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Diagnostics of Data-Driven Models: 
Uncertainty Quantification of PM7 
Semi-Empirical Quantum Chemical 
Method
James Oreluk1, Zhenyuan Liu1, Arun Hegde1, Wenyu Li1, Andrew Packard1, Michael Frenklach1 
& Dmitry Zubarev2

We report an evaluation of a semi-empirical quantum chemical method PM7 from the perspective of 
uncertainty quantification. Specifically, we apply Bound-to-Bound Data Collaboration, an uncertainty 
quantification framework, to characterize (a) variability of PM7 model parameter values consistent 
with the uncertainty in the training data and (b) uncertainty propagation from the training data to the 
model predictions. Experimental heats of formation of a homologous series of linear alkanes are used as 
the property of interest. The training data are chemically accurate, i.e., they have very low uncertainty 
by the standards of computational chemistry. The analysis does not find evidence of PM7 consistency 
with the entire data set considered as no single set of parameter values is found that captures the 
experimental uncertainties of all training data. A set of parameter values for PM7 was able to capture 
the training data within ±1 kcal/mol, but not to the smaller level of uncertainty in the reported 
data. Nevertheless, PM7 was found to be consistent for subsets of the training data. In such cases, 
uncertainty propagation from the chemically accurate training data to the predicted values preserves 
error within bounds of chemical accuracy if predictions are made for the molecules of comparable size. 
Otherwise, the error grows linearly with the relative size of the molecules.

Uncertainty quantification (UQ) is a critical diagnostic for the models that are positioned as a source of actionable 
predictions. Computational models of this kind are abundant in chemistry. One can think of kinetic models1–3, 
classical force-fields4,5, semi-empirical Hamiltonians6–8, approximate density functionals9–13 and the blossoming 
field of machine learning/deep learning models14–19.

One of the challenges of the model selection and curation is their tendency to proliferate uncontrollably if 
there is flexibility in the model’s form and fitting to reference data is involved. The rich landscape of approx-
imate density functionals20 is a case to the point. Models produced within data-centric framework that are 
application-oriented will inevitably face the same challenge at a much larger scale21,22.

Currently, models that require parameter fitting are compared on the basis of some form of the fitting error23. 
Our goal here is to develop a framework for model-data diagnostics, that informs users about the model from 
the point of view of the UQ. First, given a set of training data with known, presumably low, uncertainty, we want 
to be able to establish if there is a domain of the model parameters that captures all training data within their 
uncertainty. Second, knowing the domain of parameter values that are consistent with the training data, we want 
to establish how the variance in the parameter values propagates into the uncertainty of the model predictions.

There is a noticeable growth of interest in the assessment of uncertainty of the models used in computa-
tional chemistry (see e.g., refs24–27 and citations therein). A recent analysis of the error assessment in com-
putational chemistry arrives at the following conclusion28: “… a procedure for quantifying the uncertainty 
associated with computational models, in particular with quantum chemical calculations, is mandatory despite 
their first-principles character. Otherwise, it may be difficult to draw meaningful conclusions. Unfortunately, 
this procedure is neither well established nor straightforward.” Earlier we demonstrated how applying the 
Bound-to-Bound Data Collaboration framework24,29,30 for UQ can be incorporated into DFT framework in order 
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to quantify and improve uncertainty of the predictions31. In the present study, we apply the same framework as a 
diagnostic tool for semi-empirical quantum chemical model PM732.

Semi-empirical model chemistries are popular because of the low computational overhead that makes it pos-
sible to tackle large systems in a relatively short time. Interpretable mechanistic nature of these methods and 
straight-forward manner in which empirical data can be incorporated are the reasons why semi-empirical quan-
tum chemistry finds a wide range of ubiquitous applications and sees ongoing development33,34.

The goal of the presented study is to determine if (a) there is a single set, i.e., feasible set, of PM7 parameter 
values that satisfies uncertainty bounds of the training data and (b) it is possible to achieve predictions outside the 
training data with the uncertainty as low as the uncertainty of the training data.

Methods and Data
Bound-to-Bound Data Collaboration.  This section provides a brief overview of Bound-to-Bound Data 
Collaboration (B2BDC), with a focus on the methodological details specific to the present study. A more detailed 
discussion can be found elsewhere24,29,30,35,36.

B2BDC is a deterministic framework for uncertainty quantification, where uncertain parameters are con-
strained by combining models and experimental data. Let {Me(x)}e = 1, …, N denote a collection of models mapping 
from a common parameter space to various scalar-valued quantities of interest (QOIs). For a given parameter 
vector x ∈ n, the expression Me(x) evaluates the model prediction for e-th QOI. Experimental observations of the 
QOIs come in B2BDC in the form {[Le,Ue]}e = 1, …, N, where the uncertainty is characterized by a lower bound, Le 
and a upper bound Ue for the e-th QOI. Oftentimes, there is prior knowledge to confine the parameters, x, to a set 
 ⊂ n. Prior knowledge can be represented as a set of constraints on either individual model parameters, e.g., 
−1 ≤ x1 ≤ 1, or can represent relationships between parameters, e.g., 0 ≤ 5x1 + x2 ≤ 2. Constrained by both prior 
knowledge on x and experimental uncertainty bounds, each QOI has an associated feasible set of parameters for 
which model evaluations agree with the corresponding experimental bounds:

x L M x U e N{ : ( ) }, 1, 2, , (1)e e e e= ∈ ≤ ≤ = … .F H

Naturally, one is often interested in the set of parameters which satisfies multiple observations:

 ∩= ∈ , (2)I e I e

where I ⊂ {1, 2, …, N} is the index set of the QOIs. For example,  1:3,5 denotes the feasible set associated with 
QOIs, e = 1, 2, 3, 5. If the set  1:N is nonempty, the models and data are said to be consistent. Consistency is a form 
of model validation, ensuring that a model parameter vector exists that evaluates within the experimental uncer-
tainty bounds for all N QOIs. When such a parameter vector does not exist the set  1:N is empty, the models and 
data are said to be inconsistent. If the models can be accurately represented by polynomial surrogates, this notion 
of consistency can be efficiently and provably quantified through constrained optimization35. A polynomial sur-
rogate is a model which mimics the behavior of an underlying simulation model as close as possible, while being 
computationally cheaper to evaluate37. In cases where the models are not well characterized by simple surrogates 
but are computationally inexpensive to evaluate, direct sampling can provide a means of assessing consistency. To 
prove consistency, we must find at least one parameter vector x in  1:N. However, this becomes very challenging 
when the prior parameter space is large and there are many QOI models whose experimental bounds must be 
satisfied.

In B2BDC, the prediction for a particular model, say Mp(x), amounts to establishing bounds on the range of a 
model prediction, subject to model parameters being within a feasible set,  I:
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The prediction model need not be a member of the collection of models {Me(x)}e = 1, …, N. In certain cases, Eq. 3 
can be efficiently solved via constrained optimization30. Note, inner approximations to the prediction interval 
can be found by evaluating the prediction model for a set of parameter values in ℱI. The inner approximation can 
be interpreted as saying the prediction model can be no more predictive than the computed bounds and a wider 
prediction interval indicates greater uncertainty in the prediction.

As an illustrative example of the B2BDC methodology, pertinent to the present work, we select a case investi-
gated recently31. The problem is stated as estimating the ionization potential (IP) of water hexamer and its uncer-
tainty interval, given ionization potentials and their respective uncertainties of water dimer, trimer, tetramer and 
pentamer. In this problem, there are four QOI models for the training-set of water clusters, consisting of dimer, 
trimer, tetramer and pentamer. A theoretical model of the ionization potential was constructed based on the 
double-hybrid form of the Density Functional Theory (DFT). Two model parameters, referred here as x1 and x2, 
encapsulated the model variability over their allowable prior ranges (each 0 to 1). Initial sampling over the param-
eter space and building surrogate models produced individual feasible regions (Eq. 1), for each of the four 
training-set water clusters labeled  1 through  4. The top-left panel of Fig. 1 shows the individual feasible sets of 
dimer and trimer water clusters,  1 and  2 respectively and their intersection  1:2 shown in dark red. Every point 
of this red region guarantees predictions of the dimer and trimer IPs within their respective uncertainty bounds. 
The top-right panel adds the feasible set for tetramer water clusters,  3 and the bottom-left panel adds further the 
feasible set for pentamer water clusters,  4. The intersection of all the individual feasible regions produces a fea-
sible region,  1:4 which is the feasible set of the B2BDC framework described in Eq. 2; shown in dark red in the 
bottom-left panel of Fig. 1. Every point of  1:4 is a combination of the two model parameters that maps to a value 
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for the property we seek to predict, i.e., the ionization potential of the water hexamer, which is consistent with the 
ionization potentials of the training data. Collectively, all points in  1:4 result in an interval of predicted hexamer 
IP values, shown in the bottom-right panel of Fig. 1. The predicted uncertainty interval encompasses all the 
uncertainties of the input data and turned out to be significantly smaller, by about a factor of 2, compared to the 
high-theory calculations.

Selection of QOIs and experimental data for PM7.  There are a multitude of approaches available for 
validating a computational model to experimental data. The two most important factors when validating a model 
is the choice of validation data and the specific experimental feature to validate the model by.

In this study, we will be considering a single homologous series, namely linear alkanes. We chose this homol-
ogous series for its simplicity and accumulated knowledge. There are 27 adjustable model parameters in PM7 
which are used to parameterize the interactions of carbon and hydrogen atoms. Given the problem choice, we 
should expect the “best case scenario” from the results.

For a given parameterization, PM7 as a model provides many output responses, e.g., vibrational frequen-
cies, ionization potential, HOMO-LUMO energies, heat of formation, etc. Due to the sheer number of model 
responses, the availability of accurate experimental data will be used to guide the choice of a quantity of interest. 
We also keep in mind that the primary output value of PM7 is standard heat of formation. Ruscic et al.38, employ-
ing a thermochemical network approach, reported accurate thermochemical values for a set of molecules, includ-
ing members of linear alkanes, methane to octane (Table 1). Uncertainties listed in Table 1 represents the reported 
95% confidence intervals, in conformity to the accepted standard in thermochemistry39. Despite the reported 
values not being purely experimental, the terms “experimental uncertainty” and “experimental bounds” will be 
used to describe the data in Table 1. In the present study, heats of formation of linear alkanes will be used as our 
QOIs. The experimental bounds used for the training data are the the reported heat of formation ± the uncer-
tainty. Table 1 also shows the QOI models used in the study, namely the heat of formation of methane, ethane to 
octane. For sake of simplicity, each QOI model is indexed by the number of carbon atoms.

Figure 1.  Illustration of the B2BDC methodology, specifically the intersection of feasible sets, for the problem 
described in Edwards et al.31. The shaded regions shown in Panels a, b and c are individual feasible set,  e, 
which are a set of model parameters that can predict the ionization potential of a particular water cluster within 
its respective uncertainty. Panel a: individual feasible sets for dimer and trimer configurations of water,  1 and 
 2 respectively. The intersection of these two regions is the feasible set  1:2, shown in dark red. Panel b: the 
addition of the feasible set for the tetramer configuration of water,  3, shown in teal. The intersection is shown 
in dark red,  1:3. Panel c: the feasible set of pentamer configuration of water, shown in dark grey, primarily 
overlaps with  3. The intersection of all individual feasible sets forms  1:4, shown in dark red. Panel d: 
prediction of the ionization potential of a hexamer water cluster on feasible set  1:4. Prediction establishes a 
range of a prediction model as seen in Eq. 3. The resulting prediction interval for the ionization potential is 
shown on the right-hand side in red.



www.nature.com/scientificreports/

4Scientific REpOrtS |  (2018) 8:13248  | DOI:10.1038/s41598-018-31677-y

Motivation for direct sampling.  B2BDC typically employs surrogate models to represent an underlying 
simulation. The use of surrogates makes tasks like optimization and sensitivity analysis much more efficient due 
to inexpensive evaluations. When the surrogates are polynomials, consistency and prediction can be addressed 
efficiently and provably. However, we have found constructing surrogates for PM7 particularly challenging for 
two reasons, as we will detail below with the H (C H )f 298 4 10

∆  serving as our example.
First, we do not have a well-defined prior domain, , to confine our search for feasible parameters as no 

bounds are specified for these parameters. To address this, we constructed an initial prior domain  by centering 
the domain around the PM7 nominal parameter vector32, xnom, which is listed in Supplementary Table S1. The 
bounds of the prior domain were constructed by selecting perturbations ±δi to the i-th parameter with all other 
parameters remained fixed such that the interval defined by xnom,i + δi produced a 10 kcal/mol change in ∆ Hf 298. 
We denote this initial region by x[ ]1 nom δ= ± , as shown in Supplementary Table S1.

Second, our experience has shown that surrogate models are only accurate (to within the experimental uncer-
tainty) on small domains. To illustrate this, we compare the fitting error of a quadratic polynomial and Gaussian 
process surrogate model on shrinking domains, x k[ ]k nom δ= ± ×  where k ∈ [0, 1], as shown in Fig. 2. The 
surrogate model fitting error is the absolute difference between an evaluation of PM7 and an evaluation of the 
surrogate model over a domain k. For each k, 7500 Latin Hypercube samples were generated in k to construct 
both surrogate models. 10-fold cross validation was used to estimate the surrogate model fitting error over each 
domain. The Gaussian process was implemented by using MATLAB’s fitrgp function40. As seen in Fig. 2, the 
Gaussian process deviated by approximately 0.8 kcal/mol from PM7 on the domain 1, which is significant given 
the accuracy of the training data. In order to attain a surrogate model fitting error below our target, the 
experimental uncertainty, the initial region needed to be reduced by the factor of k = 0.4. The reduced domain 

e Me Hf 298
o∆  (kcal/mol) Uncertainty

1 ∆ H (CH )f 298 4
 −17.81 ±0.01

2 ∆ H (C H )f 298 2 6 −20.06 ±0.03

3 H (C H )f 298 3 8∆ −25.10 ±0.05

4 ∆ H (C H )f 298 4 10 −30.10 ±0.06

5 H (C H )f 298 5 12
∆ −34.98 ±0.07

6 ∆ H (C H )f 298 6 14 −39.90 ±0.08

7 ∆ H (C H )f 298 7 16
 −44.82 ±0.11

8 H (C H )f 298 8 18∆ −49.78 ±0.16

Table 1.  List of the QOI models Me, the associated index e (equivalent to the number of carbon atoms in the 
alkane), the reported heat of formation and uncertainty38.

Figure 2.  Surrogate model fitting error for the heat of formation of C4H10 evaluated on a shrinking domain 
x k[ ]k nom δ= ± × , with k ∈ [0, 1]. The nominal PM7 value, xnom and δ are reported in Supplementary 

Table S1. As the domain shrinks, by reducing k, the surrogate model fitting error, that is the difference between 
PM7 and the surrogate model, decreases to a point where the error falls below the experimental uncertainty 
(shown in grey) of 0.06 kcal/mol. Comparison between a quadratic surrogate (black dots) and a Gaussian 
process model (red crosses) with a constant mean and a squared exponential covariance function is shown.  
10-fold cross-validation was used to estimate the fitting error.
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0.4 is 5.5 × 1010 times smaller by volume as compared to the original domain 1. Based on this result, we con-
cluded that it would require an intractable number of surrogate models to mimic the behavior of PM7 over the 
prior region  within the desired accuracy. Therefore, PM7 will be evaluated directly and forgo any surrogate 
modeling.

Direct Sampling for Consistency.  In light of the challenges discussed in the preceding section, we 
approached consistency and prediction by directly sampling . Still, despite PM7’s fast evaluation time, particu-
larly for fixed geometries, evaluating consistency for multiple QOIs remains a computational challenge. We break 
this challenge into two tasks: (1) allocating computational resources to sample ; and (2) determining a prior 
region  to confine our search for feasible parameters.

Computational burden of direct sampling PM7.  One of the limitations encountered in the present study was 
the number of samples we could evaluate for PM7 with the computational resources available. Evaluating PM7 
for millions of parameter combinations is an embarrassingly parallel task, but computational efficiency can be 
improved by reducing an input/output (I/O) bottleneck occurring in the evaluation process.

Throughout the study, the input molecular geometries were obtained via optimization with the PM7 nominal 
parameter vector, which remained frozen afterwards, during the subsequent direct sampling. The freezing of the 
molecules geometries was done to avoid any unphysical reorganization or distortion. The consequences of freez-
ing the molecular geometries with the nominal PM7 parameter vector are two-fold. First, using geometry opti-
mization for a given parameter vector can (and usually does) result in different heats of formation as compared 
to the fixed geometry. Second, parameter vectors which are feasible with respect to the heats of formation, do 
not guarantee reaching a physically meaningful geometry. All feasible parameter vectors, which would produce 
unphysical geometries, should ultimately be removed from the feasible set.

The computational chemistry program MOPAC41 was used for evaluation of PM7 parameter sets. One of the 
practical aspects to be solved in working with MOPAC is handling efficiently multiple reading and writing of text 
files for each execution, which creates a bottleneck in I/O when parallelizing the direct sampling approach. To 
reduce I/O time, a memory based file system was used, that enabled all files to be read and written into system 
memory (RAM) instead of a hard disk drive (HDD). For example, using a Seagate 7200 RPM SATA HDD, read 
and write speeds were 204.0 and 194.9 MB/s, respectively. Using a memory based file system we could read and 
write at 6020.7 and 5840.6 MB/s, respectively. To relate this to sampling performance, the time to evaluate 104 
different parameter values for C4H10 on a workstation equipped with an Intel Core i7-6700 K processor took 
305.0 seconds using the Seagate hard drive and 215.7 using the memory based file system, a speed up of 41%. This 
speedup in reading and writing MOPAC text files directly translates into more evaluations of PM7 per second.

The MATLAB Parallel Computing Toolbox40 was used to write input files, execute PM7 and read output files 
in parallel. Two workstations, each with an Intel Core-i7 6700 K processor were used to directly sample PM7 and 
evaluate the heats of formation of a series of alkanes, methane to nonane.

Determination of a prior search region.  The choice of the prior parameter domain, , determines all subsequent 
analysis and hence it needs to be well motivated. Our goal is to assess the predictivity of PM7 for large alkanes 
while being consistent with experimental data available for small alkanes. Due to limited data, we set aside hep-
tane and octane, the two largest alkanes for which we have experimental bounds, to assess predictivity. Conversely, 
we also set aside methane and ethane so as not to bias the result. Although the physical properties of methane and 
ethane may be representative of the homologous series, the chemical properties, i.e., the energetics, are very dif-
ferent as seen through group additivity42. Propane and butane were also not included in the initial region search, 
since a priori it was not known if a parameter vector exist that could simultaneously evaluate the heats of forma-
tion of propane, butane, heptane and hexane within the uncertainty in the training data. Based on these consid-
erations, we prioritized our determination of  on feasible samples for pentane and hexane,  5:6.

A non-linear programming solver, fmincon40, was used to minimize the following objective function, 
M x y( )5:6 5:6 2

2− , where, M5:6(x) are the heats of formation of pentane and hexane computed by PM7 at the 
parameter vector x. y5:6 are the reported heats of formation for pentane and hexane from Table 1. The local opti-
mal parameter vector found, xopt, was feasible for pentane and hexane, therefore xopt 5:6∈ . A volume was taken 
around xopt in order to collect samples of  5:6. For each sampled point, the heats of formation of pentane and 
hexane were computed by PM7. 2 × 105 samples were generated by employing a Latin Hypercube design from the 
volume [xopt ± xopt × 1 × 10−3] and 65 samples were found to be within  5:6.

Principal component analysis (PCA) was conducted to identify a rotated coordinate system around the sam-
ples of  5:6, where all principal components were preserved. Considering the arbitrary choice of the volume used 
in the sampling of  5:6, each PCA direction was extended ten times of that of the  5:6 samples. This allowed for 
an even larger sample region to be considered. A Latin Hypercube design was used to generate uniform samples 
in the rotated and extended volume.

In total, 5.76 million samples were generated uniformly within the PCA-rotated volume and were used to eval-
uate PM7 for the heats of formation of nine alkanes, CH4 to C9H20. Shown in Table 2 are the extreme parameter 
values from the generated samples. There were 164,569 samples which were feasible for at least one alkane in the 
training set. The number of feasible samples found quickly dropped when considering feasibility with multiple 
alkanes. For example, there were 19167 samples that were feasible with at least two alkanes, 6193 samples feasible 
with at least three alkanes, 3110 samples feasible with at least four alkanes, 1989 samples feasible with at least five 
alkanes and 169 samples feasible with at least six alkanes.
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Results
Feasible Set Search.  For each of the eight alkanes, a feasible parameter vector could be found that would 
predict its heat of formation within the experimental bounds. Feasible parameters were also found for all pairwise 
combinations of alkanes, i.e., a parameter vector could be found that would predict the heat of formation for any 
two alkanes within their respective experimental bounds. The percentage of feasible samples found for each pair 
of alkanes in the training data set is reported in Supplementary Table S3. Methane had the smallest percentage of 
feasible samples for a single alkane and the largest was for octane. This difference in percentages of feasible sam-
ples could be due to the uncertainty bounds associated to octane being nearly an order of magnitude larger than 
that of methane and the difference in molecular structure of methane compared to all others in the homologous 
series.

From the generated samples, there were 4020 samples of  5:6, the alkanes which we had focused our search on. 
However, from the generated samples, there was no single parameter vector that was able to simultaneously sat-
isfy the uncertainty bounds of all the training data, i.e.,  N1: = ∅. Thus the PM7 model and the training data are 
found to be mutually inconsistent.

The inability to find a parameter vector feasible for all alkanes does not prove the non-existence of such a 
point. In fact, parameter values that are feasible for all alkanes could lead to potential biases in the prediction 
because methane and ethane are sufficiently different from the rest of the homologous series with respect to their 
atomic bonding and hence the energetics. Using parameter values feasible for methane and/or ethane in the pre-
diction of larger alkane properties can result in a prediction interval with smaller uncertainty but in disagreement 
with experimental data, a problem similar to the bias-variance tradeoff43.

Direct sampling the search region led to a fraction of samples being consistent with the experimental data for 
three alkanes (Supplementary Table S4), 4250 samples were found from  6:8. Prediction of all alkanes by  6:8 is 
shown in Supplementary Fig. S2. Feasible sets formed by consecutive alkanes, i.e., adjacent members of the 
homologous series, where only a few or no samples were found are shown in Supplementary Table S5. The feasible 
set with the largest number of consecutive alkanes was  3:8. Prediction of all alkanes by  3:8 is shown in 
Supplementary Fig. S3. No samples were found from  2:8 from direct sampling. Using a genetic algorithm via 
MATLAB’s ga function (and 750 + cpu hours), we were able to obtain a single parameter vector from  2:8 
(Supplementary Table S2).

For PM7 to predict the heats of formation of eight alkanes to within the uncertainty in the training data turned 
out to be a challenging task. There exists a set of parameter vectors, specifically 28,696 such sets, each of them 
simultaneously predicting the heats of formation of all eight alkanes with 95%-confidence chemical accuracy, i.e., 

Parameter min(x) max(x)

USSH −14.815 −9.5475

BETASH −10.444 −6.383

ZSH 0.85244 1.5053

GSSH 10.953 15.822

FN11H 0.14962 0.23173

FN21H 1.2161 1.4849

FN31H 0.83875 1.0458

ALPBH 3.9629 4.8467

XFACH 2.3077 2.7852

USSC −52.553 −45.61

UPPC −43.679 −37.301

BETASC −15.285 −11.804

BETAPC −9.2246 −6.7715

ZSC 1.5914 2.2229

ZPC 1.501 2.0466

GSSC 10.314 13.662

GSPC 9.7585 13.092

GPPC 9.3945 12.464

GP2C 8.6452 11.014

HSPC 0.66956 0.77601

FN11C 0.045528 0.055036

FN21C 4.3632 5.1283

FN31C 1.4298 1.7154

ALPBHC 0.76974 1.1501

XFACHC 0.15181 0.21488

ALPCC 2.3296 3.0615

XFACC 0.71959 0.96953

Table 2.  Extreme parameter values from the search region.
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within ±1 kcal/mol. Since there is no justification for expanding the uncertainty of the training data, the feasible 
sets used throughout this study are defined by the reported experimental uncertainties, those reported in Table 1.

To better understand the shape of a feasible set over the search region, consider two feasible points for 
C6H14. The heat of formation of C6H14 was calculated along the line segment connecting the two feasible points. 
Figure 3(a) shows that points along the line segment do not remain feasible, thus proving the feasible set is 
non-convex. Interestingly, if the line segment is extended further, beyond the initial sample region, another inter-
section with the experimental bounds occurs at t = −0.65, shown in Fig. 3(b). This proves that there exist more 
feasible points for C6H14 which are outside of the sampled search region.

Uncertainty of Predictions.  In this section, we examine the uncertainty of predictions for larger alkanes 
using samples consistent with experimental data for smaller alkanes. Prediction of the heat of formation of hep-
tane, octane and nonane were investigated. In the case of heptane and octane, experimental data are available for 
comparison, but for nonane there are not. In each case, samples consistent with the experimental data for smaller 
alkanes were used for prediction of the larger alkane forming the histograms shown in Fig. 4. The width of the 
histograms constitute the prediction uncertainty. The predictions are only inner approximations as the samples 
were only generated from a portion of the parameter space. Thus, the predicted uncertainty can be no smaller 
than that which is presented below.

Figure 4(a) depicts the prediction of the heat of formation of heptane. In blue are samples from  5:6, i.e, 
parameter vectors that were feasible for both C5H12 and C6H14. The width of the histogram is 0.5 kcal/mol, which 
is larger than that of the experimental uncertainty of 0.2 kcal/mol (shown in grey), but still within the chemical 
accuracy (1 kcal/mol in terms of a 95% confidence interval). To further reduce the prediction uncertainty, we can 
impose additional constraints by considering samples that are also feasible with smaller alkanes. Samples of  4:6 
and  3:6, shown in red and yellow, respectively, are indeed capable of reducing the predicted uncertainty and in 
the case of  3:6 producing a prediction 52.5% smaller than that of  5:6.

Following a similar analysis, we examined the prediction for octane, the largest alkane that we had experimen-
tal data for comparison. To predict the heat of formation of C8H18, we considered feasible samples from the 
preceding two, three and four smaller alkanes, i.e., samples from  6:7,  5:7 and  4:7. The results are shown in 
Fig. 4(b). The heat of formation of octane predicted by  6:7, shown in blue, yielded uncertainty of 0.62 kcal/mol, 
again within the chemical accuracy. Using samples which were feasible with the preceding three alkanes,  5:7, 
resulted in a prediction uncertainty of 0.42 kcal/mol, a reduction of 31% compared to the prediction by  6:7.

The computational results for the alkane without any experimental data for comparison, nonane, are shown in 
Fig. 4(c). Using samples of  7:8, the prediction uncertainty for nonane is 0.85 kcal/mol. We were able to reduce the 
prediction uncertainty for nonane by 44%, to 0.48 kcal/mol, by considering feasible samples from  5:8. Prediction 
of the heat of formation of nonane using  3:8, the feasible set with the largest number of consecutive alkanes 
found, is given in Supplementary Fig. S1.

The predictions for alkanes beyond nonane are shown in Fig. 5. The displayed uncertainty was predicted by using 
samples of  3:8. Two interesting observations can be made from these results. First, using samples from  3:8 pro-
duces a predicted uncertainty of nearly 5 kcal/mol for methane. This observation is consistent with the fact that 
methane is sufficiently different from the larger members of the homologous series. Parameter vectors feasible for 
larger alkanes are not capable of predicting the heat of formation for methane with chemical accuracy. Second, for 
larger alkanes prediction uncertainty grows linearly with the alkane size. The linearly increasing prediction uncer-
tainty can also be seen in Fig. 6 where C2H6 through n-C20H42 are compared against the available experimental data 

Figure 3.  Blue curve is the heat of formation of C6H14 from PM7 calculations along the line segment defined 
as x = (1 − t)x1 + tx2, where x1 and x2 are two feasible points for C6H14. The black dashed lines are the respective 
experimental bounds (see Table 1). Panel a: line segment between two feasible points is not entirely feasible, 
thus the feasible set of C6H14 is non-convex. Panel b: extending the line segment beyond x1, to the left, a new 
intersection with the experimental bounds is found at t = −0.65.
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Figure 4.  Heat of formation of a larger alkane, predicted from the feasible parameter set of smaller alkanes. The 
grey shaded region is the experimental interval for the respective alkane from Table 1. Panel a: heat of formation 
of heptane predicted from samples of  5:6,  4:6 and  3:6. Panel b: heat of formation of octane predicted from 
samples of  6:7,  5:7 and  4:7. Panel c: heat of formation of nonane predicted from samples of  7:8,  6:8 and  
 5:8; this case is without experimental data.

Figure 5.  Predicted intervals for alkanes outside of the training data. Prediction was made using samples of  
 3:8. Interval length is defined as the absolute value of the  M x M xmax ( ) min ( )x p x p3:8 3:8

−∈ ∈ , where Mp(x) is the 
evaluation of PM7 of the p-th alkane with the parameter vector, x. The red line shown is a linear fit between 
n-C8H18 and n-C20H42.



www.nature.com/scientificreports/

9Scientific REpOrtS |  (2018) 8:13248  | DOI:10.1038/s41598-018-31677-y

and the nominal PM7 evaluation. Predictions made with samples of  3:8 overlap with the experimental bounds from 
C3H8 through C8H18 (by definition of the feasible set  3:8), but the nominal parameterization of PM7 deviates by 
nearly 2 kcal/mol. The PM7 results with the nominal parameter vector intersects with the predicted interval for 
alkanes C14H30 through C19H40.

Classification of Feasible Points.  As was established in Fig. 3, the feasible set of PM7 is non-convex. For a 
convex feasible set it suffices to map out its boundary in order to determine if any combination of parameters is 
feasible or not. In the case of PM7, explicitly mapping of the boundary of the feasible set is computationally 
expensive due to the dimensionality of the problem and the feasible set being non-convex; a viable alternative is 
to use the data collected via direct sampling and train a binary classifier that distinguishes a “feasible” class of 
parameter values from the “infeasible” one. As there was no parameter vector found feasible for all alkanes, it is 
unclear what parameter vectors should be assigned to the “feasible” class. One approach is to only consider 
parameter values belonging to a specific feasible set, such as  4:7, as the “feasible” class. An alternative approach 
would be to consider the “feasible” class as all parameter vectors that are feasible for at least one alkane. Given the 
unbalanced nature of the feasible and infeasible classes, i.e., over 5 × 106 samples which are infeasible and only a 
few thousand samples belonging to any specific feasible set, we choose the latter option and constructed the “fea-
sible” class from all points that are feasible for at least one alkane in the training set.

Binary classification was performed using a Random Forest classifier, as implemented in Scikit-learn library44, 
with equal misclassification costs. A Random Forest classifier is capable of emulating the decision boundary 
for non-convex and even non-contiguous feasible domains. Both classes were down-sampled to 105 to handle 
the class imbalance. Down-sampling was performed by using a randomly drawn 105 samples from each class. 
Performance of the classifier is evaluated in a 5-fold cross-validation via construction of the Receiver Operating 
Curve (ROC) and computation of the Area Under Curve (AUC) (see Fig. 7). The ROC allows one to gauge the 
performance of a binary classifier by comparing the true positive and false positive rate across all possible deci-
sion thresholds. The true positive rate is the number of feasible samples correctly identified as the “feasible” class 
over the total number of feasible samples. The false positive rate is the number of samples incorrectly identified 
as the “feasible” class over the total number of infeasible samples. A perfect classifier would have an ROC curve at 
the top-left corner of Fig. 7, with a true positive rate of 1 and a false positive rate of 0. For this to occur, all feasible 
samples would be correctly identified as part of the “feasible” class without misclassifying any infeasible samples 
as the “feasible” class.

One figure of merit for binary classification is the area under the ROC curve (AUC). The AUC varies between 
0 and 1 where a perfect classifier has an AUC of 1 and randomly guessing (luck) would have an AUC of 0.5. With 
an AUC value of 0.68, we found that there is indeed a non-random structure in the feasible set recovered via 
direct sampling. Therefore, it is possible to train a classifier that fulfills the same function as the boundary to a 
feasible set. Of course, for this assessment to be practical, a better performance metric of the classifier should be 
achieved. One route toward this goal is to collect a sample in the parameter space that conveys a better representa-
tion of the spatial extents of the non-convex feasible set found via sampling on a Latin hyper-cube. The inset of 
Fig. 3(b) depicts a region where a line segment passes through the experimental bounds. This region (and all 
other intersections) is a 27 dimensional space. Samples in these regions, near the experimental bounds, can help 
improve the characterization of the feasible set for classification.

Figure 6.  Uncertainty intervals of the heat of formation of ethane to icosane predicted by samples of  3:8. The 
black intervals are prediction by  3:8 and with the computed mean positioned at zero and marked with a black 
circle, the green intervals are the experimental bounds (Table 1) and the red crosses are the heats of formation 
computed with the PM7 nominal parameter vector.
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Conclusion
Uncertainty quantification of semi-empirical quantum chemical model PM7 was performed using the B2BDC 
framework. The obtained results did not show evidence of model consistency even in the “best case” scenario, 
when we considered heats of formation of a small family of linear alkanes. This finding, however, requires a cau-
tious interpretation.

Lack of evidence of the model consistency with experimental data may imply that either the experimental 
data has some bias or the model has a deficiency. Given the quality of the experimental data, we tend to think the 
model inconsistency resides with the parameterization of PM7. To ultimately resolve this question, would require 
a significantly more engaged investigation of PM7 parameter space whose dimensionality exceeds 27 for organic 
molecules that include hetero-atoms. The practical lesson of the study is that we could not find a parameter vector 
feasible for all the training data having searched a finite volume and consumed a certain amount of the computa-
tional resources and time. The cost of establishing model consistency is, in itself, a diagnostic that can be used to 
compare various data-centric models and make an informed selection among them.

Another practical lesson is the source of the encountered lack of consistency. The “problematic” QOIs found 
were the shortest alkanes, methane and ethane, whose chemical properties are known to be different from the rest 
of the homologous series. The value of PM7 comes from the low computational cost to evaluate larger molecules. 
In our study, the heats of formation of larger molecules were found to be consistency with the experimental data. 
The reported results demonstrate B2BDC’s capability for a deeper analysis into PM7 by evaluating the limits of 
model consistency in a data-centric setting.

One clear challenge in this study was the inability to accurately represent a significant volume of the parameter 
space with a surrogate model. The encountered difficulties motivated the development of a tool-set for uncer-
tainty quantification of models with high-dimensional parameter spaces that can have non-convex and even 
non-contiguous feasible sets. Incorporation of machine learning techniques with the B2BDC framework was 
shown to be a viable strategy to efficiently tackle cases of this type. Our basic attempt to learn the geometric 
structure of the identified feasible sets showed encouraging results. Possibility of the accurate binary classification 
of feasible/infeasible classes suggests a route to sampling strategies that are more efficient than brute-force direct 
sampling and could rely on a semi-supervised model to search for feasible points.

An equally important aspect of our study concerns uncertainty propagation from the training data that have 
sub-chemical accuracy to PM7 predictions. We observed that predictions remained within bounds of chemi-
cal accuracy for the molecules whose size is close to the size of the molecules in the training set. As expected, 
improvement of the quality of the feasible sets, i.e., attaining consistency with more alkanes, led to the reduction 
of the prediction uncertainty. Growth of the prediction error with the difference in the size between the test and 
training molecules agrees with the size-extensive nature of the selected QOI. This result reinforces intuition that 
there is a price to switching from interpolation to extrapolation regime. It motivates a large-scale uncertainty 
quantification study of semi-empirical quantum chemical models where both the size and chemical diversity of 
the dataset are significantly expanded. In order to facilitate such an effort we are including the parameter vectors 
and current feasibility labels in the Supplementary Information.

Figure 7.  ROC curves and their corresponding AUC for binary classification using a Random Forest model. 
Classification was between the classes, “feasible” and “infeasible” with the samples obtained via direct sampling. 
“Feasible” class includes samples that are feasible for at least one alkane. “Infeasible” class includes samples that 
are not feasible for any alkane. Both classes were down-sampled to 105 samples. Classification performance was 
assessed by 5-fold cross-validation using 5 × 103 ensemble of random trees.
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