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Abstract

Background: The genetic architecture of birth size may differ geographically and over

time. We examined differences in the genetic and environmental contributions to birth-

weight, length and ponderal index (PI) across geographical-cultural regions (Europe,

North America and Australia, and East Asia) and across birth cohorts, and how gesta-

tional age modifies these effects.

Methods: Data from 26 twin cohorts in 16 countries including 57 613 monozygotic and di-

zygotic twin pairs were pooled. Genetic and environmental variations of birth size were

estimated using genetic structural equation modelling.

Results: The variance of birthweight and length was predominantly explained by shared

environmental factors, whereas the variance of PI was explained both by shared and

unique environmental factors. Genetic variance contributing to birth size was small.

Adjusting for gestational age decreased the proportions of shared environmental
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variance and increased the propositions of unique environmental variance. Genetic vari-

ance was similar in the geographical-cultural regions, but shared environmental variance

was smaller in East Asia than in Europe and North America and Australia. The total vari-

ance and shared environmental variance of birth length and PI were greater from the

birth cohort 1990–99 onwards compared with the birth cohorts from 1970–79 to 1980–89.

Conclusions: The contribution of genetic factors to birth size is smaller than that of

shared environmental factors, which is partly explained by gestational age. Shared envi-

ronmental variances of birth length and PI were greater in the latest birth cohorts and

differed also across geographical-cultural regions. Shared environmental factors are im-

portant when explaining differences in the variation of birth size globally and over time.

Key words: Birthweight, birth length, ponderal index, twins, genetics, pooled studies

Introduction

Birth size is an indicator of infant health and is associated

with health-related traits in later life such as hyperten-

sion,1–3 obesity,4,5 and psychosocial distress.6 Moreover,

low birthweight is associated with an increased risk of

metabolic diseases including type 2 diabetes7 and cardio-

vascular diseases in adulthood.8,9 Both genetic and envi-

ronmental factors influence birth size.10,11 Associations

between fetal genotype and birthweight can in part reflect

the indirect effects of the maternal genotype influencing

birthweight via the intrauterine environment.12 Studying

monozygotic (MZ) and dizygotic (DZ) twin pairs is a

widely used method to decompose total variance into frac-

tions explained by genetic and environmental differences

between individuals. The environmental factors shared by

co-twins include gestational age, total placental weight and

maternal factors, such as maternal body size and smoking.

Individual placental characteristics, such as placental func-

tion including nutrient capacity, anatomy and perinatal

injuries, can lead to differences in birth size between co-

twins and are thus part of the environment unique for each

individual twin. A previous Dutch study found that the ge-

netic factors explained almost an identical share of the to-

tal variation of birthweight and length when estimated by

parent-offspring trios of singletons (26% and 26%, respec-

tively) and MZ and DZ twins (29% and 27%,

respectively), supporting the value of the twin design when

studying birth size.13 Gestational age affects birthweight

and, because it is shared by co-twins, may lead to the over-

estimation of shared environment, if not accounted for.14

Genetic and environmental variation of fetal growth

may differ between populations because of differences in

maternal dietary habits, other environmental exposures

and the gene pool of population. A multinational twin

study reported that genetic factors explained 17% of the

variation of birthweight. This contribution was similar in

Western and East Asian populations, but there were differ-

ences in the proportions of environmental factors both

shared and unshared by co-twins.15

It is well known that maternal nutrition and other ma-

ternal factors affect birth size, and the determinants of

birth size may have changed across birth cohorts over the

20th century.16,17 However, there are no previous studies

which would have analysed how the roles of genetic and

environmental factors on birth size have changed over

time. Further, the only international comparison was based

only on seven twin cohorts;15 larger studies would be war-

ranted to get more precise estimates. Finally, it would be

important to analyse also indicators of birth size other

than birthweight, and gestational age should be adjusted

for because otherwise the role of shared environment

would be inflated. To address these questions, we used

birthweight and length data available in the largest pooled

Key Messages

• Additive genetic factors contributing to birth size have a small but consistent effect across geographical-cultural

regions (Europe, North America and Australia, and East Asia) and across birth cohorts.

• Environmental factors shared by co-twins importantly contribute to the inter-individual variation in birthweight, length

and ponderal index, which is partly explained by gestational age.

• Shared environmental influences were smaller in East Asia than in Europe and North America and Australia.
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database of twin cohorts in the world. We aimed to exam-

ine differences in genetic and environmental contributions

to birthweight, length and ponderal index (PI) [PI¼weight

(kg)/height (m3)] across geographical-cultural regions

(Europe, North America and Australia, and East Asia) and

across birth cohorts from 1915 through 2013, and how

gestational age modifies these effects.

Methods

Sample

The data were derived from the COllaborative project of

Development of Anthropometrical measures in Twins

(CODATwins) database.18 Information on birthweight

was available in 26 cohorts from 16 countries, and birth

length and gestational age were available in 14 and 17 of

these cohorts, respectively. In the majority of cohorts,

the birth-related measures were parentally reported

(79% for birthweight, 87% for birth length and 83% for

gestational age) or self-reported (14%, 2% and 8%, re-

spectively); only in a few cohorts were they based on

records from nurses or clinicians (7%, 11% and 9%, re-

spectively). However, birthweights from maternal recall

and medical records were found to be highly corre-

lated.19 The participating twin cohorts are listed in

Table 1 (footnote) and were previously described in de-

tail.18 The prevalence of obesity and overweight is lowest

in East Asia, thus representing a less obesogenic environ-

ment, and highest in North America and Australia, thus

representing a more obesogenic environment.20

Obesogenic environment can affect maternal dietary

habits and maternal size, which indirectly reflect birth

size.21–23 Therefore, we divided these cohorts into three

geographical-cultural regions: Europe, North America

and Australia, and East Asia.20

There were 121 997 twin individuals with data on

birthweight. We excluded individuals with birth-

weight<0.5 or>5 kg (n¼ 79) or without data on their co-

twins (n¼6606) as well as those with intra-pair difference

in birthweight>2 kg (22 pairs) or contrasting information

on birth year between co-twins (21 pairs), leading to

57 613 twin pairs [38% MZ, 34% same-sex dizygotic

(SSDZ) and 28% opposite-sex dizygotic (OSDZ) twins].

For the analyses on birth length and PI, individuals without

data on birth length (n¼ 64 626), those with birth

length<25 or>60 cm (n¼ 33), PI<12 or>38 kg/m3

(n¼ 675) or born before 1970 (n¼ 261), and co-twins

with intra-pair difference in birth length>12 cm (three

pairs) or PI>15 kg/ m3 (nine pairs) were removed, leading

to 27 084 twin pairs (38% MZ, 33% SSDZ and 29%

OSDZ twins).

We further standardized birthweight, length and PI for

gestational age separately by sex and within the individuals

included in each group of analyses. These three measures

of birth size were expressed as standard deviation (SD)

scores of the respective means/weeks of gestation (z-scores;

i.e. mean¼ 0 and SD¼ 1) to estimate their relative value

for a given gestational age. Individuals with gestational

age<25 or>45 weeks were excluded. Outlying values for

Table 1. Sample sizes, means and standard deviations of

birthweight (kg) by sex, region, birth year, and zygosity

Zygosity Boys Girls

n Mean SD n Mean SD

All cohortsa MZ 20 596 2.52 0.55 22 806 2.41 0.53

DZ 36 212 2.60 0.57 35 612 2.50 0.55

Region

Europeb MZ 13 318 2.53 0.56 13 974 2.42 0.53

Europeb DZ 24 616 2.63 0.56 23 598 2.52 0.54

NA and Ausc MZ 5258 2.52 0.56 6592 2.40 0.54

NA and Ausc DZ 9765 2.57 0.59 10 223 2.47 0.57

East Asiad MZ 1910 2.48 0.51 2132 2.39 0.47

East Asiad DZ 1421 2.49 0.51 1403 2.41 0.47

Birth year

1915 to 1939 MZ 174 2.49 0.68 374 2.44 0.65

1915 to 1939 DZ 133 2.85 0.84 353 2.64 0.66

1940 to 1949 MZ 758 2.60 0.56 1280 2.47 0.52

1940 to 1949 DZ 1092 2.77 0.57 1558 2.61 0.51

1950 to 1959 MZ 1166 2.62 0.56 1952 2.46 0.54

1950 to 1959 DZ 1384 2.79 0.58 1900 2.66 0.56

1960 to 1969 MZ 286 2.63 0.58 480 2.40 0.55

1960 to 1969 DZ 176 2.72 0.64 284 2.53 0.59

1970 to 1979 MZ 3068 2.62 0.52 1826 2.48 0.48

1970 to 1979 DZ 3274 2.74 0.53 2048 2.63 0.51

1980 to 1989 MZ 2734 2.56 0.52 3072 2.49 0.52

1980 to 1989 DZ 3698 2.71 0.53 3722 2.61 0.52

1990 to 1999 MZ 8338 2.48 0.57 9474 2.38 0.53

1990 to 1999 DZ 16 932 2.56 0.56 16 634 2.47 0.54

2000 to 2013 MZ 4072 2.46 0.55 4348 2.36 0.52

2000 to 2013 DZ 9523 2.53 0.58 9113 2.43 0.55

NA, North America; Aus, Australia.
aIncludes all cohorts in the footnotes b–d and Africa (one cohort, 108 twin

pairs, Guinea-Bissau Twin Study) and Middle East (one cohort, 400 pairs,

Longitudinal Israeli Study of Twins).
bEurope (11 cohorts, 37 753 twin pairs): East Flanders Prospective Twin

Survey, Finntwin12, Finntwin16, Gemini Study, Hungarian Twin Registry,

Italian Twin Registry, Norwegian Twin Registry, Swedish Young Male Twins

Study of Adults, Swedish Young Male Twins Study of Children, Twins Early

Developmental Study and Young Netherlands Twin Registry.
cNorth America and Australia (9 cohorts, 15 919 twin pairs): Australian

Twin Registry, Boston University Twin Project, Carolina African American

Twin Study of Aging, Colorado Twin Registry, Michigan Twins Study,

Minnesota Twin Family Study, Minnesota Twin Registry, Peri/Postnatal

Epigenetic Twins Study and Quebec Newborn Twin Study.
dEast Asia (4 cohorts, 3433 twin pairs): Japanese Twin Cohort, Mongolian

Twin Registry, Qingdao Twin Registry of Children and West Japan Twins

Registry.
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birthweight, length and PI values for a given gestational

age were checked by visual inspection of histograms for

each gestational week and removed (0.2% for birthweight

and 0.4% for birth length and PI), resulting in 38 806

(birthweight) and 23 742 twin pairs (birth length and PI)

for analyses.

All participants were volunteers and gave their in-

formed consent when participating in their original studies.

A limited set of observational variables and anonymized

data was delivered to the data management centre at the

University of Helsinki. The pooled analysis was approved

by the ethical committee of the Department of Public

Health, University of Helsinki.

Statistical analyses

The data were analysed using genetic structural equations

modelling.24 MZ twins share virtually the same genomic

sequence, whereas DZ twins share, on average, 50% of

their genes identical-by-descent. On this basis, the total

variance was decomposed into variance due to additive ge-

netic factors (A: correlated 1.0 for MZ and 0.5 for DZ

pairs), shared (common) environmental factors (C: by defi-

nition, correlated 1.0 for MZ and DZ pairs) and unique

(non-shared) environmental factors (E: by definition,

uncorrelated for MZ and DZ pairs). All genetic models

were fitted by the OpenMx package (version 2.0.1) in the

R statistical platform.25

A full model with A, C and E factors was fitted to the

data. We allowed a shared environmental correlation to be

less than 1 for OSDZ pairs, as compared with 1 expected

for SSDZ and MZ pairs; this would suggest the presence of

sex-specific shared environmental factors affecting size at

birth. Since boys and DZ twins showed greater birth size

than girls and MZ twins, different means for sex and zy-

gosity groups were allowed. We then conducted the analy-

ses in the three geographical-cultural regions and across

the birth cohorts from 1915 through 2013, per decade.

Moreover, the genetic and environmental variances of

birthweight were analysed for each twin cohort.

Birthweight, length and PI values (both unstandardized

and standardized for gestational age) were first adjusted

for twin cohort within each sex and geographical-cultural

region/birth year groups using linear regressions, and the

resulting residuals were used in the analyses.

Results

Birthweight was greater in European and North American

and Australian than in East Asian newborns (Table 1). The

variance of birthweight was greatest in North America and

Australia and lowest in East Asia. Mean birthweight did

not show any clear pattern across the birth cohorts until

1980–89, but started to decrease from 1990–99 onwards.

Mean birth length in European and North American and

Australian boys and girls was greater than in East Asians

(Table 2). The variance showed a less clear pattern, but

was greatest in European and lowest in East Asian boys

and girls. In MZ and DZ twins, the means of PI in boys

were similar to those in girls in all geographical-cultural

regions, except for East Asia where MZ girls had the great-

est PI. The mean PI of boys was similar between geographi-

cal-cultural regions, whereas the mean PI of girls was

greater in East Asia than in Europe and North America

and Australia. The variances of PI were greatest in Europe

and lowest in East Asia in both sexes.

Figure 1 presents the additive genetic, shared environ-

mental and unique environmental variances of birthweight,

birth length and PI by cultural-geographical region; the ex-

act point estimates and their 95% confidence intervals (CI)

are available in Supplementary Tables 1 and 2, as

Supplementary data at IJE online. Shared environmental

factors explained the major part of the variation of birth-

weight and length, whereas shared and unique environmen-

tal factors explained roughly equal shares of the variation

of PI. When comparing the cultural-geographical regions,

the differences in the variances were mainly explained by

shared environmental variances. For birthweight, the

shared environmental variance was lower in East Asian

boys (c2 ¼ 0.11, 95% CI 0.09–0.14) and girls (c2 ¼ 0.11,

95% CI 0.09–0.13) than found in Europe (c2 ¼ 0.19, 95%

CI 0.18–0.20 and 0.18, 95% CI 0.17–0.18, respectively) or

North America and Australia (c2 ¼ 0.23, 95% CI 0.22–

0.24 and 0.22, 95% CI 0.21–0.23, respectively). Similar

differences in the shared environmental variances were also

found for birth length and PI. When the results were ad-

justed for gestational age, in particular the relative contri-

bution of shared environmental variation to birthweight

decreased. However, also in these analyses, the shared envi-

ronmental variation was lower in East Asia than in the

other regions. For birth length and PI, the relative decrease

in shared environmental variance after the adjustment of

gestational age was smaller than for birthweight.

Figure 2 presents the corresponding results by birth

cohorts (the exact point estimates and their 95% CIs are

available in Supplementary Tables 1 and 2, available as

Supplementary data at IJE online). For birth length and PI,

the total variances were greater in the birth cohorts 1990–

99 onwards as compared with the birth cohorts from

1970–79 to 1980–89. Adjusting the results for gestational

age decreased in particular the proportions of shared envi-

ronmental variance. After the adjustment for gestational

age, systematic decrease in the shared environmental vari-

ance was found in the cohorts born in 1940–49 (c2 ¼ 0.55,
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95% CI 0.32–0.78 in boys and c2 ¼ 0.68, 95% CI 0.46–

0.87 in girls) up to 2000–13 (c2 ¼ 0.17, 95% CI 0.10–0.26

and c2 ¼ 0.18, 95% CI 0.11–0.27, respectively).

Figure 3 presents the variances of birthweight in each

twin cohort according to the cohort mean birthweight (the

exact point estimates with their 95% CIs are available in

Supplementary Table 3, available as Supplementary data

at IJE online). Some heterogeneity between the cohorts, es-

pecially in additive genetic variation, was found. However,

this did not show any clear pattern according to the mean

birthweight of cohort.

Discussion

Using data from 57 613 complete twin pairs from 16 coun-

tries, the present study revealed that environmental factors

shared by co-twins importantly contribute to the inter-

individual variation in birthweight, birth length and PI.

These factors also explained an important share of regional

differences in the birthweight variation, as found also in

previous studies.11,15,26 In the classical twin design, mater-

nal effects shared by co-twins, including gestational age,

would show up as a shared environmental variance. A pre-

vious international study of seven twin cohorts reported

that from 50% to 70% of the total variance in birthweight

was associated with maternal effects,15 which is close to

the relative contribution of shared environmental variance

found in our study before standardizing the results for ges-

tational age. The standardization for gestational age de-

creased in particular the shared environmental variances

for birthweight relative to the variances of birth length and

PI, suggesting that birthweight is more influenced by the

length of gestation than birth length and PI.27

The mean and total variance of birthweight and length

were lower in East Asia than in the other regions, which

corresponds with previous studies.28,29 The differences in

the total variances were especially contributed by differen-

ces in shared environmental variance. It has been suggested

that part of these maternal effects is due to maternal genes

which regulate fetal growth, possibly through the intra-

uterine environment.30,31 Heritability estimates for the

length of gestation were found to be over 30%,31,32 indi-

cating that this is a heritable trait in European ancestry

populations. Heritability of the length of gestation for

East Asian populations is presently unknown, but if these

differ from European ancestry estimates, this may partly

explain these regional differences in shared environmental

variances.

Table 2. Sample sizes, means and standard deviations of birth length (cm) and ponderal index (kg/m3) by sex, region, birth year,

and zygosity

Birth length Ponderal index

Zygosity Boys Girls Boys Girls

n Mean SD n Mean SD n Mean SD n Mean SD

All cohorts MZ 10 394 47.0 3.2 10 054 46.4 3.3 10 394 24.4 3.0 10 054 24.3 3.3

DZ 17 758 47.5 3.3 15 962 46.9 3.2 17 758 24.4 3.1 15 962 24.4 3.2

Region

Europea MZ 8614 47.1 3.3 8062 46.5 3.3 8614 24.4 3.1 8062 24.3 3.4

Europea DZ 16 040 47.6 3.3 14 276 47.0 3.3 16 040 24.4 3.2 14 276 24.4 3.3

NA and Ausb MZ 350 47.0 3.3 348 46.6 2.8 350 24.3 2.8 348 23.9 2.8

NA and Ausb DZ 540 47.9 3.1 506 46.9 3.1 540 24.0 2.9 506 24.1 3.1

East- Asiac MZ 1418 46.4 2.8 1624 45.7 2.8 1418 24.2 2.5 1624 24.6 2.7

East Asiac DZ 1096 46.2 2.9 1090 45.7 2.7 1096 24.5 2.6 1090 24.6 2.6

Birth year

1970 to 1979 MZ 2650 47.2 2.7 1300 46.5 2.5 2650 24.8 2.5 1300 25.0 2.7

1970 to 1979 DZ 2997 47.7 2.7 1785 47.1 2.5 2997 25.1 2.6 1785 25.2 2.7

1980 to 1989 MZ 1802 47.1 2.7 1936 46.5 2.9 1802 24.5 2.8 1936 24.8 2.9

1980 to 1989 DZ 2916 47.7 2.7 2862 47.0 2.7 2916 25.0 2.6 2862 25.1 2.8

1990 to 1999 MZ 4486 46.9 3.6 5160 46.3 3.5 4486 24.0 3.3 5160 24.0 3.4

1990 to 1999 DZ 8790 47.5 3.5 8422 46.9 3.4 8790 24.0 3.3 8422 24.0 3.4

2000 to 2013 MZ 1456 46.8 3.5 1658 46.1 3.5 1456 24.3 3.3 1658 24.1 3.4

2000 to 2013 DZ 3055 47.2 3.6 2893 46.5 3.4 3055 24.3 3.1 2893 24.3 3.3

NA, North America; Aus, Australia.
aEurope (eight cohorts, 23 496 twin pairs).
bNorth America and Australia (three cohorts, 872 twin pairs).
cEast Asia (two cohorts, 2614 twin pairs).
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Various maternal genes have been shown to influence

fetal growth, either directly or indirectly. A study examin-

ing genome-wide DNA methylation patterns in term hu-

man placentas showed that the patterns of DNA

methylation were significantly associated with infant

growth.33 Moreover, a multi-ancestry genome-wide associ-

ation study indicated that two loci (INS–IGF2 and RB1),

of the 60 genome-wide significant loci from maternal sour-

ces, fall within (or near) imprinted genes in fetal growth.12

If the frequencies of DNA methylation of gene and/or two

loci among Asians differ from those among European an-

cestry,34 the genetic variability in maternal characteristics

may explain some of the difference in shared

environmental variance of birthweight between European

ancestry and East Asians detected in the present study.

Mean PI was similar among boys across the geographical-

cultural regions. However, mean PI was greater in East

Asian than in European and North American and Australian

girls. Gilson et al. (2015)27 indicated that PI varied between

ethnicities. Moreover in the present study, shared environ-

mental variance differed between these regions. The smaller

shared environmental variance observed in East Asia than in

the other regions may reflect differences in maternal nutri-

tion, smoking and other environmental factors.

The means and variances of birthweight and length

were lower in the cohorts born after than before 1990. In

Figure 1. Additive genetic (grey), shared environmental (black) and unique environmental (white) variances of birth size measures before and after

standardization for gestational age (GA) by geographic-cultural region.
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recent decades, the prevalence of preterm births among sin-

gletons and twins has increased in most industrialized

countries, while at the same time perinatal mortality has

decreased, mainly because of medically indicated preterm

births.35–44 Gielen et al.44 (2010) reported that the fre-

quency of infertility treatment and caesarean section, as

well as advanced maternal age, have increased over the

years, but none of these factors influenced the secular

trends in birthweight. The decrease in birthweight and

length found in the present study may reflect the decrease

in mean length of gestation up to 32 weeks, as suggested by

Gielen et al. (2010). Another factor with respect to time

trends is the increasing survival of twin births. The survi-

vors represent different proportions of twin pregnancies,45

and these proportions might be represented differentially

in the distributions of birthweight and birth length. We

found evidence for these explanations, since the results ad-

justed for gestational age did not show differences in the

total variance of birthweight. This suggests that the in-

creasing total variation over the birth cohorts is affected by

increasing survival of babies with early gestational age. In

the analyses adjusted for gestational age, shared environ-

mental variance decreased over the birth cohorts. This may

suggest that the variation in maternal factors has decreased

at the same time as the general standard of living has

increased.

When considering how well our results can be general-

ized, the assumptions made by the twin design need to be

Figure 2. Additive genetic (grey), shared environmental (black) and unique environmental (white) variances of birth size measures before and after

standardization for gestational age (GA) by birth cohort.
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Figure 3. Total, additive genetic, shared environmental and unique environmental variances of birthweight by twin cohort. Au, Australian Twin Registry;

Bo: Boston University Twin Project; Ca, Carolina African American Twin Study of Aging; Co, Colorado Twin Registry; EF, East Flanders Prospective Twin

Survey; F12, Finntwin12; F16, Finntwin16; Ge, Gemini Study; GB, Guinea-Bissau Twin Study; Hu, Hungarian Twin Registry; It, Italian Twin Registry; Ja,

Japanese Twin Cohort; Is, Longitudinal Israeli Study of Twins; Mi, Michigan Twins Study; MinC, Minnesota Twin Family Study; MinA, Minnesota Twin

Registry; Mo, Mongolian Twin Registry; No, Norwegian Twin Registry; PETS, Peri/Postnatal Epigenetic Twins Study; Qi, Qingdao Twin Registry of

Children; Qu, Quebec Newborn Twin Study; SwA, Swedish Young Male Twins Study of Adults; SwC, Swedish Young Male Twins Study of Children;

TEDS, Twins Early Developmental Study; WJ, West Japan Twins and Higher Order Multiple Births Registry; Ne, Young Netherlands Twin Registry.
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considered. MZ twins can either share one chorion and

one amnion, or each fetus can have its own amnion, or

they can each have their own chorion and amnion as for

virtually all DZ twins. Previous Dutch and Belgian stud-

ies46,47 have reported somewhat lower correlations for

mono-chorionic than di-chorionic MZ twins, which can

lead to underestimation of additive genetic variance and

overestimation of shared environmental variance.

However, if there was extra variation because of more dis-

similar intrauterine environments of MZ twins, it should

have been seen as the higher trait variance in MZ twins,

which was not the case in our study. One explanation is

that very discordant pairs are not part of our study, be-

cause of higher neonatal mortality or other reasons. It

would be important to estimate the contributions of ge-

netic and environmental factors also by using other meth-

ods available for singleton pregnancies, to confirm how

well our twin study results can be generalized to the whole

population.

The main strength of our study is the very large sample

size, allowing the investigation of differences on the genetic

and environmental contributions to individual differences

in birth size in much more detail than in previous studies.

Pooling data from a large number of twin cohorts also per-

mits analyses by geographical-cultural regions and birth

cohorts born over 100 years. Further, we were able to ana-

lyse also birth length and PI and adjust the results for gesta-

tional age. Lack of information on gestational age, in

particular, is a major limitation in previous studies, since it

inflates shared environmental variation as demonstrated in

our study. However, countries and/or geographical-

cultural regions are not equally represented, and the data-

base is heavily weighted towards populations following the

Westernized lifestyle. There are few data available from

the Middle East and Africa, and no data from South Asia

or South America. It is also noteworthy that all countries

have different historical developments, and thus the same

birth cohorts can have been exposed to different environ-

mental factores. This may well have diluted the differences

between the birth cohorts in this study which reflects the

average variances of different countries.

In conclusion, in contrast to the small contribution of

genetic factors, environmental factors shared by co-twins

importantly contribute to the inter-individual variation in

birth size even after standardization for gestational age.

The contributions of genetic effects on birth size were simi-

lar in the geographical-cultural regions, but unique envi-

ronmental influences were slightly larger and shared

environmental influences smaller in East Asia than in the

other regions. This suggests that in the Westernized social

context, there are features increasing variation in maternal

nutrition and other maternal factors affecting birth size.

Our results thus indicate that maternal factors importantly

contribute to birth size and can then be a target for public

health interventions to improve infant health.
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