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Abstract

Background: Instrumental variable (IV) methods are often used to identify ‘local’ causal

effects in a subgroup of the population of interest. Such ‘local’ effects may not be ideal

for informing clinical or policy decision making. When the instrument is non-causal, add-

itional difficulties arise for interpreting ‘local’ effects. Little attention has been paid to

these difficulties, even though commonly proposed instruments in epidemiology are

non-causal (e.g. proxies for physician’s preference; genetic variants in some Mendelian

randomization studies).

Methods: For IV estimates obtained from both causal and non-causal instruments under

monotonicity, we present results to help investigators pose four questions about the

local effect estimates obtained in their studies. (1) To what subgroup of the population

does the effect pertain? Can we (2) estimate the size of or (3) describe the characteristics

of this subgroup relative to the study population? (4) Can the sensitivity of the effect esti-

mate to deviations from monotonicity be quantified?

Results: We show that the common interpretations and approaches for answering these

four questions are generally only appropriate in the case of causal instruments.

Conclusions: Appropriate interpretation of an IV estimate under monotonicity as a ‘local’

effect critically depends on whether the proposed instrument is causal or non-causal.

The results and formal proofs presented here can help in the transparent reporting of IV

results and in enhancing the use of IV estimates in informing decision-making efforts.
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Introduction

Instrumental variable (IV) methods are being increasingly

used to estimate causal effects in observational studies.1

For example, genetic variants are proposed as instruments

in Mendelian randomization studies to estimate the effect

of various behavioural and biological exposures, and prox-

ies of physician’s preference are proposed as instruments to

estimate the effect of pharmacological treatments.
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A critical concern about IV analyses is that the pro-

posed instruments—genetic variants, proxies for phys-

ician’s preference—may not be valid instruments. But,

even if the proposed instruments were valid, many appli-

cations of IV estimation rely on the so-called monoton-

icity condition.2,3 Informally, the monotonicity condition

means that an instrument cannot increase the exposure or

treatment level for some individuals and decrease it for

others (formal definitions are provided below and in

Textbox 1). In practice, reliance on monotonicity means

that the IV effect estimate applies to a subgroup of the

study population whose members are unknown. The ef-

fect in this unidentifiable subgroup is often referred to as

a ‘local’ effect (as opposed to the ‘global’ effect in the full

study population).1,4

Clinical and public health decisions would ideally be

guided by estimates of effects in the population or in sub-

groups defined by individual characteristics (e.g. age,

sex). In contrast, the use of ‘local’ effects to guide deci-

sion making has some well-established limitations.4–9 To

see these limitations, consider the following thought ex-

periment. Suppose you are told that a certain treatment

slightly increases mortality risk in an unidentifiable sub-

group of the population, and that members of the sub-

group would have a greater mortality risk than the

general population if they remained untreated. You will

recognize that this information is not ideal to guide policy

either for the entire population (perhaps others benefit

from treatment) or for the unidentifiable subgroup (it is

unknown who exactly is a member). And yet this type of

‘local’ effect is precisely that which is estimated in most

IV analyses, even if it is not always made explicit in

reporting.1,10

Although ‘local’ effect estimates are not ideal to guide

decision making, their relevance can be greatly increased

when accompanied by more information. For example,

treatment decisions could be better informed if, in the

above thought experiment, you were told that the sub-

group comprised 10% of the population, or that members

of the subgroup were substantially more likely to be

women. Fortunately, such information is obtainable when

the proposed instrument causally affects the treatment of

interest.3,11–13 As such, it is generally recommended that

investigators explicitly report: (1) the definition of mem-

bership in the subgroup; (2) the size of the subgroup; (3)

characteristics of the subgroup members; and (4) the sensi-

tivity of the effect estimate under deviations from mono-

tonicity.1,12,14,15 However, many proposed instruments—

some genetic variants, proxies for physician’s preference—

do not causally affect the treatment.7 This raises the

Box 1. Definition of the monotonicity condition in

three settings.

Setting (a): causal instrument Z

• There are no individuals who would have been

treated if their instrument Z were 0 and untreated if

their instrument Z were 1 (i.e. no ‘defiers’ defined

with respect to Z).

Setting (b): non-causal instrument Z with an unmeas-

ured dichotomous causal instrument UZ

• There are no individuals who would have been

treated if their unmeasured causal instrument UZ

were 0 and untreated if their unmeasured causal in-

strument UZ were 1 (i.e. no ‘defiers’ defined with re-

spect to UZ).

Setting (c): non-causal instrument Z with an unmeas-

ured continuous causal instrument UZ

• For all individuals in the study population, if individ-

ual i would have been treated had UZ¼u, then indi-

vidual i would also have been treated for any value

v such that v>u (i.e. no ‘defiers’ defined with re-

spect to any pair of possible values of UZ).

Key Messages

• Many instrumental variable (IV) effect estimates rely on a monotonicity condition.

• IV effect estimates under monotonicity typically pertain to an unidentifiable subgroup of the study population, not to

the entire study population.

• The reporting and interpretation of IV estimates under monotonicity can be improved by presenting additional infor-

mation on the size and characteristics of this subgroup, and on the sensitivity of estimates to deviations from the

monotonicity condition.

• The feasibility of obtaining this information, and its practical utility when obtained, depend crucially on whether the

proposed instrument is causal or non-causal.
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question of whether these four pieces of information can

be obtained in those settings.

Here we provide guidance for the reporting of IV ana-

lyses under monotonicity with both causal and non-causal

instruments. (IV methods that do not require monoton-

icity1,16–21 are briefly reviewed in the Supplementary data,

available at IJE online.) We do so by helping investigators

pose four questions about the local effect estimates ob-

tained in their studies. (1) To what subgroup of the popula-

tion does the effect pertain? Can we (2) estimate the size of

or (3) describe the characteristics of this subgroup? (4) Can

the sensitivity of the effect estimate to deviations from

monotonicity be quantified? Below we discuss the answers

to these questions in settings with both causal and non-

causal dichotomous instruments. We start by reviewing the

distinction between causal and non-causal instruments.

Causal and non-causal instruments

Suppose we are interested in estimating an effect of a di-

chotomous treatment or exposure A on a (dichotomous or

continuous) outcome Y. Figure 1 (the canonical IV causal

diagram) depicts a causal instrument Z which causes treat-

ment, causes the outcome only through treatment, and

shares no causes with the outcome.7 Figure 2 depicts a

non-causal instrument Z which is associated with treat-

ment via a shared unmeasured cause that is itself a causal

instrument. Figures 1 and 2 represent two of a number of

possible ways the instrumental conditions may be

satisfied.22

For dichotomous instruments Z, the standard IV ratio:

ðE½YjZ ¼ 1� � E½YjZ ¼ 0�Þ=ðE½AjZ ¼ 1� � E½AjZ ¼ 0�Þ

or a similar method, is commonly used to identify a local

causal effect under monotonicity. We will consider three

settings:

a. a causal instrument Z, e.g. in a Mendelian randomiza-

tion study, a genetic variant that causes the exposure of

interest;

b. a non-causal instrument Z with an unmeasured dichot-

omous causal instrument UZ, e.g. in a Mendelian ran-

domization study, a genetic variant, identified from a

genome-wide association data, which is associated with

but does not cause the exposure;

c. a non-causal instrument Z with an unmeasured con-

tinuous causal instrument UZ, e.g. in a pharmacoepide-

miological study, prescription to the previous patient,

which is used as a proxy for the unmeasured continu-

ous physician’s preference which causally affects the

treatment of interest.

We now explore the answers to questions (1)–(4) in set-

tings (a), (b) and (c). Table 1 summarizes these answers;

proofs are provided in the Supplementary data, available

at IJE online. For illustration, we provide a numerical ex-

ample with dichotomous proposed instrument, treatment

and outcome that could have arisen under any of the three

settings (Table 2). The estimated standard IV ratio is

(0.025)/(0.1)¼0.25. That is, if the proposed instrument is

valid and monotonicity holds, the risk of the outcome is 25

percentage points higher under treatment than under no

treatment. The first question is: to which subset of the

population does this causal risk difference apply?

Question 1: to what subgroup of the
population does the effect pertain?

Setting (a): causal instrument Z

In randomized trials with dichotomous instrument and

treatment, monotonicity means there are no individuals

who would have been treated if they were randomized to

no treatment and untreated if they were randomized to

treatment (i.e. no ‘defiers’). More generally, monotonicity

for setting (a) with a causal instrument Z means there are

no individuals who would have been treated if their instru-

ment Z were 0 and untreated if their instrument Z were 1.

Under monotonicity, the standard IV ratio identifies the ef-

fect in the ‘compliers’, that is individuals who would be

treated if their instrument Z were 1 and untreated if their

instrument Z were 0.3 The effect in the ‘compliers’ is often

referred to as the local average treatment effect or complier

average causal effect. Thus, we would interpret our effect

estimate as a causal risk difference of 25% among the

‘compliers’ only.

The terminology of ‘compliers’ and ‘defiers’ is wide-

spread in IV analyses of observational studies, even if no

true ‘compliers’ or ‘defiers’ exist in the absence of an inter-

vention. In Mendelian randomization with a causal genetic

Figure 1. Causal diagram depicting an instrument Z, treatment A, out-

come Y and unmeasured confounders U. Z is a causal instrument.

Figure 2. Causal diagram depicting an instrument Z, treatment A, out-

come Y and unmeasured confounders U. Z is a non-causal instrument,

in which Z and A share a cause UZ that is itself a causal instrument.

International Journal of Epidemiology, 2018, Vol. 47, No. 4 1291

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyx038#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyx038#supplementary-data


variant measured, the ‘compliers’ are subjects who would

have had the phenotype of interest (i.e. been ‘treated’ or

exposed) had they had the genetic variant, but would

not have had the phenotype had they not had the genetic

variant (see formal mathematical expressions in

Supplementary data, available at IJE online). For example,

for Mendelian randomization studies of the effects of mod-

erate versus low alcohol consumption using variation in

the ALDH2 gene (for which the homozygote null variant is

associated with adverse symptoms when drinking alcohol),

a ‘complier’ is someone who would drink low amounts of

alcohol if she had the homozygote null variant but would

drink moderate amounts otherwise.23,24 Informally, ‘com-

pliers’ in Mendelian randomization studies are sometimes

conceptualized as subjects for whom their lifestyle and en-

vironment are moderate so that their genotype determines

their phenotype.

We cannot know whether a particular subject is a ‘com-

plier’. For example, an exposed person with Z¼ 1 may be ei-

ther a ‘complier’ or a so-called ‘always-taker’. Similarly, with

rare exception,5 we cannot verify that there are no ‘defiers’

in our study population: the monotonicity condition is an as-

sumption. In some settings, a deeper biological understand-

ing of how the proposed instrument affects the exposure can

Table 1. Interpretation of the standard IV ratio under monotonicity in three settings

Setting (a): measured

causal dichotomous

instrument

Setting (b): unmeasured causal

dichotomous instrument

Setting (c): unmeasured causal

continuous instrument

To what subgroup of the popula-

tion does the effect pertain?

The ‘compliers’ defined

with respect to the

measured instrumenta

The ‘compliers’ defined with

respect to the unmeasured

instrumentb

The full study population, with in-

dividuals contributing unknown

weightb

Can we estimate the size of the

subgroup to which the effect

pertains?

Yesa No, unless we make further

assumptionse

Superficially (everybody contrib-

utes but with unknown weights)

Can we describe (measured) char-

acteristics of the subgroup to

which the effect pertains?

Yesc No, unless we make further

assumptionse

N/A

Can we quantify the sensitivity of

the effect estimate to deviations

from monotonicity?

Yes, via sensitivity ana-

lysesa and partial

identification

strategiesd

Yes, can use sensitivity analyses

(if bias parameters are speci-

fied for the causal

instrument)e

N/A

N/A, not available.
aSee Angrist, Imbens and Rubin 19963 and Supplementary data (available at IJE online) for proof.
bSee Hern�an and Robins 20067 and Supplementary data for proof.
cSee Angrist and Pischke 200911 and Supplementary data for proof.
dSee Richardson and Robins 201013 and Supplementary data for proof.
eSee Supplementary data for proof.

Table 2. Hypothetical data for a dichotomous covariate, proposed instrument, treatment and outcome. The proposed instru-

ment can be causal (e.g. a causal genetic variant in a Mendelian randomization study), a non-causal proxy for a dichotomous

causal instrument (e.g. a non-causal genetic variant in a Mendelian randomization study) or a non-causal proxy for a continuous

causal instrument (e.g. a proxy for physician’s preference)

Number of subjects Sexa Proposed instrument Treatment Number of subjects who

develop the outcome

5000 Male 0 Untreated 500

5000 Male 0 Treated 1000

4500 Male 1 Untreated 500

5500 Male 1 Treated 1000

5500 Female 0 Untreated 500

4500 Female 0 Treated 500

4000 Female 1 Untreated 500

6000 Female 1 Treated 1000

aSex appears here as a descriptive covariate; it is not necessary for IV estimation.
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help justify the assumption. For example, given the known

association between variation in the ALDH2 gene and ad-

verse symptoms when drinking alcohol, it seems plausible

that there would be few if any individuals who would drink

more alcohol if they did versus did not have the variant asso-

ciated with the adverse symptoms.

Setting (b): non-causal instrument Z with an

unmeasured dichotomous causal instrument UZ

The standard IV ratio identifies the effect in the ‘compliers’

under monotonicity.7 However, monotonicity and compli-

ance types in setting (b) are defined with respect to the un-

observed causal instrument UZ, not the observed surrogate

Z. That is, the standard IV ratio identifies the effect in indi-

viduals who would be treated if their instrument UZ were

1 and untreated if their instrument UZ were 0, under the

assumption that there are no individuals who would be

treated if their instrument UZ were 0 and untreated if their

instrument UZ were 1.

In the Mendelian randomization example with a proxy

measure for the causal genetic variant, the ‘compliers’ are

defined with respect to the unmeasured causal genetic vari-

ant and not the measured proxy. If, for example, a

Mendelian randomization study using genome-wide asso-

ciation study (GWAS) data proposed a single nucleotide

polymorphism (SNP) near the ALDH2 gene region as an

instrument, the ‘compliers’ are defined with respect to the

causal variation in the ALDH2 genotype and not necessar-

ily the measured SNP. For Mendelian randomization stud-

ies that propose several genetic measures as candidate

instruments from GWAS data, such designs could be con-

ceptualized as pooling several estimates derived with

unique instruments all mirroring setting (b). That is, under

monotonicity, such designs are pooling estimates from sev-

eral unidentifiable yet also potentially different

subpopulations.25

Setting (c): Non-causal instrument Z with an

unmeasured continuous causal instrument UZ

Monotonicity is defined as follows when the underlying

causal instrument is continuous: if person i would have

been treated had UZ¼ u, then person i would also have

been treated for any value v such that v> u. We will refer

to the effect in subjects who would receive treatment when

UZ¼ u but would not receive treatment when UZ¼ v for

any value v< u as the u-specific marginal treatment param-

eter or MTP(u).26 In the context of physician’s preference,

if we conceptualize UZ as the proportion of study subjects

that a physician would treat, then MTP(0.4) would be the

effect in persons who would have received treatment if

they saw any physician who preferred treatment for 40%

or more of the study subjects, but would not have received

treatment had they seen any physician who preferred treat-

ment at any level less than 40%. (Note: this definition pre-

sumes that all physicians with the same level of preference

would make the same treatment decisions for all patients,

which ignores additional complications of IV estimation

under monotonicity when there are multiple versions of

the proposed instrument.4,5)

The standard IV ratio using a dichotomous proxy Z

identifies a weighted average of the effects MTP(u) in the

subgroups defined by all possible values u.7 Because every

subject will belong to at least one of these subgroups, the

standard IV ratio is estimating an effect that is derived

from the full study population, but that is difficult to inter-

pret because of the unknown weight given to each individ-

ual. Our effect estimate of 25% is a weighted average of

local effects in subgroups, but we do not know the particu-

lar weight given to any specific subject.

Generally, all three settings lead to effects within sub-

groups (or weighted subgroups) that we cannot identify.

This leads us to our next question.

Question 2: can we estimate the size of the
subgroup to which the effect pertains?

Setting (a): causal instrument Z

If the instrument is valid and monotonicity holds, the pro-

portion of ‘compliers’ is the denominator of the standard

IV ratio.3 In our data example, we would estimate that

the proportion of ‘compliers’ is 0.10; the causal risk

difference in a subset comprising 10% of the study popula-

tion is 25%.

Setting (b): non-causal instrument Z with an

unmeasured dichotomous causal instrument UZ

The observed data, the instrumental conditions and mono-

tonicity alone do not allow identification of the proportion

of ‘compliers’. As we show in the Supplementary data

(available at IJE online), identifying this proportion re-

quires quantifying the UZ-Z association on the additive

scale:

Pr½UZ ¼ 1jZ ¼ 1� � Pr½UZ ¼ 1jZ ¼ 0�:

In some studies, we may be able to use external infor-

mation to estimate this association. If, for example, we

knew that the association between the unmeasured and

measured genetic variants was 80% on the risk difference

scale, then we would estimate that the proportion of
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‘compliers’ in our example was 0.10/0.80¼12.5%. (Note

that perfect associations, such as what may occur in

Mendelian randomization settings with a non-causal gen-

etic variant in perfect linkage disequilibrium with the un-

measured causal variant, would imply that we estimate the

same proportion of ‘compliers’ as we would if we had

measured the causal instrument itself: 10%.) If we have no

information about the magnitude of the UZ-Z association,

but are willing to assume that the correlation is positive,

then the proportion of ‘compliers’ can be bounded: e.g. be-

tween 10% and 100% in our example.

Setting (c): non-causal instrument Z with an

unmeasured continuous causal instrument UZ

As explained above, the IV ratio identifies a weighted

average of effects that would comprise effects from every-

body in the study population if our assumptions held.7

Note that individual weights are not identifiable and thus

interpretability or transportability of this effect is limited.

Moreover, even if we did know the weights (e.g. because

we had some information on the relationship between UZ

and Z), we do not know to whom each u-specific MTP(u)

pertains.

Question 3: can we describe (measured)
characteristics of the study population to
whom the effect pertains?

Setting (a): causal instrument Z

Though we do not know who is a ‘complier’, under mono-

tonicity we can calculate the prevalence of measured cova-

riates in the ‘compliers’ relative to that in the study

population by comparing the denominator of the IV ratio

estimated within a level of a covariate with the denomin-

ator of the IV ratio estimated unconditionally.11,12 In our

numerical example, the estimated proportion of women

among the ‘compliers’ is 75%, whereas the proportion of

women in the full study population is 50%.

Setting (b): non-causal instrument Z with an

unmeasured dichotomous causal instrument UZ

The relative distribution of a measured covariate in the

‘compliers’ can be described if the covariate does not

modify the relationship between the unmeasured instru-

ment UZ and the measured instrument Z on the additive

scale. In a Mendelian randomization study with a non-

causal genetic variant, this condition would hold if the as-

sociation (e.g. due to linkage disequilibrium) between the

measured and unmeasured variants does not vary across

levels of the covariate. In our numerical example under

this additional assumption, we would estimate the same

proportion of women among the ‘compliers’ as we did in

setting 1: 75%.

Setting (c): non-causal instrument Z with an

unmeasured continuous causal instrument UZ

Everybody in the study population contributes to the

weighted effect estimate, but we do not know each individ-

ual’s relative weights and therefore cannot directly describe

the characteristics of the weighted population.

Question 4: can we quantify the sensitivity
of the effect estimate to deviations from
monotonicity?

Setting (a): causal instrument Z

Angrist, Imbens and Rubin3 demonstrated that bias due to

a monotonicity violation is a function of the relative pro-

portion of ‘compliers’ and ‘defiers’ and the heterogeneity

in the effects between the ‘compliers’ and ‘defiers’, and de-

veloped simple bias formulae using these bias parameters.

More recent work by Richardson and Robins allows for

bounding of the effect in the ‘compliers’ under specified

violations of the monotonicity assumption that take into

account the observed joint distribution of Z, A and Y.13,27

For example, if we suspected that the proportion of ‘de-

fiers’ in our data is 1%, then the effect in the ‘compliers’ is

bounded between 14% and 32% (i.e. the direction of the

effect is still identified, but the magnitude is less clear). In

Figure 3, we provide bounds for the effect in the ‘com-

pliers’ under a range of assumed proportions of ‘defiers’

between 0% and 5%.

In practice, presenting analyses like those shown in

Figure 3 can help underscore the robustness (or lack of ro-

bustness) of a particular study’s results. In our hypothetical

data, our estimate of the direction of the effect in the ‘com-

pliers’ is relatively robust to small monotonicity violations

(e.g. a proportion of ‘defiers’ less than 2%). If these data

were to come from a Mendelian randomization study in

which the biological mechanisms of the genetic variant

supported the plausibility of the monotonicity condition,

this sensitivity analysis reassures us that theoretically pos-

sible but rare departures from monotonicity are unlikely to

alter our conclusion that the effect in the ‘compliers’ is

positive. (We note the data are theoretically consistent

with more ‘defiers’ than 5%, but as a sensitivity analysis

for monotonicity violations we restrict Figure 3 to this

range.)
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Setting (b): non-causal instrument Z with an

unmeasured dichotomous causal instrument UZ

As in setting (a), bias is a function of the relative propor-

tion of and heterogeneity of the effects in ‘compliers’ and

‘defiers’, which are defined in setting (b) with respect to

UZ, not Z. This distinction may be important if we can use

subject matter expertise or external data5 to inform the

bias parameters in a sensitivity analysis. For example,

when computing the potential bias in a Mendelian ran-

domization study, the plausible distribution of compliance

types ought to be informed by knowledge about the under-

lying causal genetic variant (UZ) rather than the measured

non-causal genetic variant (Z) used in the IV analysis.

Unlike in setting (a), we cannot apply bounds vis-�a-vis

Richardson and Robins13 because we do not observe the

joint distribution of UZ, A and Y. Thus in this setting, if we

suspected that the proportion of ‘defiers’ in our data is

5%, we would need to further specify the effect in the ‘de-

fiers’ to estimate the bias or a bias-corrected effect estimate

in the ‘compliers’. If the correlation between the measured

non-causal genetic variant and the underlying causal gen-

etic variant was very strong (i.e. Pr[UZ¼ 1j
Z¼ 1]�Pr[UZ¼ 1jZ¼0] very close to 1), we might con-

sider applying bounds assuming our observed joint distri-

bution of Z, A and Y closely approximates the joint

distribution of UZ, A and Y.

Setting (c): non-causal instrument Z with an

unmeasured continuous causal instrument UZ

Understanding bias due to a monotonicity violation in set-

ting (c) is not straightforward. Consider first bias in

approaches for identifying the MTP(u) for a specific level

of UZ¼ u if we had data on UZ. When monotonicity does

not hold, the partial derivative will be a function of the

treatment effects in all subjects for whom treatment would

be different had UZ¼ u versus a value just below u (assum-

ing this is smooth enough to even be differentiable). It is

unclear if we should–or could–separate out the MTP(u)

from these other subgroup treatment effects to derive a us-

able bias formula. In setting (c) where UZ is not measured,

trying to consider a bias formula for the weighted average

of treatment effects would be even more convoluted.

Discussion

We have described improvements to the reporting of IV es-

timates under monotonicity by presenting four additional

pieces of information. We have explained that the feasibil-

ity of obtaining this information, and its practical utility

when obtained, depend crucially on whether the proposed

instrument is causal or non-causal.

Because the distinction between causal and non-causal

instruments is only rarely made in the IV methodology lit-

erature, let alone in reporting IV applications, consumers

of IV analyses are not typically provided with enough in-

formation to interpret the effect estimates. Interestingly, al-

though some have argued that causal diagrams provide

little of value to IV methods because ‘the’ causal diagram

is relatively simple,28 the distinction between causal and

non-causal instruments illustrates another example of how

causal diagrams can be useful tools for responsible applica-

tion and interpretation of IV analyses.29 To demonstrate

how accurate reporting would be carried out under differ-

ent settings, we consider possible reports for a hypothetical

Mendelian randomization study in Textbox 2.

A common limitation of both causal and non-causal in-

struments is that IV estimation under monotonicity can

only estimate ‘local’ effects in an unknown subset of the

population. A typical argument in defence of ‘local’ effects

is that the ability to describe the proportion of and distri-

bution of measured characteristics in the subpopulation of

‘compliers’ dispels the concerns of identifying effects in un-

identifiable subgroups. That is, whereas an effect estimate

may only pertain to a subset (e.g. 10%) of the population,

sometimes we can describe that 10% to such a degree that

we can nearly (but not perfectly) target our decision-

making efforts toward that subpopulation. Regardless of

whether one agrees that this mitigating factor is enough to

justify using such estimates to inform decision making, we

have demonstrated that this rationale is often less appro-

priate for non-causal instruments. Whenever a non-causal

instrument is proposed, it will usually be difficult, if not

impossible, to describe the subpopulation to which the ef-

fect pertains with an informative level of detail. Although

Figure 3. Bounds for the effect in the ‘compliers’ (the local average

treatment effect) under some departures from monotonicity in setting

(a). Note that for a specified proportion of ‘defiers’, the estimated pro-

portion of ‘compliers’ also changes.
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our focus has been on settings with dichotomous proposed

instruments, interpretability of ‘local’ effects is generally

even more complex for categorical (e.g. trichotomous) or

continuous instruments, like those used in some Mendelian

randomization studies.

An additional complication for IV estimation under

monotonicity is that, in the absence of physical randomiza-

tion, it is impossible to ensure that the proposed instru-

ment is causal versus non-causal. For example, given

the widespread use of genome-wide association studies to

inform instrument proposals, most Mendelian randomiza-

tion studies may be conceptualized as proposing non-

causal instruments. However, even in those Mendelian

randomization studies that propose a causal instrument,

there is no guarantee that the instrument is indeed causal–a

lack of guarantee underscored by recent findings demon-

strating that previously classified ‘causal’ genetic variants

for rare disorders are so prevalent that their classification

as ‘causal’ is now being questioned.30

Given the problems enumerated here and else-

where,5,8,9,18 some investigators may argue that this is a

reason to completely avoid IV methods based on a mono-

tonicity condition in Mendelian randomization or other

observational studies. We suggest that the appropriateness

of IV methods under monotonicity should be evaluated on

a case-by-case basis. The results and formal proofs pre-

sented here can help in the transparent reporting of IV re-

sults, and in enhancing the appropriate and effective use of

IV estimates in informing decision-making efforts.
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Supplementary data are available at IJE online.
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