSE) for both training 
(red) and validation (blue) data sets for different numbers of cases in training. Box plot of 
Dice similarity coefficients (DSC) for OxNNet using different numbers of cases in training 
(100–1,200).
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The median (minimum/maximum) values of  PlVol for OxNNet and RW were 59 ml (17 ml/147 ml) 
and 60 ml (12/140), respectively. The PlVol (in ml) and log PlVol multiples of  the median (MoMs) are 
shown in Figure 4. There were 157 cases of  SGA in the cohort.

The receiver-operating characteristics (ROC) curves for the log PlVol (MoMs) calculated by the fully 
automated fCNN (OxNNet) and the RW technique to predict SGA are shown in Figure 5. The AUCs 
for both techniques were almost identical at 0.65 (95% CI, 0.61–0.69) for OxNNet and 0.65 (95% CI, 
0.61–0.70) for the RW ground-truth.

Discussion
In summary, deep learning was used with an exceptionally large ground-truth data set to generate an auto-
matic image analysis tool for segmenting the placenta using 3D-US. To the best of  our knowledge, this 
study uses the largest 3D medical image data set to date for fCNN training. In a number of  data science 
competitions, the best performing models have used similar model architectures with poorer perform-
ing models but employed data augmentation to artificially increase the training set (2), suggesting a link 
between performance and the data set size. The learning curves presented here demonstrate a key finding 
of  the need for large training sets and/or data augmentation when undertaking end-to-end training. The 
mean squared error learning curves of  this model architecture the training and validation curves converged 
toward 0.275 as the training set size is increased. This was reflected in the monotonic increase across 
training samples, where the DSC for 1,200 training cases was 0.81 and the DSC was 0.73 for 100 training 
samples. These results show that by using approximately an order of  magnitude more training data (100 to 
1,200) segmentation performance measured by DSC increased by 0.08.

Figure 2. OxNNet Metrics. Histo-
grams showing the distribution 
of the Dice similarity coefficient 
(DSC), relative volume difference 
(RVD), and Hausdorff distance 
(actual and mean values) for the 
cross validated test sets of 2,393 
cases. The median is shown by 
the red dashed line in each figure.
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Assessing whether OxNNet can appropriately segment the placenta from a 3D-US volume relies on 
the benchmark against which it is judged. We have gauged this in two ways; first, by how similar it is to the 
ground-truth data set and, second, how the estimated PlVols perform in the clinically relevant situation of  
predicting the babies who will be born small. The results are very promising for both. The median DSC of  
OxNNet was 0.84, a considerable improvement upon previously reported values of  0.64 (6) and 0.73 (5), 
demonstrating increased similarity between the PlVols estimated by OxNNet and those generated by the 
ground-truth RW algorithm. Previous work to segment the fetus in 3D-US obtained DSC values of  0.84 
(3), and previous work to segment of  the placenta in MRI images obtained a DSC of  0.71 (4). On assess-
ment of  clinical utility, the OxNNet PlVol estimates perform as well for the prediction of  SGA as those 
generated by the previously validated RW technique and outperform the estimates generated in the original 
analysis of  these data using the proprietorial VOCAL tool (AUC 0.60 [0.55–0.65]) (14).

In terms of similarity to the ground-truth, distributions of the metrics in Figure 2 show that 90% of cases 
had a DSC >0.74 and a Hausdorff distance <28 mm. Discrepancy between the ground-truth segmentation and 
the prediction by OxNNet must be due either to an error with OxNNet or with the ground-truth. The common-
ly regarded gold standard for segmentation of a target organ in a ultrasound volume is manual segmentation. 
This involves painstakingly drawing in the outline of the organ for every slice of the 3D image. This is highly 
operator dependant. The RW technique has been shown to be comparable to manual segmentation in all aspects 
of observer reliability (13) and is less time consuming but still remains dependant on the operator’s ability to 
identify the placenta and its boundaries. The major issue here is that ultrasound images in the first trimester can 
be very difficult to interpret, and, ultimately, the exact position of the interface between the placenta and the 
myometrium is often a difficult call, even in the hands of a highly experienced sonographer. Any system reliant 
on human judgement will be open to increased interobserver and intraobserver variability in these situations, 
and, therefore, despite considerable efforts to quality control the ground-truth data set, it is highly likely that 
errors in the segmentation have occurred. It is anticipated that an automatic system working from a voxel-level 
algorithm will be more reproducible when confronted by such difficult boundaries, but further investigation is 
needed to confirm this. Another limitation of this study is that the data were collected several years ago using an 
ultrasound system that has since been superseded by two newer generations. As B-mode quality has significantly 
improved, it is hoped that the image quality will be increased in future studies facilitating easier segmentation.

Table 1. Pearson’s correlation coefficient and 95% CIs for the metrics

DSC Mean Hausdorff Hausdorff Absolute RVD
DSC 1 –0.81 (–0.82, –0.79) –0.59 (–0.62, –0.57) –0.66 (–0.68, –0.64)
Mean Hausdorff –0.81 (–0.82, –0.79) 1 0.70 (0.68, 0.72) 0.51 (0.49, 0.55)
Hausdorff –0.59 (–0.62, –0.57) 0.70 (0.68, 0.72) 1 0.38 (0.35, 0.42)
Absolute RVD –0.66 (–0.68, –0.64) 0.51 (0.49, 0.55) 0.38 (0.35, 0.42) 1

r, Pearson’s correlation coefficient; DSC, Dice similarity coefficient; RVD, relative volume difference. 

Figure 3. OxNNet compared to groundtruth. Placental segmentations with 2D B-mode plane (left). RW segmentation (center; red). OxNNet predic-
tion (right; blue). The values of the Dice similarity coefficient and Hausdorff distance metrics for this case were 0.838 and 12.6 mm, respectively.
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The RVD metrics demonstrated that OxNNet generally overestimates the volume of  the placenta when 
compared with the ground-truth. Thin mislabeled regions spreading away from the placenta increase the 
Hausdorff  distance without dramatically affecting the DSC values. In some cases, it was evident that OxNNet 
had labeled some of  the myometrium as placental tissue. This may have been a result of  inconsistent identifi-
cation of  the uteroplacental interface by the operator in the ground-truth data set, especially when there was 
difficulty deciding where this interface lay. However, by increasing the context of  the fCNN, either by using a 
larger receptive field, employing a secondary recursive neural network (6), or using conditional random fields 
(15), the mislabeling error may reduce. Further work is required to investigate this.

The PlVol generated by OxNNet demonstrates that for a false positive rate of  10%, the estimated detec-
tion rate for SGA is 23% (16%–31%); this is an improvement on the previously published (14) detection 
rate of  18% (12%–27%) seen with the same data set but using the operator-dependant VOCAL system. This 
alone is not good enough to provide a clinically useful screening tool. However, similar to the improvement 
in the performance of  the nuchal translucency for prediction of  aneuploidies, the combination of  PlVol 
with other independent risk factors increases its utility. In the previous study combining the PlVol with 
maternal characteristics and serum PAPP-A increased the SGA detection rate from 18% to 35% (14). How 
PlVol performs when combined with other serum markers for SGA, such as placental growth factor, or 
ultrasound markers of  vascularity, such as fractional moving blood volume, remains to be seen; however, 
with this fully automated tool, large, multicentre studies recruiting many thousands of  women can now be 

Figure 4. Placental volume and gestational age. Box plots showing the distribution of actual placental volumes (PlVol) for OxNNet, the logarithm of the 
multiples of the medians (MoMs) for OxNNet, actual placental volumes (PlVol) for random walker, and the logarithm of MoMs for random walker versus the 
gestational age (GA). The number of cases for each GA (y axis on the right) is plotted as a column chart in the background.
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undertaken to investigate this. The results should demonstrate the relationship between first trimester PlVol 
and not only birth weight, but much less common adverse pregnancy outcomes, such as preeclampsia, pla-
cental abruption, and stillbirth. If  clinical utility is proved, this real-time, operator-independent technique 
makes it possible to use PlVol on a large scale, potentially as part of  a screening test.

Obtaining large annotated data sets is time consuming and labor intensive. By previous timing of  the 
semiautomated RW method, annotation of  the data set presented represents an estimated 168.1 hours of  
segmentation (mean initialization, 175 s; computation, 43.6 s; n = 2,768) by a single observer. This is usu-
ally a major stumbling block when researchers are trying to generate a ground-truth training set. However, 
using transfer learning, the limitation of  small data sets can circumvent this by using pretrained networks. 
Previous work in this area has shown that fine-tuning of  a pretrained model, based on Google’s Incep-
tion v3 architecture on medical data, achieved near human expert performance (16, 17). Transfer learning 
should allow the large data set and model presented in this work to benefit researchers in other imaging 
modalities. To enable application of  this work to other imaging modalities or different target organs in 
3D-US, our source code is freely available (18) and the pretrained models are available (see supplemental 
material). We hope that this will prove beneficial to this rapidly growing area of  medical image analysis.

Methods
Clinical data set. The 3D-US data were previously used in a study investigating the predictive value of  PlVol, 
measured using the commercial VOCAL tool (General Electric Healthcare), for the detection of  SGA (14). 
A 3D-US volume containing the placenta was recorded for 3,104 unselected singleton pregnancies at 11 
+ 0 to 13 + 6 weeks of  gestation. These cases consisted of  all the women presenting for their combined 
screening for aneuploidies at the Fetal Medicine Centre, London, United Kingdom, who gave their consent 
(19, 20). All the women went on to deliver a chromosomally normal baby at term. The 3D-US volume was 
acquired by transabdominal sonography using a GE Voluson 730 Expert system (GE Medical Systems) 
with a 3D RAB4/8L transducer (21). Of  the original 3104 3D-US volumes, 336 had to be discarded, as 
they had been saved using wavelet compression, which results in significant loss of  the underlying raw 
data, thereby preventing further analysis. Another 375 cases were excluded, as the volume had been col-
lected with the gain set exceptionally high. This gain setting is inappropriate for imaging the placenta, as 
it removes the subtle variation in the echogenicity of  tissues, resulting in a “stark,” black-and-white image 
appearance. It is used in clinical practice, as it makes the nuchal translucency more obvious.

The remaining 2,393 3D-US volumes were annotated using the RW algorithm, which has been described 
previously (13). To perform labeling, 3D B-mode data were converted from the prescan toroidal geometry 
GE Voluson format into a 3D Cartesian volume with isotropic 0.6-mm spacing (5). The segmentation was 
initialized or “seeded” by an operator (SN). These “seedings” were then examined for accuracy by a second 
independent operator (MM) and “reseeded” where mistakes were evident. Cases where there was uncertainty 
regarding the boundaries of  the placenta were examined by a third operator (SLC). The “seedings” were then 
used to calculate the PlVol with the RW method. The final quality-control step for the ground-truth data set 

Figure 5. Sensitivity and specificity. Receiver-operating characteristics (ROC) curves of placen-
tal volume calculated by both the fully automated fCNN (OxNNet) and the random walker (RW) 
technique to predict small for gestational age (SGA: <10th percentile birth weight). AUC and 
95% CIs are shown for each model.
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involved visually inspecting the segmentation of  all the cases seen to be outliers in the distribution of  PlVol 
values. This was performed by three operators (SLC, PL, and GNS). If  an error was seen in the segmentation, 
the seeding was checked and the image was reseeded and resegmented where appropriate. The resulting 2,393 
quality-controlled ground-truth segmentations were then used to train, validate, and test the models.

3D deep-learning segmentation method. A fCNN, OxNNet, was created using the framework TensorFlow (ver-
sion 1.3) using a 3D architecture inspired by a 2D U-net architecture described previously (22). The number of  
convolutional layers and channels used was customized and max pooling was replaced with strided convolutions 
(23) to accommodate the 12-Gb NVIDIA Titan X GPU (24) used for training. Figure 6 shows a full schematic 
of the architecture. Cross entropy was used as the loss function. The parameters — Adam optimizer learning 
rate, β1, β2, and ε — were set as 0.001, 0.9, 0.999, and 1 × 10–8, respectively. To reduce overfitting, dropout with 
probability 0.5 was applied to the final layer. A batch size of 30 was used while training the model.

The effect of training set size on the performance of the model was investigated by keeping the validation 
set fixed and using samples of 100, 150, 300, 600, 900, and 1,200 cases trained for 25,000 iterations throughout.

To evaluate the predictive value of  PlVol segmentation, 2-fold cross-validation was performed, provid-
ing training, validation and test partitions of  1,097, 100, and 1,196 cases respectively. Each volume was 
normalized to have 0 mean intensity and unary variance. Masks of  the ultrasound region were input to 
the fCNN to only consider the field of  view. The fCNN was trained for 8 epochs and took 26 hours to run. 
Validation of  the image segments was performed throughout training and a full validation of  the whole 
image was carried out every epoch. Computation of  a PlVol following training took on average 11 seconds.

Each predicted segmentation was postprocessed to remove disconnected parts of  the segmentation less 
than 40% of  the volume of  the largest region. The segmentation was binary dilated and eroded using a 3D 
kernel of  radius 3 voxels and a hole-filling filter applied. These methods removed small regions separated 
from the largest placental segmented regions, smoothed the boundary of  the placenta, and filled any holes 
that were surrounded by placental tissue.

Figure 6. The architecture of the OxNNet fully convolutional neural network.
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The main evaluation metric was the DSC. RVD, mean Hausdorff  distance, and Hausdorff  distance 
were also computed using the Insight Toolkit (ITK; version 4.10). The volumetric metrics for two segmen-
tations, A and B, were defined as follows in Equations 1 and 2:

				    Equation 1

				    Equation 2

The Hausdorff  distance and mean Hausdorff  distance were the maximum and mean of  the minimum 
distances, respectively, averaged between the surfaces of  A and B and B and A.

Statistics. The difference in the DSC values obtained with different data set sizes was assessed using 
1-way ANOVA. The birth weight percentile for each neonate was taken from a reference range of  birth 
weight for gestation at delivery in the population from which the data were acquired (10). A neonate 
was considered SGA if  it was <10th percentile birth weight. The distribution of  PlVol was made 
Gaussian by logarithmic transformation (normality was assessed using histograms and probability 
plots), and differences in gestational age were corrected for by expressing log PlVol as MoMs of  the 
AGA group. The distribution of  log PlVol expressed as MoMs were calculated for all cases for RW and 
OxNNet PlVols. Univariate logistic regression was used to build a predictive model to detect SGA by 
both techniques (RW and OxNNet). The performance of  these models in detecting SGA was assessed 
by generating ROC curves. Ultrasound volumes were visualized using 3D Slicer (version 4.6) (25), R 
(version 3.3.2) (26) was used for data analysis, pROC (version 1.8) (27) was used for the ROC analysis, 
and ggplot2 (version 2.2) (28) was used for producing the graphs. Statistical significance was assumed 
at a P value of  less than 0.05.

Study approval. The study had full local ethical approval from King’s College Hospital Ethics Commit-
tee, London, England (ID: 02-03-033), and all participants provided written consent.
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