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Abstract

Aging is the strongest risk factor for Alzheimer’s disease (AD), although the underlying 

mechanisms remain unclear. The chromatin state, in particular through the mark H4K16ac, has 

been implicated in aging and thus may play a pivotal role in age-associated neurodegeneration. 

Here we compare the genome-wide enrichment of H4K16ac in the lateral temporal lobe of AD 

individuals against both younger and elderly cognitively normal controls. We found that while 

normal aging leads to H4K16ac enrichment, AD entails dramatic losses of H4K16ac in the 

proximity of genes linked to aging and AD. Our analysis highlights the presence of three classes 

of AD-related changes with distinctive functional roles. Furthermore, we discovered an association 

between the genomic locations of significant H4K16ac changes with genetic variants identified in 

prior AD genome-wide association studies and with expression quantitative trait loci. Our results 

establish the basis for an epigenetic link between aging and AD.

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly. 

Accumulation of intercellular β-amyloid plaques and intracellular neurofibrillary tangles are 

two hallmarks of AD that may drive neuronal death and the corresponding dramatic loss of 

Reprints and permissions information is available at www.nature.com/reprints.
*Correspondence and requests for materials should be addressed to F.B.J. or N.M.B. or S.L.B. johnsonb@pennmedicine.upenn.edu; 
nbonini@sas.upenn.edu; bergers@pennmedicine.upenn.edu. 

Author contributions
R.N., F.B.J., N.M.B. and S.L.B. conceived the project. R.N. performed most of the experiments. R.N., G.D., A.B., Y.L., A.A.W., F.T., 
J.B.T., S.J.G., B.D.G., C.T., J.Q.T., L.S.W., F.B.J., N.M.B. and S.L.B. contributed to methodology and resources. R.N., G.D. and Y.L. 
analyzed ChIP-seq and RNA-seq data. G.D. performed the AD SNP enrichment analysis. A.A.W. performed the AD eQTL enrichment 
analysis. F.T. performed IF staining and analysis. R.N., F.B.J., N.M.B. and S.L.B. wrote the manuscript. All authors reviewed the 
manuscript and discussed the work.

Competing interests
The authors declare no competing interests.

Supplementary information is available for this paper at https://doi.org/10.1038/s41593-018-0101-9.

HHS Public Access
Author manuscript
Nat Neurosci. Author manuscript; available in PMC 2018 September 05.

Published in final edited form as:
Nat Neurosci. 2018 April ; 21(4): 497–505. doi:10.1038/s41593-018-0101-9.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://doi.org/10.1038/s41593-018-0101-9


cognitive abilities. A complex interaction between genetic and environmental factors likely 

contributes to the molecular processes that drive AD. Although genetic variation in specific 

genes increases the risk of AD1, age is the strongest known risk factor2. How molecular 

processes of aging predispose to AD, or become deregulated in AD, remains to be 

understood.

Studies in model organisms such as yeast and Caenorhabditis elegans show that epigenetic 

factors that integrate environmental stimuli into structural changes in the chromatin are 

major determinants of whole organism aging, mean lifespan and health span3. In mouse, 

epigenetic marks such as histone acetylation are associated with learning and age-related 

memory decline4,5. Histone acetylation is reduced at memory genes in mouse models for 

AD, and treatments with nonselective histone deacetylase inhibitors aiming to reverse loss of 

acetylation have shown promising results in restoring synaptic and cognitive plasticity in 

mouse models of AD5.

The power and unbiased nature of genome-wide studies can reveal mechanisms previously 

unknown to contribute to disease pathogenesis. However, their application to the study of 

human brain has been limited by the availability of postmortem tissue and the stability of 

nuclear molecules. Nonetheless, several studies have examined the stability of the 

chromatin, including histone H3 acetylation and methylation, under different conditions of 

postmortem interval, tissue pH, tissue storage (frozen versus fixed) and chromatin 

preparation (native versus cross-linked); these studies have shown that histone modifications 

can be stably detected within a wide range of postmortem interval (5–72 h) and pH (6.0–

6.8)6–10. The past ~5 years have seen several interrogations of the human brain epigenome 

through chromatin immunoprecipitation sequencing (ChIP-seq) studies showing chromatin 

changes, for example H3K4me3, during development and substance abuse11,12.

Among the histone acetylation marks, H4K16ac is a key modification because it regulates 

chromatin compaction, gene expression, stress responses and DNA damage repair13–16. In 

model organisms, modulators of H4K16ac play a role in whole organism aging and cellular 

senescence17,18. Also, senescent cells display H4K16ac enrichment over promoter regions of 

expressed genes19. Therefore, we considered that epigenetic regulation by H4K16ac may be 

involved in aging of the human brain and perhaps in the progression of AD. Here we 

compare the genome-wide profiles of H4K16ac in the brain tissue of AD patients with age-

matched and younger individuals without dementia, to elucidate key mechanisms that drive 

AD. In particular, our findings indicate that the normal course of age-related, and perhaps 

protective, changes in brain H4K16ac is perturbed in AD. Our findings provide insights into 

epigenetic alterations that underlie AD pathology and provide a foundation for investigating 

pharmacological treatments targeting chromatin modifiers that could ameliorate the 

progression of AD.

Results

H4K16ac is redistributed during normal aging and AD

To begin to elucidate the role of H4K16ac in aging and AD, we profiled the genome-wide 

enrichment of H4K16ac by ChIP-seq in the lateral temporal lobe (one of the regions affected 
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early in AD) of postmortem brain tissue from either cognitively normal elder individuals 

(hereafter ‘Old’, n = 10, mean age = 68), AD subjects (n = 12, mean age = 68), or younger 

cognitively normal subjects (hereafter ‘Young’, n = 9, mean age = 52; Fig. 1a and 

Supplementary Table 1). All selected AD subjects had high levels of AD neuropathological 

changes while the Young and Old controls had no change or minimal changes. In addition, 

to reduce the number of explanatory variables to a minimum, we controlled for gender 

(mainly male subjects), comorbidity (excluding cases with other neuropathologies) and 

neuronal loss (excluding cases with severe loss; see Methods section “Brain tissue samples” 

for full description).

We performed H4K16ac ChIP-seq in individual brain samples, marking each sequencing 

library with a unique bar code, and subsequently pooled sequencing reads across samples of 

the same group to improve coverage and sensitivity of peak detection (Supplementary Table 

2). H4K16ac peaks were detected in each group using the MACS2 peak calling method 

(false discovery rate < 1 × 10−3), and differential peak enrichment was statistically assessed 

by considering the enrichment of the corresponding region in individual ChIP-seq samples.

Because neuronal loss could potentially account for some of the H4K16ac changes observed 

in AD, we additionally quantified neuron percentages in the samples through NeuN (a 

neuron-specific mark) immunostaining of temporal lobe sections (Supplementary Fig. 1a). 

This showed a mild but not significant trend in neuronal reduction in both normal aging and 

AD (Supplementary Fig. 1b; P = 0.087, one-way ANOVA). Despite this mild trend, we 

additionally assessed whether there was any correlation between neuronal proportions across 

all samples and H4K16ac peaks detected in the combined data analysis. To improve 

accuracy, neuron proportions for this analysis were measured by flow cytometry in NeuN-

stained nuclei isolated from the same brain region used for ChIP-seq (see Methods section 

“Neuron quantification by flow cytometry” and Supplementary Table 1). Using principal 

component analysis of the top 10,000 peaks by standard deviation (s.d.) we measured the 

Spearman’s correlation coefficient for the first two principal components, PC1 and PC2, 

which revealed no correlation between neuronal fractions and H4K16ac (Spearman’s ρ PC1 

= −0.006; Spearman’s ρ PC2 = 0.076), highlighting a lack of contribution from any neuronal 

losses. Furthermore, to reduce the risk of this potentially confounding variable to a 

minimum, we masked from the analysis the top 50,000 peaks associated with neuronal 

proportion (10% of such peaks) by Spearman’s ρ (see Methods section “ChIP-seq analysis” 

for details) and then processed the data downstream.

Using this method to call peaks in each study group, we detected ~239,000 peaks in Young, 

~349,000 peaks in Old and ~323,000 peaks in AD subjects (Fig. 1b), indicating an overall 

increase in the total number of H4K16ac peaks with age but not with AD. Representative 

peaks at the SLC35D1 gene, which codes for a nucleotide sugar transporter, provided a clear 

example of the higher accumulation around the transcription start site (TSS) in Old 

compared to Young or AD subjects (Fig. 1c); comparison of the individual samples showed 

similar accumulations of higher levels in Old compared to Young or AD subjects 

(Supplementary Fig. 2). The lower number of peaks in AD subjects compared to Old could 

reflect either loss or lack of complete H4K16ac upregulation with age in AD subjects. 

However, when comparing peaks across the three study groups, both gains and losses were 
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evident, despite the overall higher number of peaks in Old (Fig. 1d). Comparison of the 

constitutive peaks (~114,000 peaks common to Young, Old and AD subjects) with the 

remaining peaks in each group showed that at least 50% of peaks in each group were 

redistributed, thus suggesting that Young, Old and AD subjects had different chromatin 

states (Fig. 1d).

Examination of the enrichment profile of the constitutive H4K16ac peaks showed a bimodal 

distribution around the TSS (Fig. 1e) compared to TSSs where no H4K16ac peaks were 

called (Fig. 1f). Similarly to the trend observed in overall peak number (Fig. 1b), the 

constitutive TSS peaks showed a higher level of H4K16ac in Old compared to similar levels 

in Young and AD subjects (Fig. 1e). In addition to the constitutive TSS peaks, we detected 

smaller intergenic peaks corresponding to regulatory elements, such as enhancers (Fig. 1g). 

Thus, both the total number of H4K16ac peaks and the level of acetylation at the TSS of 

constitutive peaks were higher in Old compared to Young or AD subjects.

We examined the genome-wide locations of H4K16ac accumulation in our data relative to 

previous observations. Because no H4K16ac ChIP-seq data are available in the brain, we 

compared our results with genome-wide H4K16ac data from mouse20 (Supplementary Fig. 

3a) and human cells15 (Supplementary Fig. 3b). The comparisons revealed a high degree of 

similarity in peak location and genomic compartmentalization, with 68% of human 

fibroblast peaks (IMR90 cells) being detected in the constitutive brain peaks, confirming the 

reliability of our data. Furthermore, tissue enrichment analysis showed brain as the top 

enriched category (Supplementary Fig. 3c) in the constitutive peaks, providing further 

confidence to proceed with the analysis.

To gain insight into the dynamics of the H4K16ac changes, we quantified the number of 

peaks that were gained or lost in each pairwise situation. Comparison of Young and Old 

revealed a substantially higher number of peaks gained in Old (~196,000) than lost in Old 

(~86,000; Fig. 2a). Comparison between Old and AD subjects indicated a higher number of 

peaks lost in AD subjects (~166,000) than gained in AD subjects (~140,000; Fig. 2b). 

Comparison of Young to AD subjects showed a higher number of peaks gained with AD 

than lost (~177,000 peaks gained versus ~92,000 peaks lost; Fig. 2c). This analysis 

underscored that the redistribution in H4K16ac peaks was remarkably different during 

normal aging compared to AD: during aging, H4K16ac trends toward gains, whereas in AD 

it trends toward losses.

Given the overall increase in H4K16ac peaks with aging, we wanted to gain further insight 

into its dynamics. We therefore expanded our analysis to quantitative measurements of 

H4K16ac enrichment. This would also ensure that the observed trends were statistically 

significant, since patient heterogeneity could in principle contribute to variable peaks. For 

each peak detected in Young, Old or AD subjects, we measured the corresponding area 

under the curve in each patient and compared it across the three study groups. When 

comparing Young to Old, we detected ~20,000 peaks with significant increase in H4K16ac 

and ~7,000 peaks with significant loss in H4K16ac with age (P < 0.05, Welch’s t test; Fig. 

2d,g). In contrast, comparison of Old to AD subjects showed a reversed pattern in H4K16ac 

gains and losses, with ~25,000 peaks with H4K16ac losses and ~9,000 peaks with H4K16ac 
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gains in AD subjects (P < 0.05, Welch’s t test; Fig. 2e,h). The number of H4K16ac peaks 

gained or lost in the Young-to-AD subjects comparison was similar, with ~11,000 peaks lost 

versus ~13,000 peaks gained in AD subjects (P < 0.05, Welch’s t test; Fig. 2f,i).

To assess the genomic locations of peaks with significant H4K16ac changes relative to 

TSSs, we first divided these peaks into quintiles based on distance to the nearest TSS and 

measured the change in enrichment. In the Young-to-Old comparison (Fig. 2j), we found 

that the variance in H4K16ac fold-change was smaller in the quintile closest to the TSS, 

despite the fact that the median values were invariant across all quintiles. This was not the 

case for the comparison of Old to AD subjects or for Young to AD subjects (Fig. 2k,l), 

where there were no differences in variance across the quintiles. The smaller variance near 

the TSS for gains in Old (Fig. 2j) may point to a functional impact of H4K16ac on the 

proximal gene, which is possibly lost in AD. Thus, changes in H4K16ac associated with 

age, and with disease in AD subjects, appear to preferentially affect the regulatory regions 

most likely to impact gene expression.

To specifically address whether H4K16ac changes affect nearby gene expression, we 

performed RNA-seq in individual patient samples from the same brain region 

(Supplementary Table 3). Overall, we found a positive linear correlation between the 

enrichment at the closest H4K16ac peak (relative to the TSS) and gene expression in Young, 

Old and AD subjects (Supplementary Fig. 4a–c). In addition, a mild correlation was evident 

between the magnitude of differential gene expression and differential enrichment of the 

nearest H4K16ac peak for the significantly (P < 0.05, false discovery rate < 0.05) 

differentially expressed genes (P values of correlation ranging between 1 × 10−1 and 4 × 

10−29; Supplementary Fig. 4d–f). We also observed agreement between published 

microarray datasets of gene expression from hippocampal sections21 and our RNA-seq 

dataset (Supplementary Fig. 5). Taken together, these data indicate that the changes in 

H4K16ac associated with age and AD correlated with nearby gene expression.

H4K16ac changes during normal aging are negatively correlated with changes in AD

We next asked whether the direction of H4K16ac changes is correlated with the processes of 

aging and disease, as how these processes interrelate is an important and outstanding 

question in the neurodegeneration field. To do this, we made pairwise comparisons of 

H4K16ac fold-changes for all peaks among the three processes: Young-to-Old representing 

aging; Old-to-AD subjects representing disease; and Young-to-AD subjects representing 

components of aging mixed with components of disease. The relationships between these 

three sets of H4K16ac changes are represented in three-dimensional space, where each 

comparison is represented as a projection onto two-dimensional space (Fig. 3a). This 

analysis revealed a positive linear correlation between aging and aging mixed with disease 

(Young-to-Old versus Young-to-AD subjects; Fig. 3b), thus demonstrating a component of 

normal aging in AD. Also, a positive linear correlation was detected between aging mixed 

with disease and disease alone (Young-to-AD subjects versus Old-to-AD subjects; Fig. 3c), 

suggesting a strong, age-independent disease component. In clear contrast, a remarkable and 

robust negative linear correlation was observed between aging and disease (Young-to-Old 

versus Old-to-AD subjects; Fig. 3d). This latter finding indicates that aspects of normal 
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aging fail to occur or are dysregulated in AD and is consistent with the observations above 

of an opposite trend in H4K16ac enrichments during normal aging and AD, with 

predominant gains in normal aging and predominant losses in AD (Fig. 2). Indeed, as 

discussed below, the negative correlation between aging and disease clarifies an important 

question in the field, that is, whether AD is a simple exacerbation of aging or rather a 

dysregulation of aging. Our results reveal the more complex latter scenario, where there is a 

clear component of dysregulation of aging in the pathology of AD.

Three classes of H4K16ac changes detected in AD: age-regulated, age-dysregulated and 
disease-specific

Having established an overall pattern of H4K16ac changes in aging and disease, we focused 

on identification of functional pathways. For gene ontology (GO) analysis, we considered all 

significant H4K16ac changes (P < 0.05, Welch’s t test; Fig. 4a,d) up to 10 kb from TSSs to 

include regulatory elements such as enhancers. Categories of genes showing significantly 

increased or decreased H4K16ac (P < 0.05, Welch’s t test) during aging included terms 

related to response to oxygen levels, insulin stimulus, aging, inflammatory response, defense 

response, phosphorylation, actin filaments, etc., the majority of which have been shown to 

be altered in the aging brain and in cellular senescence (Supplementary Fig. 6a,b and 

Supplementary Table 4)22–25. Gene sets with H4K16ac gains or losses in AD included GO 

terms related to myeloid differentiation, cell death, and Wnt and Ras signal transduction 

(Supplementary Fig. 6c,d). These functional categories are in agreement with published 

reports of aging and AD-specific pathways. For example, immunity is known to be involved 

in the pathology of AD26, and the Wnt signaling pathway, required for synaptic transmission 

and plasticity, is downregulated by β-amyloid in AD27,28. Also, the Aβ42 oligomers have 

been shown to enhance the Ras–ERK signaling pathways, inducing tau 

hyperphosphorylation in AD29,30.

To gain additional insight into the regulation of these genes, we analyzed the DNA sequence 

under the H4K16ac peaks near the TSSs of these genes (within 1 kb) for occurrence of 

transcription factor binding sites using SeqPos in the Cistrome site31. Binding sites for 

REST, a repressor of neuronal genes in nonbrain tissue and neuroprotective to aging 

brain32,33, were enriched in genes that had loss of H4K16ac with age (Fig. 4c). On the other 

hand, CEBPA (a regulator of proliferation and myeloid differentiation) sites were more 

enriched in genes with upregulated H4K16ac in AD (Fig. 4e). CEBPA expression has been 

correlated to clinical scores of incipient AD and is induced in microglia activated upon 

hypoxic stress34,35. It is therefore striking that our analyses revealed regulatory elements 

under H4K16ac peaks that control both stress response (REST) and immunity (CEBPA). 

Most notably, we detected enrichment for binding sites for the transcription factor HIC1, 

involved in p53-mediated DNA-damage response36 and Wnt signaling pathways37, at both 

classes of genes exhibiting increased H4K16ac with aging and decreased H4K16ac in AD 

(Fig. 4b,f).

Given the finding of HIC1-motif enrichment in genes with H4K16ac peaks displaying 

opposing gains in aging as compared to losses with AD, we wanted to determine more 

globally whether the H4K16ac changes were occurring at the same peak locations. A three-
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way comparison of H4K16ac enrichments comparing Young, Old and AD subjects 

simultaneously was performed to determine how the changes in AD were related to aging. 

This analysis allowed detection of three major classes of H4K16ac changes that we defined 

in relation to AD: age-regulated, age-dysregulated and disease-specific (Fig. 5a–f). Because 

the patients were collected and sequenced in two replication sets, their similarities were 

assessed by clustering over the three classes of peaks, revealing that they separated primarily 

by study group (Supplementary Fig. 7). Age-regulated changes were defined as changes that 

are established with normal aging (either gains or losses) and are maintained in AD (Fig. 

5a,d). Age-dysregulated changes are those that are established with age (either gains or 

losses) and either fail to be established or fail to be maintained in AD (Fig. 5b,e). Disease-

specific changes are gains or losses specific to AD and not seen with normal aging (Fig. 

5c,f). In each of the three classes, the number of significant gains and losses (P < 0.05, one-

way ANOVA) were similarly represented, except for the age-dysregulated class, in which 

the losses in AD were more pronounced (Fig. 5b,e; ~2,000 gains versus ~10,000 losses); this 

was anticipated given the trends seen in Fig. 2.

A functional analysis of genes showing H4K16ac changes in each of the three major classes 

was then performed. We considered all H4K16ac peaks within 10 kb from the TSS of the 

closest gene to include regulatory elements (Fig. 5g–l and Supplementary Table 5). 

Compared to the two-way analysis, the three-way analysis traced the enrichment changes of 

a peak across aging and disease, thereby specifying the exact functional pathway 

dysregulated. For example, categories related to neuron and synapses were found in both 

age-regulated and disease-specific classes of changes, pointing at neuroplasticity as a known 

feature of brain aging and early stages of dementia38,39. On the other hand, categories 

related to immunity and stress response, such as to hypoxia, were found in age-regulated and 

age-dysregulated classes of changes. It is known that immunity and stress responses are 

induced in aging22,23 and that excessive glia activation is a feature of AD40; this points at 

age-dysregulation of immunity as a possible mechanism in AD. Regulation of cell death was 

present as a top category in age-dysregulated changes, reminiscent of REST-mediated stress 

response in aging, and in AD33. Notably, a category related to chromatin modifications was 

present among the age-regulated GO terms, pointing at a role for epigenetics in aging and 

disease. This opens the question of how genetic risk factors for AD relate to epigenetic 

changes; this relationship has only recently been explored in the context of human tissue 

aging and age-related diseases.

Regions of H4K16ac changes are enriched for AD single-nucleotide polymorphisms and 
regulatory expression quantitative trait loci

Genome-wide association studies (GWAS) of single nucleotide polymorphisms (SNPs) 

identify genetic variants associated with specific traits and complex diseases. Often these 

disease-associated SNPs are located outside of gene bodies and may coincide with genetic 

elements that are subject to epigenetic regulation, such as enhancers and promoters affecting 

gene expression. Since H4K16ac is known to mark both active enhancers and promoters20, 

we considered that there may be a significant overlap between the H4K16ac changes that we 

defined in AD and the AD SNPs that have emerged from GWAS. To examine this, we used a 

curated list of disease-associated SNPs (GWAS association P < 1 × 10−5) passing two stages 
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of clinical testing in the International Genomics of Alzheimer’s Project meta-analysis study, 

which includes four different GWAS datasets41, and applied INRICH, an interval-based 

GWAS analysis tool, to infer their overlap with regions of H4K16ac changes.

SNPs that are in linkage disequilibrium were merged into one region (using PLINK, a 

whole-genome association analysis tool), ultimately yielding a total of 260 merged SNP 

regions. We then examined these merged SNP regions for overlap with H4K16ac alterations 

in each of the three major classes described above (Fig. 6a–c). Notably, we found significant 

associations between the AD SNPs and both the age-regulated and disease-specific changes 

(P=0.0018 and P=0.0118, respectively; Fig. 6d), but not the age-dysregulated changes 

(P=0.4071; Fig. 6d; see Fig. 6e for an example genomic view of disease-specific associated 

SNPs).

To further assess the extent to which H4K16ac peaks mark regulatory elements involved in 

AD, we overlapped them with expression quantitative trait loci (eQTLs) detected in AD 

studies. eQTLs are genetic variants that have a substantial effect on the expression level of 

an mRNA transcript and therefore tend to mark transcriptional regulatory elements42. 

Because no meta-analysis has yet been performed with AD eQTLs, we chose one dataset43 

with relatively high numbers of eQTLs and used a bootstrapping method followed by a 

Bonferroni correction to test the significance of association with each of the three classes of 

H4K16ac changes.

We used a dataset of eQTLs in temporal cortex from subjects with AD (n = 202) and 

subjects with non-AD pathologies (n = 197; other brain pathologies)43. This dataset contains 

significant eQTLs from the AD cases (85,359 SNP transcript pairs), eQTLs from the non-

AD cases (68,337 SNP transcript pairs) and eQTLs from the combined set of AD and non-

AD cases (156,134 SNP transcript pairs), and it was highly powered due to sample size as 

well as an imputation scheme (HapMap2) that allowed more SNPs to be analyzed for eQTL 

activity. In performing this analysis we found significant enrichments for all combinations of 

peak and eQTL conditions (Bonferroni P values ranging from 9 × 10−4 to 3.96 × 10−1; Fig. 

6f and Supplementary Table 6), suggesting that all classes of H4K16ac peaks harbor 

regulatory elements involved in AD pathology as well as other neurodegenerative processes. 

Additional analysis on the same dataset using GREGOR44, a tool for assessing the 

enrichment between genetic variants and genomic elements, confirmed an association 

between AD eQTLs and the three classes of H4K16ac peaks (P values ranging from 4.69 × 

10−50 to 4.46 × 10−14; Fig. 6g).

To assess the specificity of these enrichment results to AD eQTLs and not to any other 

unrelated but highly powered eQTLs, we examined the enrichment in our peaks with eQTL 

datasets from the GTEx (Genotype–Tissue Expression) project45 that include eQTL analyses 

of normal human tissues (including blood and nonbrain). Across the 44 datasets tested, we 

found significant enrichment in two datasets only: ‘Cells_Transformed_fibroblasts’ for age-

regulated and age-dysregulated peaks and ‘Thyroid’ for age-dysregulated only (P = 0.0132); 

we found none for disease-specific peaks (Supplementary Fig. 8). Because only 2 of 44 

datasets showed significant enrichments in our classes of peaks, and none for the disease-
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specific peaks, as expected for normal tissue eQTLs, these findings accentuate the 

significance of the association with AD eQTLs selectively.

Overall, these data underscore the significant association of AD GWAS SNPs and AD 

eQTLs with H4K16ac changes defined by the analysis of Young, Old and AD subject brains. 

This relationship emphasizes the biological relevance of chromatin changes to the genetic 

factors impacting AD.

Discussion

We report the first genome-wide profile of a histone modification in human brains affected 

with AD. Given that age is the number one risk factor for late-onset AD, we carefully 

designed our study to take into account epigenetic changes associated with aging by 

including brain samples from younger and older adults, to reveal how aging affects the 

epigenetic profile of AD. To our knowledge, such a comparison has not been performed 

previously, as most studies have used mouse models, which do not naturally develop AD 

with age and are artificially induced to develop plaques and tangles and which therefore can 

only be used to study the downstream consequences of these pathologies. In contrast, our 

study traces the natural changes in AD with age in human brain tissue.

We studied the acetylation of H4K16ac due to its ties with aging in model organisms and 

senescence in mammalian cell culture1719,46–48. Comparison of Young and Old samples 

revealed a redistribution of H4K16ac with age characterized by a greater number of gains 

than losses (Fig. 2a,d). This finding is in general agreement with studies in yeast and 

mammalian senescent cells, where H4K16ac is observed to increase at specific genomic loci 

with age17–19. In contrast to normal aging, comparison of Old and AD subjects revealed a 

redistribution of H4K16ac in AD subjects, with more losses than gains (Fig. 2b,e). These 

data are congruent with analyses of histone acetylation in mouse models of AD, in which 

loss of acetylation (H2BK5ac, H3K14ac, H4K5ac and H4K12ac) occurs at neuronal 

genes49. Additionally, a targeted proteomics approach in human brains showed reduction of 

H3K18ac and H3K23ac in AD50. Our comparison of H4K16ac changes between aging and 

AD revealed that changes during aging and changes during disease are negatively correlated.

These analyses point to a model wherein Alzheimer’s disease is not simply an advanced 

state of normal aging, but rather dysregulated aging that may induce disease-specific 

chromatin structural changes and/or transcription programs. Indeed, the three-way 

comparison of Young, Old and AD subjects revealed a specific class of H4K16ac changes in 

AD subjects that were opposite to normal age-established changes (Fig. 5). Hence this 

suggests that certain normal aging changes could guard against AD and thus, when 

dysregulated, predispose to AD (Fig. 5b). A similar trend of age-dysregulation in AD has 

been observed for the transcriptional co-repressor REST, which increases with age but 

decreases in AD and plays a neuroprotective role in aging through modulation of H3K9ac33. 

However, no genome-wide assessment of REST has been performed in the human brain. For 

H4K16ac changes that are age-regulated and maintained in AD, these changes could 

predispose, be protective or simply correlate with aging with no effect on disease. In 

addition to the two classes of H4K16ac changes that are age-dependent, we observed a third 
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class of changes that we defined as disease-specific. These changes (for example, affecting 

neuronal function) could be secondary to the age-associated changes, but contribute to the 

pathogenesis of the disease.

Finally, by assessing the relationship between AD eQTLs with the H4K16ac changes, we 

found significant association with the three classes of H4K16ac changes, indicating that our 

analysis can pinpoint regulatory mechanisms discovered through SNP analysis of AD 

patients. Further, the significant overlap of the AD GWAS SNPs with age-regulated and 

disease-specific peaks, but not age- dysregulated peaks, highlights the discovery of 

additional regulatory mechanisms through our epigenomic analysis and supports the 

inclusion of epigenomic GWAS in understanding complex diseases.

Our study proposes a mechanism to explain how age is a risk factor for AD: a particular 

histone modification, whose accumulation is strongly associated with aging, is dysregulated 

in AD. These findings and their replication in future work using patients from other 

biobanks open the possibility that prevention of age-dysregulation at the chromatin level 

may be a therapeutic avenue for AD.

Methods

Methods, including statements of data availability and any associated accession codes and 

references, are available at https://doi.org/10.1038/s41593-018-0101-9.

Brain tissue samples

Postmortem human brain samples from lateral temporal lobe (Brodmann area 21 or 20) were 

obtained from the Center for Neurodegenerative Disease Research (CNDR) brain bank at the 

University of Pennsylvania (Penn). Informed consent for autopsy was obtained for all 

patients and the study was approved by the Penn Institutional Review Board (Penn IRB). 

The CNDR autopsy brain bank protocols were exempted from full human research (research 

on tissue derived from an autopsy is not considered human research; see https://

humansubjects.nih.gov/human-specimens-cell-lines-data). A detailed description of the 

brain bank standard operating procedures has been reviewed elsewhere51. A 

neuropathological diagnosis of AD was established based on the presence of plaques and 

tangles using the CERAD scores and Braak stages, respectively52,53. The CERAD plaque 

score assesses the burden of neuritic plaques (0 and A–C in order of increasing frequency) in 

the neocortex. Braak staging is based on the progression of neurofibrillary tangles from the 

transentorhinal cortex (stage I) to widespread neocortical pathology including primary visual 

cortex (stage VI). The tissue samples were selected based on the presence of plaques and 

neurofibrillary tangles using the CERAD scores and Braak stages, respectively52,53. All 

selected AD cases had high levels of AD neuropathological changes (Braak = V/VI and 

CERAD = C; Supplementary Table 1). The Young and Old control brains had no or minimal 

neuritic amyloid plaques (CERAD = 0) or neurofibrillary tangles (CERAD = 0). None of the 

AD cases had other coincident neurodegenerative diseases. Control subjects had no deposits 

consistent with a frontotemporal lobar degeneration– or Lewy body–related pathology 

diagnosis. AD cases with severe neuronal loss were not included. The neuronal loss was 

originally assessed through semiquantitative measurements by hematoxylin and eosin 
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(H&E) staining by board-certified neuropathologists of the CNDR. The H&E scoring for 

neuronal loss ranges from 0–3, where 0 signifies no neuronal loss and 3 is severe neuronal 

loss. Only cases with neuronal loss of 1 or 2 (mild or moderate) were included.

Quantification of neuron abundance by IF

Neural percentages in the samples were also quantified by NeuN immunofluorescence 

staining, as described54. Briefly, formalin-fixed, paraffin-embedded (FFPE) temporal lobe 

tissue sections (5 μm thick) were placed on glass slides at the CNDR (University of 

Pennsylvania). Slides were deparaffinized and hydrated by serial washes in xylene followed 

by 100%, 90% and 70% ethanol and ddH2O. Antigen retrieval was performed by keeping 

the slides in 10 mM citrate, pH 6.0, for 25 min in a chamber exposed to boiling water. Slides 

were blocked with subsequent incubations in 1 mg/mL sodium borohydride and 5% goat 

serum in PBS with 0.25% Triton X-100/0.1% BSA. Slides were incubated with 1:500 

dilution of anti-NeuN antibody (MAB377, EMD Millipore55) overnight at 4 °C, washed 

with PBS/0.1% BSA/0.1% Triton X-100, and incubated 90 min at room temperature (20–25 

°C) with Oregon Green 488 anti-mouse antibody (Life Technologies). Slides were 

subsequently incubated with 1 ug/mL DAPI for 10 min to visualize nuclei, and 

autofluorescence was blocked by incubation with 0.1% Sudan Black in 70% ethanol. Cover 

glasses were mounted on the slides using Fluoromount-G mounting medium (Southern 

Biotech) and slides were visualized on an Olympus BX60 Widefield Fluorescence 

Microscope using a Hamamatsu ORCA-ER CCD camera running Slidebook 5.5 software. 

For each slide we visualized 20–30 fields from random locations in each of the gray and 

white matter. NeuN+ cells were quantified by marking manually in a blinded fashion in 

Microsoft Paint and subsequently counting on Cell Profiler (Broad Institute). Total cell 

numbers were obtained by automated counting of DAPI+ objects in Cell Profiler. Tissue 

from each of the Young (n = 9), Old (n = 10) and AD groups (n = 12), also used for 

H4K16ac ChIP-seq, were stained and quantified. One slide was analyzed per patient. For the 

combined white and gray matter percentages, the counts per field of white and gray matter 

were averaged by weighting the gray matter count by 2.7 and white matter count by 1, to 

reflect the composition of the human temporal cortex56.

ChIP-seq

ChIP-seq was performed as previously described17 with modifications for brain preparation. 

Briefly, 200 mg brain tissue from each patient was minced on ice and nuclei were prepared 

by dounce homogenization in nuclei isolation buffer (50 mM Tris-HCl at pH 7.5, 25 mM 

KCl, 5 mM MgCl2, 0.25 M sucrose) with freshly added protease inhibitors and sodium 

butyrate, followed by ultracentrifugation on a 1.8-M sucrose cushion. Nuclei pellet was 

resuspended in 2 mL PBS and cross-linked in 1% formaldehyde for 10 min at room 

temperature. Crosslinking reactions were quenched with addition of glycine to 125 mM for 

5 min followed by two washes in cold PBS. We then lysed 2 × 106 nuclei in nuclei lysis 

buffer (10 mM Tris-HCl at pH 8.0, 100 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% 

sodium-deoxycholate, 0.5% N-lauroylsarcosine) with freshly added protease inhibitors and 

sodium butyrate, and chromatin was sheared using a Covaris S220 sonicator to ~250 bp. 

Equal aliquots of sonicated chromatin were used per immunoprecipitation reaction with 5 

μL H4K16ac antibody (Millipore, #07-32915,19) preconjugated to Protein G Dynabeads 
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(Life Technologies), and 10% of the amount was saved as input. ChIP reactions were 

incubated overnight at 4 °C with rotation and washed three times in wash buffer. 

Immunoprecipitated DNA was eluted from the washed beads, purified and used to construct 

sequencing libraries with 5 ng of DNA (ChIP or input) using the NEBNext Ultra DNA 

library prep kit for Illumina (New England Biolabs, NEB). Libraries were multiplexed using 

NEBNext Multiplex Oligos for Illumina (dual index primers) and single-ended sequenced 

(75 bp) on the NextSeq 500 platform (Illumina) in accordance with the manufacturer’s 

protocol.

ChIP-seq analysis

ChIP-seq tags generated with the NextSeq 500 platform were de-multiplexed with the 

bcl2fastq utility and aligned to the human reference genome (assembly NCBI37/hg19) using 

Bowtie v1.1.157, allowing up to two mismatches per sequencing tag (parameters: −m 1–

best). Peaks were detected using MACS258 (tag size = 75 bp; FDR <1 × 10−3) from pooled 

H4K16ac tags of patients belonging to the same study group (Young, Old or AD subjects) 

along with treatment-matched input tags as control. Within each pooled sample, peaks 

whose termini were within 150 bp were merged into one peak. The MTL method59 was then 

used to compare H4K16ac enrichment across the three study groups. A ‘region of analysis 

across the three study groups’ was defined by having at least one peak called in Young, Old 

or AD subjects. Furthermore, if peaks across the three study groups had their centers within 

200 bp distance, the entire area including these peaks (from peak to peak termini) was 

considered one unique region of analysis. H4K16ac enrichment was then calculated by 

summing the H4K16ac tags overlapping this unique region of analysis and adjusting them 

by a per-patient reads-per-million (RPM) scalar coefficient and by the size of the region of 

analysis (in kb). Adjusted tag counts were averaged over all patients belonging to the same 

study group and input subtracted, resulting in an H4K16ac enrichment value, or AUC (area 

under the curve). AUC values were then transformed in log2(AUC + 1) for downstream 

analysis. Statistical significance of differential H4K16ac enrichments was assessed by 

performing a Welch’s t test for two-way comparisons (i.e., Young vs. Old) or one-way 

ANOVA for three-way comparisons (Young vs. Old vs. AD subjects). Scatter plots, 

histograms and box plots of ChIP-seq data were visualized using Python package Seaborn 

(v0.7.1.) or Matplotlib (v 1.5.1.).

Removal of confounding factors

A principal component analysis (PCA) was performed in R using the top 10,000 H4K16ac 

peaks by s.d. across all patients. The first two principal components (PC1 and PC2) were 

examined for rank correlation with neuronal proportions measured by flow cytometry, 

yielding Spearman’s ρ PC1 = 0.006; Spearman’s ρ PC2 = 0.076. The PCA was also 

performed on the ~30,000 differentially enriched H4K16ac peaks in the three classes (age-

regulated, age-dysregulated, disease-specific) combined, and rank correlation was re-

assessed, yielding Spearman’s ρ PC1 = −0.261 and Spearman’s ρ PC2 = 0.375. To correct 

for the mild correlation between neuronal proportion and the two PCs, all peaks were 

assessed for correlation between H4K16ac enrichment and neuronal proportion on a per-

patient basis, and the top 50,000 peaks by correlation were masked. PCA was then redone on 

the differentially enriched H4K16ac peaks, and the correlation analysis yielded Spearman’s 
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ρ PC1 = 0.008 and Spearman’s ρ PC2 = 0.133. Peak masking was done using custom python 

scripts while R was used for the PCA and correlation analyses.

Neuron quantification by flow cytometry

To remove the contribution of neuronal loss to the H4K16ac peak analysis, we measured 

neuronal proportions by NeuN staining and flow cytometry analysis in nuclei isolated from 

the same tissue regions used for ChIP-seq (values reported in Supplementary Table 1). 

Isolated nuclei (prepared as in the ChIP-seq protocol) were stained with an anti-NeuN 

antibody (Millipore # MAB 377×60; Alexa Fluor-488 conjugated) in presence of 5% goat 

serum and incubated in the dark for 1 h. NeuN-stained nuclei were analyzed on a BD LSR II 

flow cytometer (at the UPenn FACS core facility) with gates set according to nuclei size, 

NeuN intensity and an IgG control.

Genome browser tracks

Generation and visualization of ChIP-seq tracks was conducted as follows. BED files of 

each aligned dataset were converted into coverage maps using the BEDtools utility 

genomeCoverageBed. Resulting bedGraphs were scaled by using the RPM (reads per 

million) coefficient, a measure of the millions of tags sequenced per sample to correct for 

sequencing efficiency biases, and subsequently normalized by subtracting an input coverage 

map. Finally, BigWig files were generated and uploaded on the UCSC (University of 

California Santa Cruz) Genome Browser.

Meta-profiles

Meta-profiles of H4K16ac enrichment at TSSs were generated by taking a 2-kb window 

around the TSS of all RefSeq genes associated with an H4K16ac peak in Young, Old and 

AD subjects (or genes associated with no H4K16ac peak) and tabulating the average of 

H4K16ac enrichment (AUC) in 20-bp intervals. A meta-profile of intergenic peaks was 

generated similarly by selecting a 2-kb window around the center of H4K16ac peaks 

detected in each of Young, Old and AD subjects and not overlapping with gene bodies or 1-

kb upstream promoter regions.

Functional analysis

Downstream functional analysis of genes targeted by H4K16ac changes was performed by 

associating each RefSeq transcript to its nearest peak. Gene ontology (GO) enrichment 

analysis of genes associated with significant H4K16ac changes was performed using DAVID 

(David Bioinformatics Resources v6.7)61. For representation of GO terms in the text figures, 

terms with shared genes were collapsed to a single representative term. Also, if one GO term 

was a subset of another GO term, that GO term was dropped in favor of the other (see 

Supplementary Tables 4 and 5 for a complete list of biological process (BP), cellular 

component (CC), molecular function (MF) and tissue at FDR < 10%; FDR <10% represents 

the threshold of significance in DAVID). DNA motif analysis was performed using SeqPos 

in the Cistrome site31 with default parameters and DNA motif scanning window = 1.2 kb.
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RNA-seq

Total RNA was isolated from 20 mg frozen brain tissue using the RNAeasy Mini kit 

(Qiagen) coupled to an RNase-free DNase step (Qiagen). Ribosomal RNA was removed 

using the rRNA Depletion kit (NEB) and the resulting RNA was used to construct 

sequencing libraries using the NEB Next Ultra Directional RNA library Prep Kit for 

Illumina (NEB). Libraries were multiplexed using NEBNext Multiplex Oligos for Illumina 

(dual index primers) and single-ended sequenced (75 bp) on the NextSeq 500 platform 

(Illumina) in accordance with the manufacturer’s protocol.

RNA-seq tags reads were aligned to the human reference genome (assembly GRCh37.75/

hg19) using STAR with default parameters. Alignments with a mapping score <10 were 

discarded using SAMtools and alignments mapped to mitochondria and chrUn (contigs that 

cannot be confidently placed on a specific chromosome) were removed using BEDtools. 

FeatureCounts was used to generate a matrix of mapped fragments per RefSeq annotated 

gene, from which genes annotated by RefSeq as rRNA were discarded. Analysis for 

differential gene expression was performed using the DESeq2 R package with FDR <0.05. 

For comparison of our RNA-seq data to published microarray data in the hippocampus of 

AD and control patients21, the published data were downloaded from NCBI’s GEO 

(accession GSE28146) and requantified using Limma. Transcripts were then organized into 

deciles by overall expression in control or AD subjects and compared to old or AD subjects 

RNA-seq respectively.

Association between AD SNPs and H4K16ac changes

To curate a list of Alzheimer’s-associated SNPs, a set of 2,371 SNPs passing stage I and 

stage II GWAS meta-analysis with P < 1 × 10−5 were downloaded from the International 

Genomics of Alzheimer’s Project (IGAP)41. INRICH62 was used to infer the relationship 

between H4K16ac changes and PLINK-joined63 AD GWAS SNP intervals (linkage due to 

HapMap release 23) using standard parameters. The set of all H4K16ac changed peaks, 

filtered for a one-way ANOVA P < 0.05, was the background for the experiment.

IGAP is a large two-stage study based on GWAS of individuals of European ancestry. In 

stage 1, IGAP used genotyped and imputed data on 7,055,881 single nucleotide 

polymorphisms (SNPs) to meta-analyze four previously-published GWAS datasets 

consisting of 17,008 Alzheimer’s disease cases and 37,154 controls (The European 

Alzheimer’s Disease Initiative, EADI; the Alzheimer Disease Genetics Consortium, ADGC; 

the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, 

CHARGE; the Genetic and Environmental Risk in AD Consortium, GERAD). In stage 2, 

11,632 SNPs were genotyped and tested for association in an independent set of 8,572 

Alzheimer’s disease cases and 11,312 controls. Finally, a meta-analysis was performed 

combining results from stages 1 and 2.

eQTL data processing and sampling analysis

For the Zou et al. data43, eQTL data tables were downloaded from the National Institute on 

Aging Genetics of Alzheimer’s Disease Data Storage Site at the University of Pennsylvania, 

funded by the National Institute on Aging (grant U24-AG041689-01). The original paper 
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analyzed samples from cerebellum in addition to temporal cortex, but we only used the 

temporal cortex data due to the cortical origin of our H4K16ac measurements and because 

regulatory elements are variable across brain regions64. Custom awk-based bash scripts, 

available by request, were used to convert eQTL data tables into BED format using the 

liftOver utility from the UCSC Genome Browser65 to convert annotations from the hg18 

genome build to hg19 to overlap with the H4K16ac peaks. Twelve AD, 10 non-AD, and 18 

combined-condition eQTLs were unmapped by liftOver. We then used the intersect tool 

from the bedtools suite66 to overlap our H4K16ac peaks with the eQTL bed files.

For the sampling analysis, the shuffle tool from bedtools was used to generate 10,000 sets of 

matched control intervals, where unmappable regions, as defined by the DAC blacklisted 

regions, were downloaded from the UCSC genome browser and ENCODE67. For each 

dataset, custom scripts, also available by request, were used to summarize the overlap counts 

in easily parse files that were then read into the R programming language, which was used to 

perform the empirical enrichment analyses.

GREGOR enrichment analysis

The GREGOR tool requires LD-pruned sets of variants as input, so the sets of significant 

eQTLs for each target gene in each condition were pruned using PLINK v1.90b2i 64-bit68 

with a cutoff of R2 ≥ 0.7 to define the LD blocks and using data from the phase 3 version 1 

(11 May, 2011) European population of the 1,000 Genomes Project69. Then, using the 

matching reference data, the GREGOR tool was run on each set of pruned eQTLs against 

the H4K16ac BED format files, using an R2 threshold of 0.7, an LD window size of 

1,000,000 bp and a minimum of 500 control SNPs for each index eQTL.

Statistical analysis

Statistical analysis of ChIP-seq data was performed with Welch’s t test (two-sided) or one-

way ANOVA (one-sided). Differences were considered statistically significant for P < 0.05 

(uncorrected for multiple hypothesis testing). Statistical analysis of RNA-seq data was 

performed using DESeq (Wald test) and differences were considered statistically significant 

for P < 0.05 (FDR < 0.05, controlled by Benjamini–Hochberg). For all figures derived by the 

analysis of ChIP-seq data (all figures except Supplementary Fig. 4), sample sizes were 

Young = 9; Old = 10; AD = 12 (independent brain samples). For RNA-seq analysis 

(Supplementary Fig. 4), the sample size was Young = 8; Old = 10; AD = 12 (independent 

brain samples, from the same subjects as those used for the ChIP-seq experiments). No 

statistical methods were used to predetermine sample sizes, but our sample sizes are similar 

to those reported in previous studies in the field70,71. Data distribution was assumed to be 

normal, but this was not formally tested. Data collection and analysis were not performed 

blind to the conditions of the experiments, except for quantitative analysis of IF staining. 

Samples were not subject to randomization, but were assigned to experimental group based 

on their age and disease status (Young, Old and AD subjects). No data points were excluded 

from the analyses.
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Life Sciences Reporting Summary

Further information on experimental design is available in the Life Sciences Reporting 

Summary.

Data availability

The data that support the findings of this study are available through the NCBI Gene 

Expression Omnibus (GEO) repository under accession number GSE84618.

Code availability

Code and pipeline for the analyses performed in this study are available at http://

165.123.66.72/btracks/sulfa/Nativio.11112017.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. H4K16ac is redistributed during normal aging and AD
a, Coronal section of human brain indicating the lateral temporal lobe (red circle) used in 

this study. b, Bar plot of total number of H4K16ac peaks. c, UCSC Genome browser track 

view of H4K16ac peak at the SLC35D1 gene promoter in Young, Old and AD subjects. d, 

Venn diagram of peak overlap among Young, Old and AD subjects. e–g, Meta-profile of 

H4K16ac enrichment at (e) TSSs (±1 kb) of constitutive peaks; (f) TSS (±1 kb) where no 

peak is detected; and (g) intergenic constitutive peaks (peaks shared across Young, Old and 

AD subjects).
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Fig. 2. H4K16ac is predominantly gained in aging and lost in AD
a–c, Venn diagram of H4K16ac peak overlap between Young and Old (a), Old and AD 

subjects (b), and Young and AD subjects (c). d–f, Scatter plot of H4K16ac fold-change vs. 

peak size average (measured as area under the curve or AUC) for (d) Young vs. Old, (e) Old 

vs. AD subjects and (f) Young vs. AD subjects comparisons for peaks called in Young, Old 

or AD subjects. Blue dots represent peaks with significant changes (P < 0.05, Welch’s t test, 

two-sided) in H4K16ac enrichment. For graphical representation, 1,000 randomly chosen 

points are shown in each panel. g–i, Histogram of H4K16ac fold-change vs. frequency for 

peaks with significant (P < 0.05, Welch’s t test, two-sided) H4K16ac changes (blue dots in 

d–f) for (g) Young vs. Old, (h) Old vs. AD subjects and (i) Young vs. AD subjects 

comparisons. j–l, Boxplot of H4K16ac fold-changed based on the distance of the peak from 

the closest TSS ordered into quintiles for peaks with significant (P < 0.05, Welch’s t test, 

two-sided) H4K16ac changes (blue dots in d–f) for (j) Young to Old, (k) Old to AD subjects 

and (l) Young to AD subjects comparisons. Boxplots show minimum, first quartile, median 

(center line), third quartile and maximum.

Nativio et al. Page 21

Nat Neurosci. Author manuscript; available in PMC 2018 September 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. H4K16ac changes between aging and AD are negatively correlated
a, 3D scatter plot showing the correlations between H4K16ac changes during aging (Young-

to-Old), disease (Old-to-AD subjects) and aging mixed with disease (Young-to-AD subjects) 

for all H4K16ac peaks detected in the three groups (black dots). Projections on the 2D 

orthogonal subspaces represent pairwise comparison of the three processes (blue, red and 

green dots), which are enlarged in panels b–d. b–d, Scatter plot shows correlation between 

H4K16ac changes in (b) Aging and Disease + aging (positive correlation), (c) Disease + 

aging and Disease (positive correlation) and (d) Aging and Disease (negative correlation). 

For graphical representation, 500 randomly chosen points are shown in each case. Pearson 

correlation coefficient for the entire dataset is indicated. Black dots in b–d represent 

centroids of underlying ovals.
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Fig. 4. The HiC1 motif is enriched in both H4K16ac gains during aging and H4K16ac losses in 
AD
a,d, Scatter plot showing H4K16ac peak enrichment (measured as AUC) between (a) Young 

and Old and (d) Old and AD subjects for peaks detected in each of the three groups. Blue 

dots represent peaks with significant H4K16ac changes (P < 0.05, Welch’s t test, two-sided). 

For graphical representation, 1,000 randomly chosen points are shown in each case. b,c,e,f, 
Top DNA motifs from SeqPos analysis are shown for peak regions with significant (P < 

0.05, Welch’s t test, two-sided) H4K16ac (b) gains or (c) losses in aging (Young-to-Old 

comparison) and H4K16ac (e) gains or (f) losses in AD (Old-to-AD subjects comparison; 

within top 6 DNA motifs by significance) within 1 kb from TSS.
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Fig. 5. Three classes of H4K16ac changes detected in AD
a–c, Peak schematic of the three classes of H4K16ac changes in AD: (a) age-regulated, (b) 

age-dysregulated and (c) disease-specific. Each class is further separated into two subclasses 

based on H4K16ac gains or losses in AD. The number of significant gains or losses (P < 
0.05, one-way ANOVA) in each defined subclass is reported below the schematic. d–f, Box-

plots of H4K16ac enrichment in each subclass reported in a–c. Boxplots show minimum, 

first quartile, median (center line), third quartile and maximum. Outliers are represented as 

black dots. g–i, Representative UCSC Genome browser track views of H4K16ac changes 

defined above. Chr, chromosome. j–l, Bar plot of top eight GO terms (Biological Process 

and Cellular component; DAVID Bioinformatics Resources v6.7) in each of the three classes 

of H4K16ac changes with at least 20 genes per term and false discovery rate (FDR) < 10%.
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Fig. 6. AD GWAS SNPs and AD eQTLs are strongly associated with regions of H4K16ac changes
a–c, Manhattan plots showing the 260 AD SNP regions (vertical lines) in all chromosomes 

overlapped with H4K16ac changes (color-coded circles) for each of the three classes in Fig. 

5a–c. The y axis indicates the −log10(P) of the SNP with the strongest AD association within 

each SNP region (P values are from the International Genomics of Alzheimer’s project 

(IGAP)41). d, Bar plot showing the significance (−log10(P)) of the association between the 

AD SNP regions and each of the three classes of H4K16ac changes assessed by INRICH. 

Black dotted horizontal line denotes the threshold of significance (P < 0.05). e, 

Representative UCSC Genome browser track view showing a cluster of AD SNPs (top) 

within a SNP region associated with disease-specific class of H4K16ac change (bottom; 

highlighted in pink) at the NME8 locus. f, Heatmap of Bonferroni adjusted P values for 

sampling-based analysis of H4K16ac peak overlap (three classes of changes) with temporal 

cortex (TX) eQTLs from Zou et al.43 eQTLs are split into those from AD cases (TX_AD), 

non-AD but with other brain pathologies (TX_CTL), and combined conditions (TX_ALL). 

g, Overlap analysis with TX eQTLs from Zou et al.43 using GREGOR.
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