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Joaquı́n Pérez-Ortega1☯*, Nelva Nely Almanza-Ortega1☯, David Romero2☯

1 Departamento de Ciencias Computacionales/Centro Nacional de Investigación y Desarrollo Tecnológico,
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Abstract

In this paper we propose a criterion to balance the processing time and the solution quality

of k-means cluster algorithms when applied to instances where the number n of objects is

big. The majority of the known strategies aimed to improve the performance of k-means

algorithms are related to the initialization or classification steps. In contrast, our criterion

applies in the convergence step, namely, the process stops whenever the number of objects

that change their assigned cluster at any iteration is lower than a given threshold. Through

computer experimentation with synthetic and real instances, we found that a threshold close

to 0.03n involves a decrease in computing time of about a factor 4/100, yielding solutions

whose quality reduces by less than two percent. These findings naturally suggest the useful-

ness of our criterion in Big Data realms.

Introduction

The skyrocketing technological advances of our time are enabling a substantial increase in the

amount of generated and stored data [1–4], both in public and private institutions, in science,

engineering, medicine, finance, education, and transportation, among others. Hence, there is a

well justified interest in the quest of useful knowledge that can be extracted from large masses

of data, allowing better decision making or improving our understanding of the universe and

life.

However, the handling or interrogation of large and complex masses of data with standard

tools —termed Big Data— is generally limited by the available computer resourses [1, 5].

In this regard, our contribution here is to provide a strategy to deal with the problem of clus-

tering objects according to their attributes (characteristics, properties, etc.) in Big Data realms.

The clustering problem has long been studied. Its usefulness is indeniable in many areas of

human activity, both in science, business, machine learning [6], data mining and knowledge

discovery [7, 8], pattern recognition [9], to name but a few. The clustering consists in parti-

tioning a set of n objects in k� 2 non-empty subsets (called clusters) in such a way that the

objects in any cluster have similar attributes and, at the same time, are different from the

objects in any other cluster.
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In this paper we assume that the objects’ attributes are measurable. Hence, sometimes we

refer to objects as points, according to the context.

Let N = {x1, . . ., xn} denote the set of n points to be grouped by a closeness criterion, where

xi 2 <d for i = 1, . . ., n, and d� 1 is the number of dimensions (the objects’ attributes). Fur-

ther, let k� 2 be an integer and K = {1, . . ., k}. For a k-partition P ¼ fGð1Þ; . . . ;GðkÞg of N,

denote μj the centroid of group (cluster) G(j), for j 2 K, and let M = {μ1, . . ., μk}.
Thus, the clustering problem can be posed as a constrained optimization one: (see, for

instance, [10])

P: minimize zðW;MÞ ¼
Xn

i¼1

Xk

j¼1

wijdðxi; mjÞ

subject to
Xk

j¼1

wij ¼ 1; for i ¼ 1; . . . ; n;

wij ¼ 0 or 1; for i ¼ 1; . . . ; n; and j ¼ 1; . . . ; k;

ð1Þ

where wij = 1, point xi belongs to cluster G(j), and d(xi, μj) denotes the Euclidean distance

between xi and μj, for i = 1, . . ., n, and j = 1, . . ., k.

Since the pioneering studies by Steinhaus [11], Lloyd [12], and Jancey [13], many investiga-

tions have been devoted to finding a k-partition of N that solves P above. It has been proved

that this problem belongs to the so-called NP-hard class for k� 2 or d� 2 [14, 15]; thus

obtaining an optimal solution of a moderate size instance is in general intractable.

Therefore, a variety of heuristic algorithms have been proposed to approach the optimal

solution of P, the most conspicuous being those generally designed as k-means [16], with

straightforward implementation. It must be said that the establishment of useful gaps between

the optimal solution of the problem P and the solution obtained by k-means remains an open

problem. The computational complexity of k-means is O(nkdr), where r stands for the number

of iterations [5, 17], limiting their use in large instances since, in general, at every iteration all

distances from objects to cluster centroids must be considered. Thus, numerous strategies to

stop iterating have been investigated where, usually, increasing the computational effort entails

the reduction of the objective function.

Our aim here is to propose a sound criterion to balance the processing time and the solu-

tion quality of k-means cluster algorithms in Big Data realms. So, we consider throughout the

algorithm K-MEANS—intentionally denoted with capitals to distinguish it from the k-means

family to which it belongs—, greatly inspired by the seminal ones by Jensey [13] and Loyd

[12], the latter appearing as one of the most widely used because of its simplicity and elegance

[18]. Obviously, our proposal could be as well applied to most procedures of the k-means

family.

The rest of the paper proceeds as follows. Section Related work briefly reviews the most rel-

evant investigations known to the authors to improve the efficiency of k-means algorithms.

Then, the algorithm K-MEANS is described and its behavior is analysed in Section Behavior of

K-MEANS, so as to highlight an observed strong correlation between the decreasing value of the

objective function (1), and the number of objects changing cluster at every iteration. Conse-

quently, from this situation was born our idea to stop the algorithm in the convergence step,

namely, as soon as the number of objects that change cluster is smaller than a given threshold;

aimed to balance the processing time and the solution quality, Section Determining threshold

values, proposes a procedure to determine this threshold. Next, Section Proposal validation,
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deals with a validation of our proposal: We computationally tested it on several synthetic and

real instances. Finally, Section Conclusion, contains our conclusions.

Related work

To date, few investigations report theoretical analyzes on k-means. Our proposed methodol-

ogy, as the vast majority of the published improvements for k-means, is supported by com-

puter experimentation. Among them, the most relevant are briefly reviewed below, grouped

according to the four stages of the algorithm, and adding some related to the choice of the

appropriate number of clusters. Undeniably, although some improvements appear to domi-

nate others, from the No free lunch Theorem [19] the only way one strategy can outperform

another is if it is specialized to the structure of the specific problem under consideration.

Initialization step

For a successful improvement of the solutions quality, and reducing the number of iterations,

Arthur & Vassilvitskii [20] proposed a random generation of the initial k centroids as follows.

The first centroid is randomly chosen with uniform distribution in N; then, for j = 2, . . ., k, the

probability of a point in N to be chosen as the j-th centroid is proportional to the square of its

minimal distance to the set of 1, . . ., j − 1 already selected centroids.

Zhanguo et al. [21] strategically label the initial centroids, so as to guide the subsequent clas-

sification; the maximal distance principle is proposed to advantageously distribute the initial

centroids in the solution space. In the paper by Salman et al. [22] the initial centroids are those

obtained as final by k-means when applied on a 0.1n-size, random subset of the n objects.

Time savings of around 66 percent are reported.

On their part, El Agha & Ashour [23] claim that the following initialization strategy yields

improved results. For s = 1, . . ., d, and i = 1, . . ., n, let xi(s) be the s-th coordinate of point

xi, �ns ¼ maxxiðsÞ, and νs = min xi(s). Also, let ns ¼
1

k ð�ns � nsÞ. The initial centroids are

randomly generated in the main diagonal of the rectangular grid defined by coordinates

ns; ns þ n; ns þ 2n; . . . ; �ns, for s = 1, . . ., d.

Finally, Tzortzis & Aristidis [24] employ maxima and minima values to improve the clus-

tering quality at each iteration, particularly useful when clusters are sought with similar num-

ber of objects.

Classification step

In regard to the classification step, Fahim [25] poses that if the distance of an object, say xi, to

the centroid of its assigned cluster, say G(j), decreases at any iteration, then xi stays in G(j), not

needing to compute the distance from xi to the remaining centroids.

Among the various works proposing to apply the principle of the triangle inequality to

reduce the number of times that the distance from objects to centroids is computed, the most

conspicuous are those by Elkan [18] and Hamerly [26]. By suggesting lower and upper bounds

for distances, the former proposes that in every iteration, the distance from any object to any

centroid should not be re-calculated if, in the previous iteration, that distance is outside these

bounds; it is claimed that with this strategy the efficiency of k-means is higher as k and n
increase. In [26] a variant of the Elkan [18] approach is proposed by establishing new bounds

on the distances, asserting to improve Elkan results for instances of low dimension.

Pérez and collaborators [27, 28] discuss heuristics to simplify the computation of the dis-

tance between objects and centroids. In [28], noting that when objects migrate they normally

do so towards a nearby cluster, only the distances from x 2 N to the centroids of the w clusters

Balancing effort and benefit of K-means clustering algorithms in Big Data realms
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closest to x are recalculated. Convenient values were experimentally found for w, depending

on the dimension d; so, for instance, w = 4, 6 for d = 2, 4, respectively.

Two heuristics are considered in [27]; the first one permanently assigns object x 2 N to

cluster G(j) as soon as the distance from x to μj is lower than a given threshold, excluding x
from subsequent distance computations. In the second heuristic a cluster is labelled ‘stable’ if

it has no object exchanges in two successive iterations; objects in stable clusters no longer

migrate. A similar heuristic is studied by Lai [29].

Kanungo et al. [30] have theoretically shown that the efficiency of k-means is enhanced

when a kd-tree data structure is used. For Chiang et al. [31] objects very close to their nearest

centroid are considered as with negligible probability to change cluster, hence they are

excluded from subsequent distance computations.

Convergence step

The most common convergence criterion of k-means is to stop as soon as no change in the

clustering is observed. However, it seems advisable to set un upper bound on the number of

iterations as a concomitant convergence criterion, as offered by software packages such as

SPSS, WEKA, and R.

Denote zr the objective function value at iteration r. Pérez et al. [32] propose to stop the

algorithm whenever zr> zr−1, while in [33] the procedure stops if jðz2
r� 1
� z2

r Þ=z
2
r j < 0:001

along ten successive iterations.

Mexicano et al. [34] compute the largest centroid displacement found in the second itera-

tion (denote it ψ). Then, they assume that the k-means algorithm has converged if in two suc-

cessive iterations the largest change of centroids position is lower than 0.05ψ.

Selecting the number k of clusters

In the k-means realm, the choice of an appropriate k value depends on the instances consid-

ered, and is a rather difficult task; this situation is usually addressed by trial and error. How-

ever, several investigations have been carried out to automatically determine the number k of

clusters; see, for example, those reported in [35, 36], and the more recent approaches [37–39]

that employ a Bayesian nonparametric view.

Behavior of K-MEANS

We made intensive computational experiments to assess the behavior of the below algorithm

K-MEANS under different conditions.

Algorithm K-MEANS

Step 1 Initialization. Produce points μ1,. . .,μk, as a random subset
of N.

Step 2 Classification. For all x 2 N and j 2 K, compute the Euclidean
distance between points x and μj, namely, d(x, μj). Then, point
(object) x 2 N is assigned to a cluster Gð€ȷÞ if dðx; m €ȷÞ � dðx;mjÞ,

for €j; j 2 K.
Step 3 Centroids. Determine the centroid μj of cluster G(j), for j 2 K.
Step 4 Convergence. If the set of centroids M does not change in two

successive iterations stop the algorithm, otherwise perform
another iteration starting from STEP 2.

In general, a correlation was observed between the number of objects changing cluster at

each iteration, and the corresponding z value of the objective function (1).

Balancing effort and benefit of K-means clustering algorithms in Big Data realms
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As an example of what we found, Table 1 displays some results yielded by a run of K-MEANS

on a synthetic instance with n = 2 � 106 points (objects) randomly generated in the unit square

(uniform distribution), and k = 200.

The algorithm stops at iteration 612 because no points change cluster.

Each row of Table 1 contains information corresponding to iteration r: The objective function

value zr (we denote z� the lowest value found by the algorithm, thus, z� = z612 = 53721), the indi-

cator γr = 100(υr/n), where υr is the number of points changing cluster, and δr = 100(zr/z� − 1).

Table 1. Some results of the K-MEANS algorithm with a randomly generated instance where n = 2 � 106, k = 200, and

d = 2.

r zr γr δr

1 63 187 – 17.62

2 58 819 15.88 9.48

3 57 238 9.22 6.54

4 56 458 6.32 5.09

5 55 985 4.77 4.21

6 55 656 3.88 3.60

7 55 417 3.28 3.15

8 55 235 2.87 2.81

9 55 090 2.56 2.54

10 54 971 2.32 2.32

11 54 871 2.09 2.14

12 54 787 1.89 1.98

13 54 715 1.75 1.84

14 54 652 1.61 1.73

15 54 598 1.48 1.63

16 54 550 1.38 1.54

17 54 507 1.31 1.46

18 54 468 1.23 1.39

19 54 433 1.17 1.32

20 54 401 1.10 1.26

21 54 373 1.04 1.21

22 54 348 0.98 1.16

23 54 327 0.92 1.12

24 54 306 0.88 1.08

25 54 288 0.83 1.05

26 54 271 0.80 1.02

27 54 256 0.77 0.99

28 54 241 0.75 0.96

29 54 226 0.74 0.93

30 54 211 0.72 0.91

31 54 197 0.70 0.88

32 54 183 0.69 0.85

33 54 169 0.66 0.83

34 54 157 0.64 0.81

35 54 146 0.61 0.79

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

612 53 721 0 0

https://doi.org/10.1371/journal.pone.0201874.t001
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To grasp the algorithm behavior from Table 1 consider Fig 1—for r = 11, . . ., 30, points

(γr, δr) lie in an almost straight line— as well as the striking similarity of curves in Fig 2.

This clearly suggests a strong correlation between indexes γ and δ, and between z and γ.

Hence, letting ℓ be the total number of iterations, �g ¼ 1

‘

P‘

r¼2
gr , and �d ¼ 1

‘

P‘

r¼2
dr, the correla-

tion coefficient between γ and δ is calculated with the Eq (2) thus verifying our assumptions.

rðg; dÞ ¼

P‘

r¼2
½ðgr � �gÞðdr �

�dÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P‘

r¼2
ðgr � �gÞ

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P‘

r¼2
ðdr �

�dÞ
2

q ¼ 0:96 ð2Þ

A similar experiment was made with a set of real and synthetic instances —described in

Section Proposal validation— obtaining the correlation coefficients as shown in Table 2. Note

that no value is below 0.9, and most lie in the range [0.975, 0.998].

The aforementioned considerations led us to our proposal of a criterion to balance the

computational effort and the solution quality for k-means in Big Data realms. Section Deter-

mining threshold values, describes the path we followed to determine threshold values to be

used in the convergence step so as to judiciously stop the algorithm.

Fig 1. An almost linear relationship between γ and δ.

https://doi.org/10.1371/journal.pone.0201874.g001
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Fig 2. Graphics of γ and δ per iteration. (A) Percentage of objects changing cluster per iteration. (B) Cost z per iteration.

https://doi.org/10.1371/journal.pone.0201874.g002
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Determining threshold values

Although the computational effort at each iteration of k-means is rather constant, the corre-

sponding improvement on z is not. Thus the question: When is it worth to keep iterating? It is

well known that the so-called Pareto principle can help in determining an optimal relationship

between effort and benefit [40]. Thus, we relied on this principle to provide a sound answer to

the above question.

Continuing with the example of Section Behavior of K-MEANS, we computed Table 3

where, for r� 2, Ar = 100(r/ℓ), Br = 100(zr−1 − zr)/(z1 − z�), Cr = Cr−1 + Br, and

Dr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0 � ArÞ
2
þ ð100 � CrÞ

2

q

is the Euclidean distance between points (Ar, Cr) and

(0, 100).

Fig 3 shows a partial plot of the Pareto diagram for points (Ar, Cr) extracted from Table 3.

Note that D30� Dr for any r 2 N, namely, (A30, C30) is the closest point to (0,100). Hence, we

could stop K-MEANS at iteration r = 30 = 0.0490ℓ, avoiding as much as�95% of iterations, to

get a solution with cost z30 = 1.0091z� (δ30 = 0.91 comes from Table 1), namely, only less than

Table 2. Correlation coefficients of synthetic and real instances.

Synthetic instance d k Correlation coefficient

1 2 200 0.966

2 4 100 0.989

3 6 100 0.996

4 5 200 0.976

6 2 50 0.990

6 2 100 0.984

6 2 200 0.984

7 3 50 0.989

7 3 100 0.989

7 3 200 0.976

8 4 50 0.992

8 4 100 0.988

8 4 200 0.975

9 7 200 0.994

10 10 100 0.966

11 2 50 0.980

12 11 100 0.930

13 12 50 0.914

14 5 100 0.998

14 5 200 0.991

Real instance d k Correlation

1 7 20 0.980

1 7 50 0.974

2 15 160 0.979

2 15 80 0.992

3 16 50 0.991

4 45 100 0.987

4 45 50 0.992

5 7 100 0.950

5 7 50 0.904

https://doi.org/10.1371/journal.pone.0201874.t002
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one percent worst than z�. Also, observe in Table 1 that at iteration 30 as few as 0.0072n objects

migrate.

Following the ideas and concepts discussed over the previous example, we undertook inten-

sive computer experimentation applying the Pareto principle on a variety of instances. As a

result we obtained a set of threshold values U such that, depending on the available computer

time, on the instance size, and according to the needs, it seems reasonable to stop K-MEANS at

iteration r whenever γr� U. Recall γr = 100(υr/n), where υr is the number of migrating points

at iteration r.

Table 3. Information to seize the relationship between computational effort and solution quality.

r Ar Br Cr Dr

1 0.163

2 0.326 46.150 46.150 53.850

3 0.490 16.701 62.852 37.151

4 0.653 8.235 71.087 28.919

5 0.816 4.995 76.082 23.931

6 0.980 3.471 79.554 20.468

7 1.143 2.533 82.088 17.948

8 1.307 1.922 84.011 16.042

9 1.470 1.525 85.536 14.538

10 1.633 1.263 86.799 13.301

11 1.797 1.053 87.853 12.278

12 1.960 0.886 88.739 11.430

13 2.124 0.765 89.504 10.707

14 2.287 0.660 90.165 10.097

15 2.450 0.568 90.733 9.584

16 2.614 0.505 91.238 9.142

17 2.777 0.455 91.694 8.757

18 2.941 0.411 92.106 8.423

19 3.104 0.377 92.483 8.132

20 3.267 0.334 92.817 7.890

21 3.431 0.296 93.114 7.693

22 3.594 0.258 93.372 7.539

23 3.758 0.230 93.603 7.419

24 3.921 0.213 93.816 7.322

25 4.084 0.193 94.009 7.250

26 4.248 0.178 94.188 7.198

27 4.411 0.163 94.351 7.166

28 4.575 0.159 94.511 7.145

29 4.738 0.156 94.668 7.133

30 4.901 0.152 94.820 7.131

31 5.065 0.152 94.973 7.136

32 5.228 0.150 95.123 7.149

33 5.392 0.139 95.263 7.177

34 5.555 0.132 95.395 7.215

35 5.718 0.119 95.515 7.267

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

612 100 0 100 100

https://doi.org/10.1371/journal.pone.0201874.t003
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The algorithm below, which we call O-K-MEANS (optimized K-MEANS), results when our cri-

terion is incorporated into K-MEANS.

O-K-MEANS

Step 1 Initialization. Produce points μ1,. . .,μk, as a random subset
of N.

Step 2 Classification. For all x 2 N and j 2 K, compute the Euclidean
distance between points x and μj, namely, d(x, μj). Then, point
(object) x 2 N is assigned to a cluster Gð€ȷÞ if dðx; m€ȷÞ � dðx;mjÞ,
for €ȷ; j 2 K.

Step 3 Centroids. Determine the centroid μj of cluster G(j), for j 2 K.
Step 4 Convergence. If γr � U stop the algorithm, otherwise perform

another iteration starting from STEP 2.

Proposal validation

By means of C language and a GCC 4.9.2 compiler, both K-MEANS and O-K-MEANS algorithms

were implemented on a Mac mini computer with OS Yosemite 10.10, processor Core i5 at

Fig 3. Pareto optimality.

https://doi.org/10.1371/journal.pone.0201874.g003
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2.8GHz, and 16 GB of RAM memory. The implementation of our stopping strategy requires

negligible additional memory resources.

For the design of the computational experiments and the analysis of our algorithms, we

used the methodology proposed by McGeoch [41].

As mentioned in Section Introduction the complexity of K-MEANS is O(nkdr). Therefore,

the O-K-MEANS can be expressed as O(nkdrα), where α denotes the quotient of the number of

O-K-MEANS iterations and the number of K-MEANS iterations. From our experiments with large

synthetic and real instances we obtained an average of α = 0.0389.

Our codes were tested on sets of real and synthetic instances. In each instance the initial

centroids were the same for both algorithms. In what follows we denote t, to, z�, and z�o , respec-

tively, the time needed by K-MEANS, the time needed by O-K-MEANS, the best objective function

value found by K-MEANS, and the best objective function value obtained by O-K-MEANS. Further,

to mesure time saving and quality loss we use, respectively, the formulas

d ¼ 100 1 �
z�

z�o

� �

and r ¼ 100 1 �
to
t

� �
:

For each instance we chose the product nkd as an indicator of its complexity level. The com-

puter experiments described in sections Synthetic instances and Real instances used different

U values according to the Pareto optimality principle applied to each instance. Consideration

of different thresholds for the same instance is dealt with in Section Using other threshold

values.

Synthetic instances

14 synthetic instances were produced for different n values and number of dimensions d as

shown in Table 4.

All points in each synthetic instance were randomly generated: while in instances 1 to 13

they followed a uniform distribution with coordinates belonging to (0, 1)d, in instance 14 a

normal distribution was used with mean 40 and standard deviation 20. Distinct values for the

number of clusters k were considered. Table 5 shows the results of an execution of each algo-

rithm; the computing times t and to are reported in hours rounded to hundredths. Notice that

the instances are sorted according to the nkd product.

When compared to K-MEANS, algorithm O-K-MEANS exhibits good performance on these

instances: on average, in less than four percent of calculation time solutions are obtained

whose quality decreases only about 0.5%. It is worth mentioning the relatively low standard

deviation value (1.17), as compared to the average (96.10).

Real instances

We made computer experimentation with five real instances taken from the University of Cali-

fornia repository, UCI [42], see Table 6. Note the relatively small size of instances 1–3 when

compared to the large instances 4 and 5.

Table 4. Synthetic instances general data. The n values are given in millions.

Instance 1 2 3 4 5 6 7 8 9 10 11 12 13 14

n 2 2 2 2 2 1 1 1 1 1 0.5 0.5 0.25 1.2

d 2 4 6 5 7 2 3 4 7 10 2 11 12 5

https://doi.org/10.1371/journal.pone.0201874.t004
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For distinct k values, each real instance was solved with K-MEANS and O-K-MEANS using the

same initial centroids; results are shown in Table 7. In general, as nkd increases, the efficiency

of O-K-MEANS increases —note the average time reduction for the large instances (96.12%) and

the small ones (86.47%), yielding similar quality loss—. As in the case of synthetic instances,

low standard deviations are observed.

Using other threshold values

In sections Synthetic instances and Real instances, we showed results for thresholds deter-

mined following the Pareto optimality principle; however, other threshold values could as well

be selected according to the need of solution quality and time availability.

Thus, each instance of Table 4 was solved with K-MEANS and O-K-MEANS using the same ini-

tial centroids, and the threshold values U shown in Table 8. In this table �r and �d denote the

Table 5. Results of K-MEANS and O-K-MEANS on synthetic instances. Computer times t and to are given in hours, the product nkd in millions.

Instance k nkd t to z� z�o ρ (%) δ (%) U

11 50 50 0.38 0.01 26 959 27 140 96.19 0.671 1.23

6 50 100 1.28 0.02 53 988 54 148 97.82 0.296 0.84

7 50 150 0.53 0.03 130 439 131 249 93.31 0.620 1.36

13 50 150 1.14 0.06 188 184 188 705 94.62 0.276 1.01

6 100 200 1.52 0.07 38 065 38 336 95.38 0.712 0.96

8 50 200 2.00 0.07 211 690 213 294 96.42 0.757 0.73

7 100 300 2.62 0.09 103 010 103 611 96.40 0.583 0.77

6 200 400 2.91 0.13 26 848 27 084 95.42 0.879 0.87

8 100 400 1.54 0.08 177 224 178 534 94.19 0.739 1.47

12 100 550 9.08 0.37 324 023 324 825 95.89 0.247 0.63

7 200 600 6.17 0.22 81 418 81 823 96.28 0.497 0.78

14 100 600 7.41 0.18 28 606 830 28 719 403 97.49 0.393 1.14

1 200 800 8.09 0.39 53 722 54 212 95.10 0.912 0.72

8 200 800 9.68 0.37 147 867 148 588 96.08 0.487 0.63

10 100 1000 18.56 0.64 588 590 589 796 96.55 0.204 0.73

14 200 1200 24.03 0.52 25 001 825 25 096 243 97.81 0.377 0.89

9 200 1400 20.30 0.57 353 458 354 444 97.19 0.278 0.79

2 100 1600 6.15 0.27 354 738 356 783 95.47 0.576 0.89

4 200 2000 26.14 0.79 434 530 435 764 96.94 0.283 0.82

3 100 2400 11.49 0.38 648 108 650 778 96.65 0.412 0.87

5 100 2800 13.66 0.41 776 098 779 474 96.98 0.434 0.93

Average 96.10 0.507 0.91

Standard deviation 1.17 0.214 0.22

https://doi.org/10.1371/journal.pone.0201874.t005

Table 6. Real instances general data.

Instance Name n d
1 Abalone 4 177 7

2 Wind 6 574 15

3 Letters 20 000 16

4 DSAS 1 140 000 45

5 EPCS 2 075 259 7

https://doi.org/10.1371/journal.pone.0201874.t006
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averaged reduction of time and solution quality, respectively. As expected, each row decreases

monotonically from left to right, namely, increasing U leads to greater reduction of both com-

puting time and quality solution. Thus, there is a trade-off between these concepts.

We find remarkable the closeness between the reductions with U = 1, and those that arise

when applying the Pareto principle (see Table 5).

Combining our convergence criterion with other criteria

To assess the benefit of combining our convergence criterion with other algorithms for speed-

ing up k-means we considered two efficient classification strategies. One was proposed by

Fahim et al. [25], call it F, the other is due to Pérez et al. [43], call it P. With this aim we chose

10 synthetic instances described in Table 4, to be solved for distinct k values. For each instance

the developed codes used the same initial centroids.

Table 9 summarizes our results, in terms of time and quality reduction related to K-MEANS,

where OK, FOK, and POK, denote, respectively, O-K-MEANS, Fahim et al. algorithm combined

with O-K-MEANS, and Pérez et al. algorithm combined with O-K-MEANS.

The results of our computational experiments lead us to pose that it can be advantageous

to combine O-K-MEANS with other strategies, both in terms of computing time reduction and

solution quality.

Also, to assess the algorithms OK, FOK, and POK when using as initial centroids those gen-

erated by the algorithm K++ proposed by Arthur [20] we selected eight instances, see Table 10.

Instance A is the synthetic one shown in Fig 4; instances B and C correspond to the real

instance Letters described in Table 6; instance D was produced by randomly selecting 30 000

objects from instance 10 of Table 4; to produce instances E and F 40 000 points were randomly

Table 7. Comparative results for real instances. The product nkd is given in millions, and z�, z�o have been rounded to integers. Computing times t, to are in seconds for

the small instances, and in hours for the large ones.

Instance k nkd t to z� z�o ρ (%) δ (%) U

1 20 0.58 0.23 0.04 314 320 83.33 1.990 2.22

1 50 1.46 0.43 0.05 243 248 87.18 2.002 2.01

2 80 7.88 2.60 0.38 57 633 58 245 85.42 1.062 3.84

2 160 15.77 4.75 0.65 52 600 53 134 86.36 1.015 4.12

3 50 16.00 5.42 0.63 95 283 96 602 88.46 1.384 2.90

3 100 32.00 10.53 1.26 81 856 83 044 88.06 1.451 3.75

Average 86.47 1.484 3.14

Standard deviation 1.89 0.432 0.89

5 50 399.00 2.09 0.11 8 878 334 8 935 921 94.84 3.056 3.17

5 100 798.00 6.82 0.13 10 018 910 10 073 027 98.04 2.191 4.65

4 50 2 565.00 8.17 0.35 2 533 399 2 588 922 95.75 0.540 3.20

4 100 5 130.00 16.32 0.68 3 257 026 3 356 560 95.85 0.648 1.76

Average 96.12 1.610 3.20

Standard deviation 1.35 1.224 1.18

https://doi.org/10.1371/journal.pone.0201874.t007

Table 8. Average reduction of computing time �ρ and solution quality �δ , obtained by O-K-MEANS for distinct threshold values U.

U 2.5 2 1.5 1 0.5 0.4 0.3 0.2

�r 98.31 97.93 97.30 96.23 93.31 91.23 88.71 84.18

�d 1.26 0.98 0.74 0.51 0.30 0.23 0.18 0.11

https://doi.org/10.1371/journal.pone.0201874.t008
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generated (uniform distribution) in a bounded space; finally, instances G and H correspond to

the instance 10 of Table 4. Table 10 shows the time and quality reduction related to the algo-

rithm K++, obtained by algorithms OK, FOK, and POK when using as initial centroids those

generated by K++. These results support our belief in the usefulness of our proposal.

Data clustered around specific centers

To size up the performance of our stopping criterion if the data is heavily clustered around few

specific centers, we constructed a 2-dimensional synthetic instance (d = 2), where n = 11000

points display compact groups, see Fig 4. Each group was formed by arbitrarily selecting a cen-

ter and standard deviation, and points were randomly generated with normal distribution

around the centers.

This instance was solved for k = 5, 10, 15, 20. Table 11 shows the average results of 30 runs

of K-MEANS and O-K-MEANS with threshold U = 3.14, as well as the average reduction of time

and quality due by the latter.

Table 9. Tests on selected synthetic instances. Time and quality reduction arising from combining F and P algorithms with O-K-MEANS.

Instance d k Time reduction (%) Quality reduction (%)

OK F P FOK POK OK F P FOK POK

1 2 200 95.31 75.47 99.06 97.97 99.26 0.67 -0.06 3.06 1.26 3.10

2 4 100 93.53 31.18 98.39 96.82 98.80 0.40 -0.03 1.63 0.70 1.65

4 5 200 96.66 73.72 98.95 98.18 99.21 0.25 0.03 1.19 0.40 1.21

5 7 100 96.35 70.72 98.21 97.96 98.69 0.40 0 0.94 0.47 0.95

6 2 50 97.61 85.24 99.12 98.23 99.31 0.24 -0.08 1.95 0.48 1.98

6 2 100 94.50 67.22 98.64 97.39 98.89 0.57 0.20 3.17 0.94 3.20

6 2 200 94.55 64.71 98.63 97.19 98.90 0.73 -0.08 2.74 1.08 2.77

7 3 50 89.21 59.55 96.88 95.18 97.71 0.22 0.06 1.32 0.54 1.34

7 3 100 96.10 59.41 98.68 97.93 99.02 0.55 -0.04 1.79 0.83 1.81

7 3 200 96.04 73.66 98.95 97.99 99.17 0.46 0.02 1.81 0.70 1.83

8 4 50 96.29 57.25 98.75 97.87 99.02 0.74 0 1.74 0.80 1.75

8 4 200 96.58 70.38 99.01 98.27 99.24 0.53 0.05 1.49 0.69 1.52

9 7 200 96.94 68.43 98.97 98.49 99.19 0.26 0 0.67 0.36 0.68

10 10 100 96.48 62.07 99.11 98.45 99.32 0.20 0 0.87 0.33 0.88

14 5 200 97.15 75.73 99.27 98.79 99.42 0.30 0.03 0.87 0.44 0.88

averages 95.55 66.32 98.71 97.78 99.01 0.43 0.01 1.68 0.67 1.70

https://doi.org/10.1371/journal.pone.0201874.t009

Table 10. Results of OK, FOK and POK when using as initial centroids those generated by K++.

Instance n d k Time reduction (%) Quality reduction (%)

OK FOK POK OK FOK POK

A 11 000 2 16 74.42 84.92 88.22 0.81 1.05 7.50

B 20 000 16 50 91.35 94.50 92.77 1.27 1.89 1.42

C 20 000 16 100 81.87 89.50 82.88 1.72 1.42 1.73

D 30 000 10 50 81.46 89.64 94.94 0.32 0.42 0.81

E 40 000 3 50 77.72 85.84 92.94 0.24 0.53 1.67

F 40 000 3 100 79.83 88.08 94.19 0.82 1.09 2.47

G 1 000 000 10 50 96.18 97.69 98.99 0.15 0.20 0.53

H 1 000 000 10 100 97.75 98.48 99.14 0.28 0.36 0.85

https://doi.org/10.1371/journal.pone.0201874.t010
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Note that the best results are obtained as k increases, with a time reduction of up to 86.44%,

and an average quality reduction as low as 2.86%.

Clustering larger data sets

We tested the performance of O-K-MEANS on four still larger instances, selected from the repos-

itory UCI [42]. Table 12 shows their relevant data as well as the average computational results

Fig 4. Non uniform synthetic instance in two dimensions.

https://doi.org/10.1371/journal.pone.0201874.g004

Table 11. Results of O-K-MEANS for a 2-dimensional, non uniform synthetic instance.

k average number of iterations average reduction

K-MEANS O-K-MEANS time (%) quality (%)

5 14.23 4.87 64.58 3.90

10 22.20 5.23 75.13 2.90

15 40.10 5.60 85.12 2.86

20 47.43 6.10 86.44 2.86

https://doi.org/10.1371/journal.pone.0201874.t011
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obtained from 30 runs of O-K-MEANS, with the same threshold (3.20) used for the real instances

of Table 6. These results confirm the suitability of our proposal in Big Data realms.

Conclusion

We have presented a sound criterion to balance effort and benefit of k-means cluster algo-

rithms in Big Data realms. Its advantages were demonstrated by applying it in the convergence

step of one of the most widely used procedures of the k-means family, which here we called

K-MEANS. Guided by the Pareto principle, our criterion consists in stopping the iterations as

soon as the number of objects that change cluster at any iteration is lower than a prescribed

threshold. The novelty of methodology comes from two facts. First, in regard to the stopping

criterion, the authors are not aware of any proposal directly related to the number of objects

changing group at every iteration. Second, to date the Pareto principle has not been used to

determine a threshold leading to an adequate commitment between the quality of a solution

and the needed time to obtain it.

From intensive computer experimentation on synthetic and real instances we found that, in

general, our criterion significantly reduces the number of iterations with relatively small decre-

ment in the quality of the yielded solutions. Furthermore, the best results tend to correspond

to the largest instances considered, namely, those where the product nkd is high. Thus, this

behavior is an indicator of the usefulness of applying the Pareto principle in the convergence

step when dealing with large k-means instances.

It is well known that some strategies to improve the performance of k-means are sensitive

to the number of dimensions. This is not our case, since our proposal aims to reduce the num-

ber of iterations made, and the time complexity per iteration nkd is taken as a constant.

An important characteristic of our stopping strategy is that its implementation requires

negligible additional memory resources; in this regard, it appears to take advantage over other

proposed criteria.

Last, but not least, our proposed convergence criterion is not incompatible with any improve-

ment related to the initialization or classification steps of k-means, as we have shown in relation

to the procedure that generates the initial centroids of the K++ algorithm. As future work we

find it appealing to deepen these investigations in the realm of parallel and distributed comput-

ing paradigms. It is foreseeable that our stopping criterion can be successfully used under such

paradigms since it only requires the number of objects changing group at each iteration.
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