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Abstract

Background: A robust method for Mendelian randomization does not require all genetic

variants to be valid instruments to give consistent estimates of a causal parameter.

Several such methods have been developed, including a mode-based estimation method

giving consistent estimates if a plurality of genetic variants are valid instruments; i.e.

there is no larger subset of invalid instruments estimating the same causal parameter

than the subset of valid instruments.

Methods: We here develop a model-averaging method that gives consistent estimates

under the same ‘plurality of valid instruments’ assumption. The method considers a mix-

ture distribution of estimates derived from each subset of genetic variants. The estimates

are weighted such that subsets with more genetic variants receive more weight, unless

variants in the subset have heterogeneous causal estimates, in which case that subset is

severely down-weighted. The mode of this mixture distribution is the causal estimate.

This heterogeneity-penalized model-averaging method has several technical advantages

over the previously proposed mode-based estimation method.

Results: The heterogeneity-penalized model-averaging method outperformed the mode-

based estimation in terms of efficiency and outperformed other robust methods in terms

of Type 1 error rate in an extensive simulation analysis. The proposed method suggests

two distinct mechanisms by which inflammation affects coronary heart disease risk, with

subsets of variants suggesting both positive and negative causal effects.

Conclusions: The heterogeneity-penalized model-averaging method is an additional ro-

bust method for Mendelian randomization with excellent theoretical and practical
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properties, and can reveal features in the data such as the presence of multiple causal

mechanisms.

Key words: Mendelian randomization, instrumental variables, robust methods, invalid instruments, model

averaging

Introduction

Mendelian randomization is an epidemiological approach

for making causal inferences from observational data by us-

ing genetic variants as instrumental variables.1,2 If a genetic

variant is a valid instrument for the risk factor, then any as-

sociation of the variant with the outcome is indicative of a

causal effect of the risk factor on the outcome.3 To be a

valid instrumental variable, a genetic variant must be:

• IV1: associated with the risk factor (relevance);

• IV2: independent of any confounder of the risk factor–

outcome association (exchangeable);

• IV3: independent of the outcome conditional on the risk

factor and confounders (exclusion restriction).

Violation of any of these assumptions means that an in-

strumental variable is not valid.

When there are multiple genetic variants that are all

valid instrumental variables, and under certain parametric

assumptions (most notably that all relationships between

variables are linear and there is no effect modification), an

efficient test of the causal null hypothesis as the sample

size increases can be obtained using the two-stage least-

squares method (based on individual-level data)4 or equiv-

alently the inverse-variance weighted (IVW) method (based

on summarized data).5 With uncorrelated instruments, the

IVW estimate [equal to the two-stage least-squares (2SLS)

estimate] is a weighted mean of the Wald (or ratio)

estimates obtained separately from each individual instru-

mental variable.

Whereas the 2SLS/IVW estimator is asymptotically effi-

cient, it is not robust to violations of the instrumental vari-

able assumptions. Specifically, if a genetic variant is a valid

instrument, then the ratio estimate based on that variant is

a consistent estimate of the causal effect. Hence the

weighted mean of these ratio estimates is a consistent esti-

mate of the causal effect if all genetic variants are valid

instruments, but not in general if at least one variant is not

a valid instrument.6 This has motivated the development of

robust methods for instrumental variable analysis based on

only a subset of the genetic variants being valid instru-

ments. For example, Kang et al.7 developed a method using

L1-penalization that gives consistent estimates if at least

50% of the instrumental variables are valid. Bowden et al.8

considered simple and weighted median methods that again

are consistent if at least 50% of the candidate instrumental

variables are valid; the simple median method is a median

of the variant-specific ratio estimates. Most recently, Guo

et al.9 introduced a method that provides a consistent esti-

mate if a plurality of the candidate instruments are valid,

meaning that the largest subset of genetic variants with the

same ratio estimate (in a large sample size) comprises the

valid instruments. Invalid instruments may have different

ratio estimates asymptotically, but the assumption is that

there is no larger subset of invalid instruments with the

Key Messages

• We propose a heterogeneity-penalized model-averaging method that gives consistent causal estimates if a weighted

plurality of the genetic variants are valid instruments.

• The method calculates causal estimates based on all subsets of genetic variants, and up-weights subsets containing

several genetic variants with similar causal estimates.

• The method is asymptotically efficient and does not rely on bootstrapping to obtain a confidence interval, nor is the

confidence interval constrained to be symmetric.

• In particular, the confidence interval can include multiple disjoint intervals, suggesting the presence of multiple causal

mechanisms by which the risk factor influences the outcome.

• The method can incorporate biological knowledge to up-weight the contribution of genetic variants with stronger

plausibility of being valid instruments.
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same ratio estimate than the subset of valid instruments.

Intuitively, this means that the true causal estimate can be

identified asymptotically as the mode of the variant-specific

ratio estimates. In parallel, Hartwig et al.10 have developed

a modal-based estimation method that can be implemented

using summarized data and provides a consistent estimate

under this plurality assumption, which they term the ‘zero

modal pleiotropy assumption’ (ZEMPA).

The idea of a modal-based estimate is an attractive one

due to the high breakdown point of the mode as an estima-

tor and its insensitivity to extreme values. However, there

are several issues with the implementations of Guo et al.

and Hartwig et al.’s methods that could be improved

upon. In particular, Hartwig et al.’s implementation of this

approach fits a kernel-density-smoothed function to the

variant-specific ratio estimates, and calculates confidence

intervals based on the median absolute deviation of a boot-

strapped distribution. Varying the bandwidth of the kernel

density can result in substantial changes to the estimate

and its confidence interval, as demonstrated later in this

paper. Guo et al.’s individual-level data method is imple-

mented by pairwise comparison of estimates from different

candidate instruments. When two genetic variants have

similar estimates, they ‘vote’ for each other. The overall es-

timate is based on the set of genetic variants with the great-

est number of these votes. However, as these binary votes

are determined by a fixed threshold, estimates from the

Guo et al. method (called ‘two-stage hard thresholding’)

will be sensitive to small changes in the data when the com-

parison measures are close to the threshold.

In this paper, we propose an alternative way of con-

structing a density function for the causal effect estimate as

a heterogeneity-penalized weighted mixture distribution.

This approach up-weights estimates that are supported by

multiple genetic variants, but severely down-weights hetero-

geneity. We show that the mode of this distribution will be

an asymptotically consistent estimator of the causal effect if

a weighted plurality of the genetic variants are valid instru-

ments. We first introduce this method, and then we demon-

strate its performance in a simulation study compared with

other robust methods. We consider its behaviour in two ap-

plied examples. Finally, we discuss the results of this paper

and their relevance to applied research. In particular, we con-

sider how to incorporate biological knowledge into the

weighting procedure. Software code for implementing the

proposed method is provided in Supplementary Material A.1,

available as Supplementary data at IJE online.

Methods

In this section, we first introduce the data requirements

and parametric assumptions necessary for summarized

data Mendelian randomization. We then recall the IVW

method, and subsequently introduce the model-averaging

procedure proposed in this paper.

Data requirements and assumptions

For practical reasons, many modern Mendelian randomi-

zation investigations are conducted using summarized data

on genetic associations with the risk factor (X) and out-

come (Y) taken from univariable regression models of

the risk factor (or outcome) regressed on the genetic var-

iants in turn.11 We assume, as is common in applied prac-

tice, that the genetic variants are all uncorrelated (not in

linkage disequilibrium). For each genetic variant Gj

(j ¼ 1;2; . . . ; J), we assume that we have an estimate b̂Xj of

the association of the genetic variant with the risk factor

obtained from linear regression. Similar association esti-

mates are assumed to be available for the outcome (b̂Yj).

The standard error of the association estimate with the

outcome is seðb̂YjÞ. If any of the variables is binary, then

these summarized association estimates may be replaced

with association estimates from logistic regression; as has

been shown previously, the interpretation of the causal es-

timate in this case is not clear due to non-collapsibility, but

estimates still represent valid tests of the causal null hy-

pothesis.12,13 See Bowden et al.14 for a more detailed expo-

sition of the parametric assumptions typically made in

summarized data Mendelian randomization investigations

that are also made here.

IVW method

The ratio estimate based on genetic variant j is

ĥj ¼ b̂Yj=b̂Xj, with standard error taken as seðĥjÞ ¼ seðb̂YjÞ
=b̂Xj (the leading order term from the delta expansion for

the standard error of the ratio of two variables). The IVW

estimate is a weighted mean of the ratio estimates:

ĥIVW ¼
P

j ĥjseðĥjÞ�2P
j seðĥjÞ�2

¼
P

j b̂Yjb̂Xjseðb̂YjÞ�2

P
j b̂

2

Xjseðb̂YjÞ�2
: (1)

The same estimate can be obtained from the weighted

regression:

b̂Yj ¼ hIVW b̂Xj þ �j; �j � Nð0; seðb̂YjÞ2Þ: (2)

For uncorrelated variants, this estimate is also equiva-

lent to the estimate obtained from two-stage least-

squares—a method typically used for instrumental variable

analysis with individual-level data.5 These estimates do not

take into account uncertainty in the genetic associations
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with the risk factor; however, these associations are typi-

cally more precisely estimated than those with the out-

come, and ignoring this uncertainty does not lead to

inflated Type 1 error rates in realistic scenarios.15 This is

because genetic associations with the risk factor are typi-

cally estimated in larger sample sizes (as they are estimated

in cross-sectional datasets, whereas associations with dis-

ease outcomes are estimated in case–control studies), be-

cause risk factors are continuous (outcomes are often

binary) and because genetic variants are chosen as those

having strong associations with the risk factor. If these

conditions are not met, then alternative approaches are

possible.16 Additionally, we assume that the standard

errors of genetic associations are known without error; as

associations are typically estimated in large sample sizes,

this is usually a reasonable assumption.

The standard error of the IVW estimate based on a

fixed-effect meta-analysis model is:

seðĥIVWÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j seðĥjÞ�2
q ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j b̂
2

Xjseðb̂YjÞ�2
q : (3)

We also consider a multiplicative random-effects model

based on the weighted linear regression above:

b̂Yj ¼ hIVW b̂Xj þ �j; �j � Nð0;w2seðb̂YjÞ2Þ; (4)

where w is the residual standard error. Most statistical soft-

ware packages estimate this additional parameter by de-

fault in a weighted linear regression model. A fixed-effect

analysis can be performed by fixing the value of w to 1.17

To ensure that the standard error of the IVW estimate is

never more precise than that from a fixed-effect analysis,

we allow w to take values above 1 (corresponding to over-

dispersion of the genetic association estimates), but not

values below 1 (corresponding to under-dispersion). If all

genetic variants estimate the same causal parameter, then

w should tend to 1 asymptotically.

Heterogeneity-penalized model-averaging

method

We seek to define a function with the property that the

mode (the maximum value) of the function will tend to the

true causal effect when a plurality of the genetic variants

are valid instruments. For making statistical inferences, it

is convenient if this function is a likelihood for the causal

effect parameter. We present the method in a somewhat in-

formal way; a more technical explanation is provided in

Supplementary Material A.2, available as Supplementary

data at IJE online. We consider a model-averaging proce-

dure with 2J � J � 1 candidate models, where J is the total

number of genetic variants. Each model corresponds to

one of the 2J � J � 1 subsets of genetic variants (subsets in-

cluding 0 or 1 genetic variants are ignored throughout).

Our likelihood function is a mixture of 2J � J � 1 normal

distributions, where the kth normal distribution has mean

and standard deviation corresponding to the IVW estimate

and standard error based on all the variants in the kth

subset:

ĥIVW;k ¼
P

j2rk
ĥjseðĥjÞ�2P

j2rk
seðĥjÞ�2

(5)

seðĥIVWr;kÞ ¼
ŵkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j2rk
seðĥjÞ�2

q ; (6)

where rk ¼ ðrk1;rk2; . . . ; rkJÞ : rkj 2 f0; 1g represents a

subset of the genetic variants, j 2 rk when rkj ¼ 1 (this

means that ĥIVW;k is the IVW estimate based on all the var-

iants in subset k) and

ŵk ¼ maxð1; 1

K� 1

X
j2rk

seðb̂YjÞ�2 ðb̂Yj � ĥIVW;k b̂XjÞ2Þ;

(7)

where K is the number of variants included in subset k.

The random-effects versions of the standard errors

seðĥIVWr;kÞ are used in this mixture distribution to appro-

priately allow for heterogeneity between the variant-

specific ratio estimates in the overall causal estimate (hence

the additional subscripted r).

The weight given to each of these normal distributions

is calculated as:

wk ¼
Y
j2rk

seðĥjÞ�1 exp �ðĥj � ĥIVW;kÞ2

2seðĥjÞ2

" #
: (8)

Aside from the constant term, this is a distance measure

that will be greater when more variants are included in the

subset k due to the seðĥjÞ�1 terms, but they will reduce

sharply if there is more heterogeneity between the variant-

specific ratio estimates for variants in the subset than

would be expected due to statistical uncertainty alone if all

variants estimated the same causal parameter. If the

variant-specific ratio estimates for variants in a particular

subset substantially differ, then the weight for that subset

will be low. Note that the reason for excluding subsets

with one variant is that heterogeneity cannot be estimated

for these subsets. We then normalize the weights so that

they sum to 1:

w0k ¼
wkP
k wk

: (9)
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The causal estimate is the mode of the likelihood of the

mixture of normal distributions using these weights:

ĥMODE¼ argmax
h

X
k

w0kseðĥIVWr;kÞ�1 exp �ðh� ĥIVW;kÞ2

2seðĥIVWr;kÞ2

" #
:

(10)

We use this likelihood for making inferences about the

causal effect h.

Consistency and efficiency

In the asymptotic limit for a fixed number of genetic var-

iants but as the sample size tends to infinity (and hence the

standard errors of the ratio estimates decrease to 0), the

weighted mixture distribution (i.e. the likelihood for h)

tends to a series of spikes about the IVW estimates based

on each subset of variants. The height of each spike

depends on the total weight of variants that have that

causal estimate, and the tallest spike is the estimate with

the greatest weight of evidence. The modal estimate will be

the IVW estimate corresponding to the subset k of variants

all having the same ratio estimate which has the greatest

product of the inverse standard errors of the ratio estimatesQ
j2rk

seðĥjÞ�1. Therefore, a consistent estimate is obtained

under a Hartwig’s weighted ZEMPA assumption.10 The in-

tuition of this assumption is that a weighted plurality of

the genetic variants is required to be valid instruments (as

opposed to median-based methods that require a majority

or weighted majority of variants to be valid instruments).

The term ‘plurality’ is taken from the terminology of elec-

tions; a political party winning more votes than any other

is said to have a plurality of the votes. We note the similar-

ity between this procedure and maximum likelihood esti-

mation, which gives the mode of a likelihood as its point

estimate.

Under this assumption, the heterogeneity-penalized

model-averaging method is asymptotically efficient, as the

weight of the IVW estimate based on all the valid instru-

ments will increase to 1 as the sample size tends to infinity.

This can be seen as the weight for any subset containing

variants with different ratio estimates will decrease to 0

rapidly. The weight of the largest subset of variants

with the same ratio estimates will be the greatest of all sub-

sets by the ZEMPA assumption, and the ratio of this

weight to all other weights will increase to infinity as the

sample size increases. However, asymptotic efficiency is

not necessarily an important property in practice, as infi-

nite sample sizes are rarely encountered in applied investi-

gations. The model-averaging estimate should be efficient

for finite sample sizes when several variants have similar

ratio estimates.

Inferences on the weighted model-averaged

distribution

We perform causal inferences based on the model-

averaged distribution using a generalized likelihood ratio

test to construct a confidence interval. We take twice the

log-likelihood function, and construct a confidence interval

consisting of all points for which twice their log-likelihood

is within a given vertical distance from the modal estimate.

For a 95% confidence interval, this distance is 3.841 (95th

percentile of a chi-squared distribution with one degree of

freedom). This is based on the result that twice the differ-

ence in the log-likelihood at the estimate and at the true

value of the parameter has a chi-squared distribution (here

with one degree of freedom as the parameter is one-dimen-

sional). This results in inference without requiring resam-

pling techniques (such as bootstrapping). The confidence

interval is not guaranteed to be symmetrical or to be a sin-

gle range of values (see later for an example of a bimodal

mixture distribution resulting in a composite confidence

interval).

Practically, the modal estimate and confidence interval

were obtained using a grid search approach. The likelihood

was evaluated at a series of points (in the simulation study,

from –1 to þ1 at intervals of 0.001—so estimates and con-

fidence intervals were estimated to three decimal places).

The modal estimate was taken as the point with the great-

est value of the likelihood function, and the 95% confi-

dence interval was taken as the set of points for which

twice the log-likelihood was within 3.841 of the twice the

log-likelihood at the modal estimate. If the log-likelihood

function is multimodal, this may result in a composite con-

fidence interval that consists of more than one range of

values.

Simulation study

To consider the expected performance of this proposed

method in realistic situations as well as in comparison to

alternative robust methods, we perform a simulation study.

We consider four scenarios:

1. no pleiotropy—all genetic variants are valid instruments;

2. balanced pleiotropy (violation of assumption IV3)—

some genetic variants have direct (pleiotropic) effects

on the outcome, and these pleiotropic effects are

equally likely to be positive as negative;

3. directional pleiotropy (violation of IV3)—some genetic

variants have direct (pleiotropic) effects on the out-

come, and these pleiotropic effects are simulated to be

positive;

4. pleiotropy via a confounder (violation of IV2)—some

genetic variants have pleiotropic effects on the outcome

1246 International Journal of Epidemiology, 2018, Vol. 47, No. 4



via a confounder. These pleiotropic effects are corre-

lated with the instrument strength.

In the first three scenarios, the Instrument Strength

Independent of Direct Effect (InSIDE) assumption6 is satis-

fied; in Scenario 4, it is violated. This is the assumption re-

quired for the MR-Egger method to provide consistent

estimates. This choice of scenarios enables us to explore

cases where the consistency assumptions for the different

methods are satisfied and violated to provide a fair com-

parison between different methods.

We simulate data for a risk factor X, outcome Y, con-

founder U (assumed unmeasured) and J genetic variants

Gj; j ¼ 1; . . . ; J. Individuals are indexed by i. The data-

generating model for the simulation study is as follows:

Ui ¼
XJ

j¼1

fjGij þ �Ui (11)

Xi ¼
XJ

j¼1

cjGij þUi þ �Xi

Yi ¼
XJ

j¼1

ajGij þ hXi þUi þ �Yi

Gij � Binomialð2;0:3Þ independently for all j ¼ 1; . . . ; J

�Ui; �Xi; �Yi � Nð0;1Þ independently

cj � Uniformð0:03; 0:1Þ independently for all j ¼ 1; . . . ; J:

The risk factor and outcome are positively correlated

due to confounding even when the causal effect h is 0

through the unmeasured confounder U. The genetic var-

iants are modelled as single-nucleotide polymorphisms

(SNPs) with a minor allele frequency of 30%. A total of

J¼ 10 genetic variants are used in each analysis. As the

proposed model-averaging method calculates weights for

all 2J � J � 1 possible models, the model scales exponen-

tially with the number of variants, and so including more

variants was not computationally feasible in a simulation

setting. For each of Scenarios 2 to 4, we considered cases

with two, three and five invalid instruments. For valid

instruments, the aj and fj parameters were set to 0. For in-

valid instruments, the aj parameters were either drawn

from a uniform distribution on the interval from –0.1 to

0.1 (Scenario 2) or from 0 to 0.1 (Scenario 3) or set to 0

(Scenario 4). The fj parameters were either set to 0

(Scenarios 2 and 3) or drawn from a uniform distribution

on the interval from –0.1 to 0.1 (Scenario 4). The causal

effect h was either set to 0 (no causal effect) or 0.2 (positive

causal effect). The cj parameters were drawn from a uni-

form distribution on 0.03 to 0.1, meaning that the average

value of the R2 statistic for the 10 variants across simulated

datasets was 1.0% (from 1.1 to 1.4% in Scenario 4) corre-

sponding to an average F statistic of 20.4 (from 23.4 to

27.5 in Scenario 4).

In total, 10 000 datasets were generated in each sce-

nario. We considered a two-sample setting in which genetic

associations with the risk factor and outcome were esti-

mated on non-overlapping groups of 20 000 individuals.

We compared estimates from the proposed heterogeneity-

penalized model-averaging method with those from a vari-

ety of methods: the standard IVW method, MR-Egger6

(both using random-effects), the weighted and simple me-

dian methods8 and the mode-based estimate (MBE) of

Hartwig et al.10 Each of the methods was implemented us-

ing summarized data only.

Results

Results for all of the methods are provided in Tables 1

(Scenario 1) and 2 (Scenarios 2 to 4). We provide the mean

estimate, the standard deviation of estimates, the mean

standard error (Table 1 only) and the empirical power of

the 95% confidence interval (the proportion of 95% confi-

dence intervals excluding the null; this is the Type 1 error

rate with a null causal effect). Results for the MBE method

are only provided for 1000 simulated datasets per scenario.

This is for computational reasons—the MBE method took

around 20 times longer to run than all the other methods

put together. Results for the MBE method correspond to

simple (unweighted) and weighted versions of the method

not assuming NOME (no measurement error) with the rec-

ommended bandwidth parameter from the modified

Silverman rule (/ ¼ 1)18; in total, 12 different versions of

the MBE method are proposed by Hartwig et al.

Table 1 shows the efficiency of the model-averaging

method when all genetic variants are valid instruments.

The method is considerably more efficient than the MR-

Egger and MBE methods, with less variable estimates and

greater power to detect a causal effect, and similar in effi-

ciency to the median-based methods. Coverage under the

null is conservative for all methods, but particularly for the

MBE and model-averaging methods.

Table 2 shows the robustness of the model-averaging

method in a range of invalid instrument scenarios. Type 1

error rates are well controlled (less than 7.5%) in all sce-

narios when 2 or 3 out of the 10 variants are invalid, and

generally below those of other methods even when 5 var-

iants are invalid. Compared with the model-averaging

method, Type 1 error rates with five invalid instruments

International Journal of Epidemiology, 2018, Vol. 47, No. 4 1247



for the MR-Egger method are lower in Scenario 3; how-

ever, they are far higher in Scenario 4, and the power of

the MR-Egger method to detect a positive causal effect was

low throughout. Equally, Type 1 error rates are slightly

lower for the simple median method in Scenario 4, but

higher in Scenario 3. The empirical power of the model-

averaging method to detect a causal effect was generally

lower than that for other methods. However, when a

method suffers from Type 1 error inflation, this compari-

son is not a fair one. The power of the model-averaging

method to detect a positive causal effect was not domi-

nated by any method that had well-controlled Type 1 error

rates. Indeed, in Scenario 2, the power of the model-

averaging method even exceeded that of the IVW method

with three and five invalid variants. This is because models

including the invalid variants are down-weighted in the

model-averaging method, whereas these variants inflate

the standard error in the IVW method. Similar patterns

were observed in the bias of estimates, with the model-

averaging method generally having low bias. Although

some methods were less biased in particular scenarios, no

method was less biased across all scenarios.

In comparison to the MBE method of Hartwig et al.,

Type 1 error rates for the model-averaging method were

slightly higher than those for the simple MBE method, but

lower than those for the weighted MBE method, particu-

larly in Scenario 4, where the Type 1 error rate for the

weighted MBE method was not well controlled even with

only two invalid instruments. Power to detect a positive

causal effect was greater for the model averaging than for

the simple MBE method in all cases by at least 10%, and

greater than for the weighted MBE method in all cases ex-

cept in Scenario 4, where the weighted MBE method had

inflated Type 1 error rates.

In an additional simulation, we considered the perfor-

mance of the model-averaging method with six invalid

instruments using the same sample size and a sample size

of 100 000 (five times the original sample size) for each of

the gene–risk factor and gene–outcome associations

(Supplementary Table A1, available as Supplementary data

at IJE online). Although all methods performed poorly

with the original sample size, in comparison with the IVW

and weighted median methods, for which bias was almost

identical for the two sample sizes, bias for the model-

averaging method reduced sharply as the sample size

increased. In comparison with the MBE method, the

model-averaging method performed similarly well with the

original sample size, but the improvement in bias and Type

1 error rate with the increased sample size was much better

for the model-averaging method, with little improvement

in Type 1 error rates for the MBE method. In a further sim-

ulation, we considered the performance of the model-

averaging method with four invalid instruments, but in

which all the invalid instruments were simulated to have

the same pleiotropic effect on the outcome (Supplementary

Table A2, available as Supplementary data at IJE online).

This resulted in a confidence interval that was not a single

range of values for around 18% of simulated datasets with

the majority of variants having a null causal effect. Despite

this, the median estimate from the model-averaging

Table 1. Mean, standard deviation (SD), mean standard error (mean SE) of estimates and empirical power (%) for Scenario 1 (all

variants valid instruments)

Method Scenario 1: all instruments valid

Mean SD Mean SE Power

Null causal effect: h ¼ 0

Inverse-variance weighted 0.001 0.072 0.077 3.9

MR-Egger 0.003 0.223 0.236 3.6

Simple median 0.001 0.092 0.105 2.1

Weighted median 0.002 0.086 0.096 2.8

Simple mode-based estimate (Hartwig) 0.003 0.113 0.149 0.3

Weighted mode-based estimate (Hartwig) 0.002 0.098 0.128 1.2

Heterogeneity-penalized model averaging 0.001 0.080 – 1.4

Positive causal effect: h ¼ þ0:2

Inverse-variance weighted 0.191 0.080 0.086 61.9

MR-Egger 0.130 0.250 0.263 7.0

Simple median 0.201 0.104 0.119 39.0

Weighted median 0.185 0.096 0.109 39.9

Simple mode-based estimate (Hartwig) 0.195 0.136 0.167 18.5

Weighted mode-based estimate (Hartwig) 0.172 0.115 0.142 22.4

Heterogeneity-penalized model averaging 0.188 0.090 – 38.8
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Table 2. Mean, standard deviation (SD) of estimates and empirical power (%) for Scenarios 2, 3 and 4. MBE, mode-based esti-

mate of Hartwig et al.10

Method Two invalid variants Three invalid variants Five invalid variants

Mean SD Power Mean SD Power Mean SD Power

Null causal effect: h ¼ 0

Scenario 2: Balanced pleiotropy, InSIDE satisfied

Inverse-variance weighted –0.001 0.140 6.3 0.002 0.163 7.5 0.000 0.202 7.8

MR-Egger 0.001 0.436 7.7 0.004 0.509 8.2 0.007 0.629 9.3

Simple median 0.000 0.113 3.8 0.002 0.129 5.5 0.000 0.175 10.2

Weighted median 0.001 0.109 5.2 0.001 0.125 7.5 0.000 0.178 15.0

Simple MBE 0.000 0.126 1.0 0.008 0.131 1.8 0.006 0.196 4.0

Weighted MBE 0.004 0.105 2.4 0.000 0.113 3.1 0.005 0.172 8.3

Model averaging 0.000 0.100 2.4 0.000 0.115 3.2 –0.001 0.187 6.0

Scenario 3: Directional pleiotropy, InSIDE satisfied

Inverse-variance weighted 0.136 0.101 10.8 0.206 0.113 20.9 0.342 0.131 52.2

MR-Egger 0.004 0.421 7.8 0.002 0.479 8.2 0.011 0.539 8.5

Simple median 0.065 0.104 5.2 0.113 0.118 11.1 0.273 0.172 44.5

Weighted median 0.054 0.104 6.9 0.096 0.123 13.1 0.225 0.182 40.9

Simple MBE 0.020 0.122 1.7 0.044 0.138 2.3 0.146 0.220 9.4

Weighted MBE 0.013 0.102 2.9 0.041 0.123 5.1 0.114 0.177 12.8

Model averaging 0.021 0.098 2.6 0.043 0.121 3.9 0.133 0.214 11.8

Scenario 4: Pleiotropy via confounder, InSIDE violated

Inverse-variance weighted 0.104 0.125 19.4 0.150 0.135 26.2 0.232 0.140 38.3

MR-Egger 0.240 0.433 35.9 0.304 0.440 39.0 0.401 0.411 40.7

Simple median 0.023 0.111 4.1 0.044 0.125 6.5 0.095 0.164 16.9

Weighted median 0.090 0.144 20.8 0.143 0.164 34.1 0.247 0.178 60.5

Simple MBE 0.018 0.133 2.6 0.043 0.155 4.5 0.091 0.194 12.5

Weighted MBE 0.072 0.171 16.4 0.128 0.197 28.2 0.216 0.204 47.6

Model averaging 0.023 0.118 4.3 0.050 0.146 7.4 0.139 0.206 22.1

Positive causal effect: h ¼ þ0:2

Scenario 2: Balanced pleiotropy, InSIDE satisfied

Inverse-variance weighted 0.193 0.143 33.3 0.188 0.168 26.5 0.195 0.206 19.5

MR-Egger 0.129 0.452 9.4 0.137 0.526 9.6 0.135 0.644 8.9

Simple median 0.204 0.127 34.6 0.200 0.143 33.2 0.206 0.191 33.0

Weighted median 0.186 0.122 36.4 0.186 0.140 36.2 0.190 0.188 37.0

Simple MBE 0.198 0.139 17.2 0.193 0.156 19.5 0.202 0.205 18.1

Weighted MBE 0.173 0.118 21.1 0.166 0.132 22.7 0.154 0.166 21.9

Model averaging 0.189 0.115 31.8 0.189 0.135 29.5 0.193 0.207 25.6

Scenario 3: Directional pleiotropy, InSIDE satisfied

Inverse-variance weighted 0.329 0.110 72.7 0.397 0.121 79.8 0.532 0.140 92.1

MR-Egger 0.138 0.432 9.5 0.140 0.486 9.8 0.136 0.552 9.4

Simple median 0.274 0.120 55.0 0.328 0.136 65.7 0.489 0.186 87.2

Weighted median 0.247 0.117 55.3 0.292 0.137 65.0 0.419 0.189 82.6

Simple MBE 0.216 0.141 20.8 0.254 0.154 26.1 0.356 0.226 39.3

Weighted MBE 0.187 0.117 24.8 0.211 0.122 31.0 0.283 0.165 48.0

Model averaging 0.218 0.116 41.8 0.243 0.136 43.9 0.339 0.218 52.6

Scenario 4: Pleiotropy via confounder, InSIDE violated

Inverse-variance weighted 0.298 0.131 63.5 0.343 0.140 66.6 0.426 0.146 74.4

MR-Egger 0.396 0.449 42.8 0.473 0.454 48.4 0.586 0.415 51.9

Simple median 0.232 0.125 42.7 0.252 0.139 45.7 0.304 0.176 53.2

Weighted median 0.285 0.156 62.1 0.338 0.175 71.5 0.444 0.184 85.4

Simple MBE 0.212 0.145 22.0 0.237 0.155 25.2 0.290 0.175 37.2

Weighted MBE 0.245 0.173 37.1 0.293 0.195 46.8 0.383 0.202 65.4

Model averaging 0.226 0.137 40.5 0.257 0.167 42.7 0.348 0.217 52.3
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method was close to unbiased, and Type 1 error rates were

at or below nominal levels.

Applied examples

We provide further illustration of the proposed model-

averaging method and other robust methods in two applied

examples. In the first example, all the variants have similar

ratio estimates whereas, in the second example, there is

marked heterogeneity in the variant-specific ratio estimates.

Further detail about the applied examples is given in

Supplementary Material A.5, available as Supplementary

data at IJE online.

Low-density lipoprotein cholesterol and coronary

artery disease (CAD) risk

We consider the causal relationship between low-density li-

poprotein (LDL) cholesterol and CAD risk based on eight

genetic variants having strong biological links with LDL-

cholesterol. Each of these variants is located in a gene region

that either encodes a biologically relevant compound to

LDL-cholesterol or is a proxy for an existing or proposed

LDL-cholesterol-lowering drug. Genetic associations with

LDL-cholesterol were obtained from the Global Lipids

Genetics Consortium’s 2013 data release19 and associations

with CAD risk from CARDIoGRAMplusC4D’s 2015 data

release.20 These associations are displayed graphically in

Figure 1 (left panel). Weights for the variants and subsets of

variants are displayed in Supplementary Figure A1, available

as Supplementary data at IJE online.

Inflammation and CAD risk

We also consider the causal relationship between inflam-

mation and CAD risk based on 17 genetic variants previ-

ously demonstrated to be associated with C-reactive

protein (CRP) at a genome-wide level of statistical signifi-

cance.21 The biological rationale for this analysis is not to

evaluate the causal role of CRP, as several of these genetic

variants are not specifically associated with CRP and hence

are not valid instruments as they violate the exclusion re-

striction assumption (they have an effect on the outcome

not via CRP). The causal role of CRP can be evaluated in a

Mendelian randomization analysis using genetic variants

in the CRP gene region—the region that encodes CRP.22

Rather, the biological rationale for this analysis considers

CRP as a proxy measure for inflammation more generally

and investigates whether there are any consistent causal

relationships between inflammation and CAD risk.

Genetic associations with CRP are obtained from Dehghan

et al.21 and associations with CAD risk from the

CARDIoGRAM consortium.23 These associations are dis-

played graphically in Figure 1 (right panel).

Results

Results for both examples are presented in Table 3.

Estimates represent log odds ratios for CAD per 1-mmol/L

increase in LDL-cholesterol or per unit increase in

log-transformed CRP. For the MBE method, we present

estimates for a range of values of the bandwidth in the

kernel-density estimator representing the suggested band-

width from the modified Silverman rule (/ ¼ 1), half the
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Figure 1. Genetic associations with risk factor and outcome (lines are

95% confidence intervals) for: (left) 8 genetic variants having biological

links to LDL-cholesterol; (right) 17 genetic variants associated with C-re-

active protein (CRP) at a genome-wide level of significance.
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suggested bandwidth (/ ¼ 0:5) and one-quarter of the sug-

gested bandwidth (/ ¼ 0:25), as well as for simple and

weighted versions of the method.

In the first example, all of the methods suggest a posi-

tive causal effect. In the model-averaging method, the

weight of the estimate including all eight variants is 12.1%

and estimates with seven or more variants comprise 42.1%

of the total weight (compared with 0.4% and 3.6% of

the weight with no heterogeneity penalization—equal

weights). The width of the confidence interval from the

model-averaging method is similar to that from the

weighted median method, and narrower than that from all

other methods except for the standard IVW method.

Confidence intervals from the MBE method are consider-

ably wider than those from other methods, and vary in size

by up to 40% for the different choices of bandwidth con-

sidered here. The improvement in efficiency of our method

compared with the best-case estimate from the MBE

method is a 1.54-fold reduction in the standard error.

Assuming that the standard error decreases proportionally

as the square root of the sample size, this improvement

would correspond to including an additional 98 000 cases

and 154 000 controls in the analysis. In the second exam-

ple, the methods give varied estimates. In particular, the

simple MBE method gives a positive estimate, whereas the

weighted MBE method gives a negative estimate with a

confidence interval that excludes 0. In contrast, the model-

averaging method gives a negative estimate, but a confi-

dence interval that includes both negative and positive

values, although excludes 0—it includes two disjoint

ranges of values. Again, the precision of the MBE estimates

varied for different choices of bandwidth, in the most ex-

treme comparison by almost a factor of two.

Figure 2 shows the mixture distributions of the IVW

estimates based on all subsets of genetics variants using

both equal weights (dashed line) and heterogeneity-

penalized weights (solid line) from the model-averaging

method. For the first example, the equally and penalized

weighted distributions are similar, as the IVW estimates

based on all subsets of variants are similar. For the second

example, the heterogeneity-penalized distribution differs

substantially from distribution using equal weights and is

bimodal, indicating that there are groups of variants hav-

ing similar weight of evidence supporting both a positive

and a negative causal effect, and suggesting that there are

causal mechanisms linked with inflammation that have

both protective and harmful effects on CAD risk. These

results could be driven by different inflammatory risk fac-

tors that are causally upstream of CRP and have different

directions of effect on the outcome. This explains the com-

posite confidence interval including both positive and neg-

ative values. Only the model-averaging method is able to

capture this feature of the data.

Discussion

The aim of this manuscript was to develop a mode-based

estimation method that provides a consistent estimate of

the causal effect under the assumption that a plurality of

the genetic variants are valid instruments. Although our

method is not the first to provide consistent estimates

under this assumption, we believe that our method has sev-

eral technical advantages over previously proposed meth-

ods. In comparison with the MBE method proposed by

Hartwig et al., our method: (i) does not rely on the specifi-

cation of a bandwidth parameter; (ii) makes inferences that

Table 3. Estimates (standard errors, SE) and 95% confidence intervals (CI) from a variety of methods for applied examples.

MBE, mode-based estimate of Hartwig et al.10

Risk factor: LDL-cholesterol C-reactive protein

Method Estimate (SE) 95% CI Estimate (SE) 95% CI

Inverse-variance weighted 0.585 (0.044) 0.499, 0.671 –0.135 (0.102) –0.334, 0.065

MR-Egger 0.611 (0.100) 0.415, 0.807 –0.223 (0.198) –0.611, 0.165

Simple median 0.561 (0.067) 0.429, 0.693 0.118 (0.155) –0.187, 0.422

Weighted median 0.585 (0.057) 0.473, 0.697 –0.303 (0.108) –0.515, –0.092

Simple MBE (/ ¼ 1) 0.522 (0.105) 0.316, 0.727 0.295 (0.372) –0.433, 1.023

Simple MBE (/ ¼ 0:5) 0.700 (0.136) 0.434, 0.966 0.285 (0.502) –0.698, 1.269

Simple MBE (/ ¼ 0:25) 0.699 (0.147) 0.411, 0.987 0.306 (0.510) –0.694, 1.305

Weighted MBE (/ ¼ 1) 0.686 (0.096) 0.498, 0.875 –0.407 (0.152) –0.705, –0.108

Weighted MBE (/ ¼ 0:5) 0.697 (0.140) 0.423, 0.971 –0.458 (0.112) –0.678, –0.238

Weighted MBE (/ ¼ 0:25) 0.696 (0.140) 0.421, 0.970 –0.472 (0.218) –0.898, –0.045

Heterogeneity-penalized model averaginga 0.598 0.475, 0.718 –0.441 –0.602, –0.257 and 0.038, 0.352b

aThe heterogeneity-penalized model-averaging method does not estimate a standard error. For the risk factor LDL-cholesterol, and assuming normality, the

standard error would be 0.062.
bThe confidence interval in this case is the union of two disjoint ranges.
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do not rely on resampling methods; (iii) makes no asymp-

totic assumption about the distribution of the causal esti-

mate for making inferences, in particular allowing

confidence intervals to be asymmetric and to span multiple

ranges; (iv) is asymptotically efficient, and should be effi-

cient in finite samples, as the method seeks to up-weight

the IVW estimate based on the largest number of variants

with homogeneous ratio estimates. One particular concern

with the MBE method is that the precision of the estimate

is highly variable, depending on the choice of bandwidth

parameter. There would be a great temptation as an ap-

plied researcher to perform the method for a variety of

values of the bandwidth parameter and choose the band-

width parameter corresponding to the most desirable

estimate.

The proposed heterogeneity-penalized model-averaging

method also outperformed Hartwig’s method in the simu-

lation study, and in the applied examples. No sizeable in-

flation in Type 1 error rates was observed across the

simulation scenarios when 2 or 3 of the 10 genetic variants

were invalid, and bias and Type 1 error rates were gener-

ally either better or no worse than for other robust meth-

ods. The method was also at least as efficient as other

robust methods when all variants were valid instruments

and had reasonable power to detect a causal effect

throughout.

One deficiency of the proposed method is computa-

tional time. Whereas the method was substantially quicker

than that of Hartwig et al. with 10 genetic variants, the

run-time of our method doubles with each additional vari-

ant. In the applied example with 17 genetic variants, 217

�1 ¼ 131 071 weights were calculated. The method calcu-

lated weights in 0.7 seconds on a single 2.60-GHz central

processing unit (CPU). The grid search algorithm took a

further 34 seconds. However, with 30 genetic variants,

over 1 billion weights would need to be calculated.

Reducing the computational burden may be possible—e.g.

models including genetic variants with highly discrepant

ratio estimates would receive low weights and could be

dropped with little loss of accuracy. Alternatively, an algo-

rithm such as shotgun stochastic search24 may be able to

explore the parameter space in an efficient way. However,

solving this computational challenge in general is left as a

problem for future work.

A particular novel feature of the method is its ability to

identify multiple causal effects. Two categories of hetero-

geneity in the ratio estimates based on different variants

can be conceived: ‘random-effects’ heterogeneity and het-

erogeneity from variants linked with different causal mech-

anisms. As in meta-analysis, it is likely that there will be

some heterogeneity between ratio estimates from different

variants arising due to slight differences in causal mecha-

nisms, non-linearity of effects or non-homogeneity of

effects across individuals. This is dealt with in the model-

averaging model by allowing for over-dispersion in the

standard errors from the IVW method. Another type of

heterogeneity would occur if some genetic variants are in-

valid instruments and have incompatible ratio estimates;

this is dealt with in the model-averaging model by

upweighting evidence from the largest subset of variants

with mutually compatible ratio estimates. An interesting

case is if two or more sets of genetic variants have mutually

similar but distinct ratio estimates (as in the example of

CRP in the paper). This could occur for a complex risk
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Figure 2. Mixture distributions of IVW estimates using equal (dashed

line) and penalized (solid line) weights from model-averaging method

for: (left) LDL-cholesterol; (right) C-reactive protein (CRP). The right-

hand axis is twice the log-likelihood—the 95% confidence interval con-

tains all points within a vertical distance of 3.84 units on this scale (3.84

is the 95th percentile of a chi-squared distribution on one degree of

freedom).
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factor. For example, some genetic variants associated with

body mass index (BMI) affect metabolism, whereas others

may affect appetite. These two distinct biological processes

may have different magnitudes of causal effect on the out-

come. Future work would be beneficial to identify clusters

of genetic variants having similar causal estimates that

may reflect distinct causal mechanisms.

The heterogeneity-penalized model-averaging method is

likely to be affected by weak instruments in a similar way

to the IVW method, as it is based on a mixture of distribu-

tions centred on the IVW estimates. A weak instrument is

one that does not have a statistically strong association

with the risk factor.25 When genetic associations with the

risk factor and with the outcome are estimated in the same

individuals (a one-sample investigation), the IVW estimate

is biased by weak instruments in the direction of the obser-

vational association between the risk factor and outcome,

and Type 1 error rates are inflated. However, if genetic

variants are associated with the risk factor at a genome-

wide level of significance, bias should be minimal.26 When

genetic associations with the risk factor and with the out-

come are estimated in non-overlapping sets of individuals

(a two-sample investigation), as is common in Mendelian

randomization, bias due to weak instruments is in the di-

rection of the null and does not lead to inflated Type 1 er-

ror rates.27 Hence we would not expect weak instrument

bias to adversely affect Mendelian randomization investi-

gations using the model-averaging method in practice.

An extension of the method that could be valuable in

applied practice is the use of prior information on particu-

lar variants. This can be achieved by multiplying the

unnormalized weights wk by a prior weight p0ðkÞ before

normalizing. For example, if an investigator is particularly

confident that a genetic variant is likely to be a valid

instrument, then models containing this variant can be

up-weighted. Alternatively, prior weightings of models

containing specific variants could be based on biological

characteristics of the variants. For example, exonic and/or

non-synonymous variants could be up-weighted or variants

with functional information relating them to the risk factor.

If these variants truly are more likely to be valid instruments,

then this prior weighting would add to the robustness of the

method. Additionally, a prior weighting could be set to more

strongly up-weight less parsimonious models (i.e. up-weight

models based on more genetic variants). This could add effi-

ciency to the analysis, as models including more genetic var-

iants will have more precise IVW estimates. Equal prior

weights corresponds to a prior belief that 50% of genetic

variants are valid instruments. If one instead believed that

(say) 80% of genetic variants were valid instruments, then

the prior for subset k could be set to p0ðkÞ ¼ 0:8K � 0:2J�K,

where J is the total number of genetic variants and K is the

number of variants in subset k. The option to set this prior

probability is included in the software code.

Conclusion

In conclusion, the heterogeneity-penalized model-averaging

procedure introduced in this paper will be a worthwhile contri-

bution to the Mendelian randomization literature both in pro-

viding an additional robust method for causal estimation and

testing the causal null hypothesis when some genetic variants

may not be valid instruments and for revealing features in the

data such as the presence of multiple causal mechanisms.

Supplementary Data

Supplementary data are available at IJE online.
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