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Abstract

Background: The potential of Mendelian randomization studies is rapidly expanding due

to: (i) the growing power of genome-wide association study (GWAS) meta-analyses to

detect genetic variants associated with several exposures; and (ii) the increasing avail-

ability of these genetic variants in large-scale surveys. However, without a proper biolo-

gical understanding of the pleiotropic working of genetic variants, a fundamental

assumption of Mendelian randomization (the exclusion restriction) can always be

contested.

Methods: We build upon and synthesize recent advances in the literature on instrumen-

tal variables (IVs) estimation that test and relax the exclusion restriction. Our pleiotropy-

robust Mendelian randomization (PRMR) method first estimates the degree of pleiotropy,

and in turn corrects for it. If (i) a subsample exists for which the genetic variants do not af-

fect the exposure; (ii) the selection into this subsample is not a joint consequence of the

IV and the outcome; (iii) pleiotropic effects are homogeneous, PRMR obtains unbiased

estimates of causal effects.

Results: Simulations show that existing MR methods produce biased estimators for real-

istic forms of pleiotropy. Under the aforementioned assumptions, PRMR produces un-

biased estimators. We illustrate the practical use of PRMR by estimating the causal effect

of: (i) tobacco exposure on body mass index (BMI); (ii) prostate cancer on self-reported

health; and (iii) educational attainment on BMI in the UK Biobank data.

Conclusions: PRMR allows for instrumental variables that violate the exclusion restric-

tion due to pleiotropy, and it corrects for pleiotropy in the estimation of the causal effect.

If the degree of pleiotropy is unknown, PRMR can still be used as a sensitivity analysis.
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Introduction

Establishing causal effects of treatments or exposures on

behavioural and disease outcomes is of great public health

importance.1 The practice of ‘Mendelian randomization’

(MR) uses genetic variants as instrumental variables (IVs)

for a certain modifiable exposure in order to estimate the

causal effect of that exposure on a certain disease or other

outcome.2,3 This method has the potential to overcome the

traditional biases due to confounding and reverse causality

that plague observational studies.4 The past decade has

seen increasing interest in MR,4–7 and its potential is

rapidly developing through the increasing number of

genome-wide association studies (GWAS) that find robust

associations between genetic variants and exposures of

interest.8,9

The assumptions of MR have been discussed exten-

sively2,10,11–13 and the advantages and disadvantages of

MR are heavily debated.14,15 Recently there has been

much progress in dealing with the disadvantages of MR,

yet the critical assumption remains the exclusion restric-

tion: the proposed IV (genetic variant) should not directly

affect the outcome.14,15 Whereas this assumption can be

contested in any IV approach, the assumption is even more

critical in the context of MR, since the biological working

of genes is usually poorly understood.13,16

In particular, more and more studies show how the

same genetic variant affects multiple outcomes through dif-

ferent biological pathways, a phenomenon known as biolo-

gical (or horizontal) pleiotropy,17 and this violates the

exclusion restriction. In contrast, mediated (or vertical)

pleiotropy, in which a genetic variant is associated with a

certain phenotype and this phenotype is causal for a second

phenotype, is not problematic if one knows what is the pri-

mary phenotype.4 Therefore, we will only focus on biolo-

gical pleiotropy, for brevity ‘‘pleiotropy’ from here.

In response to the possible problem of pleiotropy, a cou-

ple of MR approaches have been proposed. Davey Smith

and Hemani suggest using multiple genetic variants con-

secutively as IVs, and argue that it is increasingly unlikely

that 2, 3 or 4 different genetic variants produce the same

estimate of the causal effect.4 Although an appealing argu-

ment, this approach still hinges critically on the assump-

tion that at least some of the genetic variants do not violate

the exclusion restriction. Moreover, this informal test can-

not discriminate between violations of the exclusion re-

striction and heterogeneous causal effects different genetic

variants will also produce different causal effects - if they

affect different subgroups of the population, and these sub-

groups respond differently to the exposure.18 Kang et al.

propose a method that produces valid estimates if at least

50% of the combined instrument strength across all vari-

ants originates from variants that satisfy the exclusion re-

striction.19 Whereas this is helpful, it is generally not

possible to distinguish the valid IVs from the invalid IVs if

the estimates based on different sets of IVs diverge.20

Moreover this approach, like the weighted median estima-

tor,21 still requires some of the genetic variants to satisfy

the exclusion restriction.

Bowden et al. propose to apply the established method

of Egger regression to the set of Mendelian randomization

estimates (‘MR-Egger’).20 The idea is that a violation of

the exclusion restriction leads to a bias of the MR estimate

that is inversely proportional to the first-stage coefficient

of the IV on the exposure. Under the assumption that,

across all genetic variants, the covariance between the ef-

fect of the IV on the outcome and the effect of the IV on

the exposure is zero (‘InSIDE assumption’), IVs with a

stronger effect on the exposure should give less-biased MR

estimates. A regression of the MR estimates on the first

stage coefficients including an intercept then provides a

consistent estimate of the causal effect. As acknowledged

by the authors, the InSIDE assumption cannot be tested

and may not hold if the genetic variants used as IVs are

correlated with confounders of the association between ex-

posure and outcome. Moreover, in one-sample settings,

MR-Egger may suffer heavily from weak instrument

bias.20,22

In this paper we build upon and combine two recent ad-

vances in the literature on IV estimation, which test and

relax the exclusion restriction. We introduce the ‘plausibly

exogenous’ method23 in MR research to account for

Key Messages

• If genetic variants have pleiotropic effects, causal estimates of Mendelian randomization studies may be biased.

• Pleiotropy-robust Mendelian randomization (PRMR) produces unbiased causal estimates if: (i) a subsample can be

identified for which the genetic variants do not affect the exposure; (ii) the selection into this subsample is not a joint

consequence of the genetic variants and the outcome; and (iii) pleiotropic effects are homogeneous.

• If such a subsample does not exist, PRMR can still routinely be reported as a sensitivity analysis in any MR analysis.

• If pleiotropic effects are not homogeneous, PRMR can be used as an informal test to gauge the exclusion restriction.
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pleiotropy. Two studies have previously noticed the possi-

bility of applying this method as a sensitivity analysis in

the context of MR,12,24 but no guidance is given on how to

choose the essential input parameters. Our innovation is

that we combine this method with another stream of re-

search that designs auxiliary regressions to test for viola-

tions of the exclusion restriction.25–30 The intuition is that

in a subsample for which the first stage (that is, the effect

of the IV on the exposure) is zero, the reduced form (that

is, the effect of the IV on the outcome) should be zero too

if the exclusion restriction is satisfied. Whereas this is trad-

itionally used merely as a test of the exclusion restriction,

there is no earlier notion that the reduced-form estimate

obtained in this subsample is exactly the input required for

the ‘plausibly exogenous’ method. We term the synthesis

of these techniques ‘pleiotropy-robust Mendelian

randomization’ (PRMR).

Simulation results show that if a subsample exists for

which the first stage is zero, and the pleiotropic effects are

homogeneous, it is possible to obtain unbiased estimates of

causal effects using PRMR, even when all genetic instru-

ments violate the exclusion restriction. We empirically il-

lustrate our method by estimating the effect of: (i) tobacco

exposure on body mass index (BMI); (ii) prostate cancer

on subjective health evaluations; and (iii) educational at-

tainment on BMI.

Methods

Mendelian randomization

In the general case, one is interested in the causal effect b

of a certain exposure X on an outcome Y. The idea of MR

is that there is a vector of genetic variants G (usually single

nucleotide polymorphisms (SNPs), an allele score or poly-

genic score) that is known to be correlated with the expos-

ure X, but is assumed to be uncorrelated with other

(unobserved) determinants of the outcome Y. Consider the

equations (we follow the notation of Bowden et al.20 in

matrix notation here):

Y ¼ XbþGaþ eY (1)

X ¼ Gcþ eX (2)

where Y is a (N � 1) vector of outcomes, X is a (N � 1)

vector of exposures, G is a (N � r) matrix of r� 1 genetic

variants, the causal effect b is a scalar, the pleiotropic effect

a and first-stage effect c are (r � 1) vectors, eYand eX are

(N � 1) composite error terms including unobserved con-

founders U and N denotes the sample size. The assump-

tions of MR are as follows (see Figure 1 for a graphical

exposition).12,13,16

i. Relevance: the genetic variants G have an effect on the

exposure X: c 6¼ 0.

ii. Independence: the genetic variants G are uncorrelated

with any confounders of the exposure-outcome

relationship.

iii. Exclusion restriction: the genetic variants G affect the

outcome Y only through the exposure X: a ¼ 0.

The use of genetic variants as IVs has at least two very

attractive properties. First, publicly available GWAS re-

sults make it relatively straightforward to select genetic

variants G for which c 6¼ 0, i.e. genetic variants that are ro-

bustly associated with the exposure of interest. Second,

given that genetic variants are randomly distributed at con-

ception, conditional on population stratification variables

or, more stringent, parental genotype or family fixed ef-

fects, the independence assumption holds.31

The exclusion restriction is widely acknowledged as the

most problematic assumption of MR.14,15 In particular,

the existence of pleiotropy would lead to a violation of the

exclusion restriction, and a 6¼ 0 in equation (1). In trad-

itional MR it is assumed however that a is equal to 0,

which leads to biased estimates of b, the causal effect of

interest, if pleiotropy is present. Moreover, this bias gets

amplified by the typically low explanatory power of the

genetic variants for the exposure.32

Pleiotropy-robust Mendelian randomization

In the ‘plausibly exogenous’ method,23 the assumption that

a ¼ 0 is relaxed and replaced by a user-specified assump-

tion on the plausible value, range or distribution of a.

When the prior on a follows a Normal distribution with

mean la and variance Xa, and the uncertainty about a re-

duces with the sample size (i.e. ‘local-to-zero’), then the es-

timate of the causal effect b in equation (1) is given by:

Figure 1. Illustrative diagram showing the standard MR model with its

assumptions. The genetic effect of instrumental variable Gj on exposure

X is cj; the genetic effect on unobserved confounder U is uj; the direct

genetic effect on the outcome Y is aj; and the causal effect of the expos-

ure X on the outcome Y is b.
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bb � Nðbþ Ala;VMR þ AXaA
0Þ (3)

where N() indicates the Normal distribution,

A ¼ ðX0GðG0GÞ�1G0XÞ�1ðX0GÞ, and b and VMR are the

traditional MR point estimate and variance-covariance

matrix, respectively. Although the plausibly exogenous

method can deal with any other prior distribution of a (see

Conley et al.23 for details), it gives no guidance on how to

obtain a plausible value, range or distribution of a.

We can, however, estimate the value of a if there is a

population subgroup for which the first stage is known to

be zero. A recent stream of research emphasizes the identi-

fication of these subgroups to test the exclusion restric-

tion.25–30 An early example is Altonji et al. (2005),25 who

investigate the validity of the instrument ‘being Catholic’

to study the effect of attending a Catholic high school on a

wide variety of outcomes. They identify a subsample of

public eighth graders among whom practically nobody

subsequently attends a Catholic high school. Hence among

this subsample the first stage is zero, and any association

between the IV (being Catholic) and the outcome reflects a

direct effect, indicating a violation of the exclusion restric-

tion. In the MR literature, the procedure bears similarities

to the negative controls approach.33 Davey Smith and col-

leagues28–30 have used Asian women and never-drinkers,

subsamples for which the first stage effect of genetic vari-

ants on alcohol consumption is (close to) zero, to validate

their exclusion restriction.

This strategy is so far mainly used as a test of the exclu-

sion restriction—only work-in-progress by Slichter34 pro-

vides an alternative way of using subsamples with (close

to) zero first stage effects to bound and estimate the causal

effect of interest. Our innovation is using the result of this

auxiliary regression as input for the ‘plausibly exogenous’

method. Hence, even if the exclusion restriction is found to

be violated, the IV can still be used in the analysis.

Consider the reduced form equation that is obtained by

substituting (2) into (1):

Y ¼ Gðaþ bcÞ þ ðeY þ beXÞ (4)

In a (sub)sample for which the first stage is zero (c ¼ 0),

the reduced form coefficient of the genetic variant is an es-

timator for a. Practically, we suggest first estimating the

reduced form (4) in a subsample for which c ¼ 0, to obtain

estimates la ¼ ba and Xa equal to the squared standard

error of ba. Thereafter, plug la and Xa into the plausibly ex-

ogenous equation (3), to obtain estimates of the causal ef-

fect of interest b. The estimator is easy to obtain in

standard software. For example, the user-written com-

mand ‘plausexog’ is readily available in STATA.35

Assumptions PRMR

Apart from the requirement that a subsample exists for

which the first stage is zero, PRMR has two key assump-

tions. First, PRMR assumes homogeneous pleiotropic ef-

fects, defined as an equal average pleiotropic effect of the

genetic variants (or allele/polygenic score) in the two sub-

samples. Homogeneity is satisfied if the pleiotropic effects

are the same for each individual, but also when the pleio-

tropic effects stem from a distribution with the same mean

across the two subsamples. The second assumption is that

the selection into the subgroup for which the first stage is

zero is not driven by the genetic variants and the outcome.

Violation of this second assumption would introduce col-

lider bias.16,36–38

The plausibly exogenous method has been originally de-

veloped for continuous outcomes, but it is also valid for

binary outcomes under the monotonicity assumption (the

instrument may have no effect on some people; all of those

who are affected are affected in the same way), and in as

far one is willing to estimate linear probability models for

binary outcomes.39

Simulation

We present a simulation study to illustrate the performance

of regular MR through two-stage least squares (2SLS), the

inverse variance weighting (IVW) method40, MR-Egger re-

gression and PRMR. Following Bowden et al. (2015),20 we

consider the following four scenarios with varying viola-

tions of the MR assumptions (see the Appendix for more

details, available as Supplementary data at IJE online)):

i. no pleiotropy;

ii. balanced pleiotropy, InSIDE satisfied (a parameters

take positive and negative values, but are independent

of the first stage parameters c);

iii. directional pleiotropy, InSIDE satisfied (a parameters

take only positive values, but are independent of the

first stage parameters c);

iv. directional pleiotropy, InSIDE not satisfied (a param-

eters take only positive values and are correlated with

the first stage parameters c).

As in Bowden et al. (2015), we assume that all of the

SNPs violate the exclusion restriction in scenarios 2-4, and

so we do not consider methods that require at least 50% of

the SNPs to be valid. In all scenarios, we use: a sample size

of 1000; 10 000 simulation runs; 25 genetic variants with

minor allele frequency 0.30; and a causal effect b of 0.00

and 0.05. Statistical power is evaluated at a false-positive

rate of 5%.
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The simulation results in Table 1 show that, in a one

sample setting, 2SLS and IVW produce very similar

results, and that all methods give average estimates of b

(almost) equal to the true value in the absence of plei-

otropy and if pleiotropy is balanced. With directional plei-

otropy (both when InSIDE is satisfied and when violated),

the average estimates are biased away from the true value

for 2SLS and IVW. MR-Egger performs slightly better,

but still produces biased estimates. The results show that

PRMR is able to produce unbiased estimates in all scen-

arios if the nature of pleiotropy is exactly known. Note

however that the standard errors are artificially low be-

cause we assume in these simulations that there is no un-

certainty regarding the pleiotropic effect.

Deviations from homogeneous pleiotropic effects, and

non-zero first-stage coefficients in the subsample for

which the first stage is expected to be zero, would produce

biased estimates for a, and in turn the causal effect b.

Note that both deviations produce a similar bias in the

reduced form coefficient of equation (4), and since it is

straightforward to test for a zero first stage coefficient, we

only investigate the sensitivity of PRMR towards viola-

tions of homogeneous pleiotropy. Specifically, we re-run

the above simulations of scenario 4 (InSIDE not satisfied),

but now estimate the pleiotropic effect in a separately cre-

ated sample of 250, 500 or 1000 individuals in which the

pleiotropic effect deviates from the main sample by a fac-

tor n, i.e. aj,second-sample ¼ n� aj,main-sample. We vary n from

0.5 to 1.5, which is equivalent to the pleiotropic effect in

the second sample being 50% lower to 50% higher than

the pleiotropic effect in the main sample.

If pleiotropy is homogeneous (n ¼ 1), Table 2 shows

that PRMR produces unbiased estimators, although the

power is a little lower than in Table 1 because now we in-

corporate the uncertainty around the pleiotropy param-

eter. As expected, power to detect a causal effect becomes

smaller for a reduced subsample in which the direct effect

is estimated. If n< 1 (n> 1), PRMR overestimates (under-

estimates) the causal effect, but the 95% confidence inter-

val (CI) still includes the true value. We conclude that

PRMR is biased when pleiotropy is non-homogeneous, but

that even 50% deviations from homogeneous pleiotropy

produce a bias that is relatively modest compared with

traditional methods like 2SLS, IVW and MR-Egger (com-

pare Table 2 with Table 1, scenario 4).

Examples

To illustrate our approach, we exploit genetic data from the

interim release of the UK Biobank41 to study: (i) the effect of

Table 1. Performance of two-stage-least-squares (2SLS), inverse-variance weighting (IVW), MR-Egger regression and PRMR in

simulation study for one-sample Mendelian randomization with a null (b ¼ 0.00) and a positive (b ¼ 0.05) causal effect

2SLS IVW MR-Egger PRMR

Scenario Mean F Mean Power Mean Power Mean Power Mean Power

b ¼ 0.00

1: No pleiotropy, InSIDE satisfied 38.6 0.00 (0.01) 0.05 0.00 (0.01) 0.04 0.00 (0.03) 0.04 0.00 (0.01) 0.05

2: Balanced pleiotropy, InSIDE satisfied 38.6 0.00 (0.01) 0.14 0.00 (0.01) 0.06 0.01 (0.03) 0.06 0.00 (0.01) 0.05

3: Directional pleiotropy, InSIDE satisfied 38.6 0.04 (0.01) 0.92 0.04 (0.01) 0.85 0.01 (0.03) 0.06 0.00 (0.01) 0.06

4: Directional pleiotropy, InSIDE violated 39.3 0.13 (0.01) 1.00 0.13 (0.02) 1.00 0.04 (0.04) 0.18 0.00 (0.01) 0.06

b ¼ 0.05

1: No pleiotropy, InSIDE satisfied 38.6 0.05 (0.01) 0.99 0.05 (0.01) 0.98 0.06 (0.03) 0.48 0.05 (0.01) 0.99

2: Balanced pleiotropy, InSIDE satisfied 38.6 0.05 (0.01) 0.97 0.05 (0.01) 0.91 0.06 (0.03) 0.36 0.05 (0.01) 0.99

3: Directional pleiotropy, InSIDE satisfied 38.6 0.09 (0.01) 1.00 0.09 (0.01) 1.00 0.06 (0.03) 0.52 0.05 (0.01) 0.99

4: Directional pleiotropy, InSIDE violated 39.3 0.18 (0.01) 1.00 0.18 (0.02) 1.00 0.09 (0.04) 0.60 0.05 (0.01) 1.00

Table 2. Performance of PRMR in simulation study for one-sam-

ple Mendelian randomization with a null (b ¼ 0.00) and a posi-

tive (b ¼ 0.05) causal effect in a setting (scenario 4) of directional

pleiotropy (InSIDE violated). n represent the multiplication factor

for the direct effect in the second sample of size N2

PRMR

(N2 ¼ 250)

PRMR

(N2 ¼ 500)

PRMR

(N2¼ 1,000)

Scenario Mean Power Mean Power Mean Power

b ¼ 0.00

n¼ 0.50 0.02 (0.02) 0.08 0.02 (0.02) 0.10 0.02 (0.01) 0.26

n¼ 0.75 0.01 (0.02) 0.04 0.01 (0.02) 0.03 0.01 (0.02) 0.11

n¼ 1.00 0.00 (0.02) 0.03 0.00 (0.02) 0.02 0.00 (0.02) 0.06

n¼ 1.25 �0.01 (0.02) 0.06 �0.01 (0.02) 0.05 �0.01 (0.02) 0.09

n¼ 1.50 �0.02 (0.02) 0.10 �0.02 (0.02) 0.14 �0.02 (0.02) 0.19

b ¼ 0.05

n¼ 0.50 0.06 (0.02) 0.72 0.06 (0.02) 0.95 0.06 (0.02) 0.98

n¼ 0.75 0.05 (0.02) 0.58 0.05 (0.02) 0.86 0.06 (0.02) 0.94

n¼ 1.00 0.04 (0.03) 0.43 0.04 (0.02) 0.70 0.05 (0.02) 0.85

n¼ 1.25 0.03 (0.03) 0.29 0.03 (0.02) 0.48 0.04 (0.02) 0.69

n¼ 1.50 0.03 (0.03) 0.18 0.03 (0.02) 0.27 0.03 (0.02) 0.49
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tobacco exposure on BMI; (ii) the effect of prostate cancer on

subjective health evaluations; and (iii) the effect of educa-

tional attainment on BMI. Following recommendations from

the genotyping centre, we restrict the analyses in the UK

Biobank to 112 338 (52, 53% female) conventionally unre-

lated individuals with ‘White British’ ancestry.42 We use the

first 15 principal components (PCs) of the genetic relatedness

matrix as provided by UK Biobank to further control for

population stratification.42,43 All individuals are born be-

tween 1934 and 1970. Imputed SNPs are converted to best-

guess values, and for individuals with missing information on

a specific SNP we impute the mean genotype from the sam-

ple. For all measures, we use reported values from the first

interview round. A summary of the results of the exemplary

analyses is presented in Table 3.

The effect of tobacco exposure on BMI

The relationship between smoking and BMI has received

considerable attention in the literature44–48, and from these

studies Wehby et al. (2012)47 used MR to assess the causal

effect of tobacco exposure on BMI. In existing GWAS, the

SNPs that are robustly associated with smoking measures

can mostly be traced back to nicotine dependence.49 This

provides a context to apply PRMR: after all, the develop-

ment of nicotine dependence requires initiating smoking in

the first place. Hence, the group of never smokers provides

a subsample among whom the SNPs do not have an effect

on tobacco exposure, and we can use this subsample to es-

timate the direct effect of the SNPs on the outcome meas-

ure BMI.

We use standardized values of rs12914385 as an instru-

ment, the SNP with the strongest statistical association with

the number of cigarettes smoked per day (CPD) from the

only locus found to be associated with CPD in the GWAS

from the Tobacco and Genetic Consortium.50 CPD is

measured as number of cigarettes currently smoked per day,

and BMI is measured in kg/m2. Ordinary least-squares (OLS)

regression suggest a positive association between CPD and

BMI (0.05, P ¼ 1.90� 10�17). The first stage regression of

CPD on the SNP shows a strong positive association (P ¼
3.64� 10�16, F ¼ 66.47). Among never smokers, the SNP

has a very modest positive association with BMI (0.01, P ¼
0.44). In contrast, among current smokers, there is a strong

negative association with BMI (-0.16, P ¼ 8.49�10�5). This

provides evidence that the exclusion restriction is satisfied,

and regular MR can be applied. The 2SLS results indicate a

negative causal effect of tobacco exposure on BMI (�0.24,

P ¼ 3.50� 10�3), suggesting an effect of tobacco exposure

on BMI in the opposite direction of the OLS estimate. For

comparison, PRMR provides an estimate of -0.26 (P ¼
2.70� 10�3).

The exact point estimates in this example should be in-

terpreted with caution, since the measured exposure CPD

may not capture all dimensions through which the genetic

variant affects tobacco exposure (e.g. serum cotinine lev-

els).51,52 Moreover, if among smokers the genetic variants

affect both CPD and another smoking dimension (e.g.

depth of inhaling), then the pleiotropic effect estimated in

the group of never smokers would not provide an accurate

estimate of the pleiotropic effect in the group of smokers.

The effect of prostate cancer on self-reported

health

Earlier studies have reported on the effect of (prostate) can-

cer on health outcomes,53–55 yet none of these studies used

Mendelian randomization. Al Olama et al. (2014)56 find

12 autosomal SNPs to be related to prostate cancer at

genome-wide significance level among individuals from

European descent. Since prostate cancer naturally is only a

risk factor among males, the first stage (that is, the effect

Table 3. Summary of the regression results for the three exemplary analyses. The 95% confidence intervals are reported be-

tween parentheses

Effect of tobacco

exposure on BMI

Effect of prostate cancer

on self-reported health

Effect of educational

attainment on BMI

OLS 0.05 (0.04 – 0.06) �0.17 (�0.22 – �0.12) �0.11 (�0.11 – �0.10)

P ¼ 1.90�10�17 P ¼ 9.17�10�11 P ¼ 9.20�10�308

First stage effect 0.64 (0.49 – 0.80) 0.00 (0.00 – 0.00) 0.36 (0.33 – 0.39)

P ¼ 3.64�10�16 P ¼ 2.45�10�3 P ¼ 4.10�10�122

Pleiotropic effect 0.01 (�0.02 – 0.05) �0.01 (�0.02 – 0.00) k�
P ¼ 0.44 P ¼ 1.81�10�3 First stage effect

2SLS �0.24 (�0.40 – �0.08) �1.26 (�5.26 – 2.75) �0.39 (�0.47 – �0.31)

P ¼ 3.50�10�3 P ¼ 0.54 P ¼ 9.63�10�21

PRMR �0.26 (�0.43 – �0.09) 4.51 (�0.89 – 9.91) Depends on k

P ¼ 2.70�10�3 P ¼ 0.10 See Figure 2
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of genetic variants on prostate cancer) among females is

zero. As a result, if the genetic variants are only associated

with prostate cancer and not with any other male-specific

determinant (e.g. impotence) of the outcome, the effect of

these genetic variants on a certain outcome among females

may be used as a reasonable estimate for a.

UK Biobank contains a self-report about whether a per-

son was diagnosed by a doctor to have prostate cancer (1)

or not (0). Subjective health is measured on a four-point

scale ranging from excellent (4), via good (3) and fair (2)

to poor (1). We build an allele score for prostate cancer

using the results from the GWAS on prostate cancer,56

since the allele score has more power than using the indi-

vidual SNPs;57–59 10 out of the 12 SNPs are available in

the genetic data of UK Biobank. The allele score has been

standardized to have mean 0 and standard deviation 1.

An OLS regression of subjective health on prostate can-

cer among males reveals that prostate cancer is negatively

associated with subjective health (�0.17, P ¼
9.17� 10�11), and a regression of prostate cancer on the

allele score shows that the allele score is positively associ-

ated with prostate cancer (P ¼ 2.45� 10�3, F ¼ 9.21). A

standard 2SLS regression with the allele score as instru-

ment for prostate cancer produces a large negative effect of

prostate cancer on subjective health (-1.26), but P ¼ 0.54.

Using PRMR, we find that the allele score is negatively

associated with subjective health among females (�0.009,

P ¼ 1.81� 10�3), and this reduced form estimate is even

larger in absolute terms than among males (�0.002, P ¼
0.53). This suggests that the exclusion restriction is vio-

lated and that the MR results are biased. When we plug in

the reduced form estimate among females in the plausibly

exogenous method, we find that the effect of prostate

cancer on subjective health is estimated to be positive

(4.51) among males, but this estimate is implausibly large

and surrounded by a large 95% confidence interval

(�0.89 to 9.91, P ¼ 0.10). Hence, we cannot reject a zero

effect of prostate cancer on self-reported health.

The effect of educational attainment on BMI

The education-health gradient is well documented and one

of the most robust findings in social science.60,61 Several

studies reported before on the causal effect of educational

attainment on BMI, with mixed findings, and apart from

one study investigating the reverse effect of BMI on educa-

tional attainment,62 none of them used Mendelian ran-

domization.63–68

Educational attainment (EA) is constructed as years of

education, as in the recent Educational Attainment GWAS

(the UK Biobank data is used as out-of-sample replication

sample in that study).69 For educational attainment, we

build an allele score from the 74 SNPs found to be associ-

ated with EA.69 Of these 74 SNPs, 72 are available in UK

Biobank.

An OLS regression of BMI on EA reveals that EA is

negatively associated with BMI (�0.11, P ¼
9.20� 10�308), and a regression of EA on the standardized

allele score shows that the allele score is positively associ-

ated with EA (P ¼ 4.10� 10�122, F ¼ 552.12). A 2SLS re-

gression with the allele score as instrument for EA provides

a negative estimate (-0.39) for the causal effect of EA on

BMI, with P ¼ 9.63� 10�21. However, it is likely that the

exclusion restriction is violated, since the allele score for EA

is, conditional on population stratification controls, gender,

and birth year, positively associated with birth eight (0.01,

P ¼ 0.04), a known confounder of the relationship between

EA and BMI.70

In contrast to the previous examples, here it is difficult

to find a subsample for which the first stage is zero.

Therefore we illustrate how PRMR can be used as a sensi-

tivity analysis to determine how strong the violation of the

exclusion restriction should be to render the causal effect b

to be 0. Since one selects SNPs as IVs for their association

with the exposure rather than the outcome, it seems plaus-

ible that, in absolute value, the standardized first stage ef-

fect of an IV on the exposure, c, is larger than the

standardized direct effect of that IV on the outcome, a.

Therefore, we define the proportion 0 � k � 1, and we set

la equal to kbc and the variance Xa equal to the squared

standard error of bc. Subsequently, we apply equation (3)

for different values of k to find for which k the correspond-

ing b equals 0. When the first stage estimate has the oppos-

ite sign of the direct effect estimate, one needs to change

the sign of bc in this sensitivity analysis.

Figure 2. The causal effect of educational attainment (EA) on BMI, for

varying values of k (the percentage of the standardized effect of the IVs

on EA which is considered to be the direct effect of the IVs on standar-

dized BMI). The grey area represents the 95% confidence interval.

International Journal of Epidemiology, 2018, Vol. 47, No. 4 1285



In our case, the first stage effect (allele score on EA) has

plausibly the opposite sign of the direct effect (allele score

on BMI) and hence we set la equal to -kbc. The resulting es-

timates for b are plotted in Figure 2 as a function of k. The

estimate for k ¼ 0 corresponds to the MR point estimate,

but the 95% confidence interval is a little wider because

Xa > 0. Moving along the x-axis, the causal effect of EA

on BMI is estimated to be 0 when k ¼ 0.42, and the 95%

confidence interval includes 0 already when k¼0.29.

Hence, a relatively mild violation of the exclusion restric-

tion 29% of the first-stage effect implies that we cannot re-

ject a zero effect of EA on BMI, producing at best weak

evidence that EA causally reduces BMI.

Conclusion

The fact that the pleiotropic effects of genes are poorly

understood makes it difficult to use genetic variants as cred-

ible instrumental variables in Mendelian randomization.

In this paper we argued that if: (i) one can identify a

subsample for which genetic variants do not have an effect

on the exposure; (ii) the selection into this subsample is

not a consequence of both genetic variants and the out-

come; and (iii) pleiotropic effects are homogeneous,

PRMR provides a way to deal with violations of the exclu-

sion restriction due to pleiotropy, and opens the door for

several applications in epidemiology and social science

research.

A simulation study showed that PRMR clearly outper-

forms existing methods if the exclusion restriction is vio-

lated. We illustrated our PRMR approach by estimating

the causal effect of tobacco exposure on BMI, and the ef-

fect of prostate cancer on subjective health evaluations. In

those two cases it is possible to identify subsamples where

the effect of SNPs on the exposure are zero (never smokers

and females, respectively), and this allows estimating, and

if necessary correcting for, the pleiotropic effect.

We acknowledge that the two requirements for PRMR

are not always satisfied. Yet, even if one is not willing to

make the assumption of homogeneous pleiotropic effects,

one can still use the subsample without an effect of the gen-

etic variants on the exposure as a useful test of the exclu-

sion restriction. Moreover, if one cannot identify a

subsample without a first stage, as we illustrated for the es-

timation of the effect of education on BMI, PRMR still

allows for an informative sensitivity analysis that could

routinely be applied in all MR analyses.
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