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ABSTRACT Acinetobacter baumannii has emerged as an important multidrug-
resistant nosocomial pathogen. In previous work, we identified a putative MFS trans-
porter, AU097_RS17040, involved in the pathogenicity of A. baumannii (M. Pérez-
Varela, J. Corral, J. A. Vallejo, S. Rumbo-Feal, G. Bou, J. Aranda, and J. Barbé, Infect
Immun 85:e00327-17, 2017, https://doi.org/10.1128/IAI.00327-17). In this study, we
analyzed the susceptibility to diverse antimicrobial agents of A. baumannii cells defec-
tive in this transporter, referred to as AbaQ. Our results showed that AbaQ is mainly
involved in the extrusion of quinolone-type drugs in A. baumannii.
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Acinetobacter baumannii is a multidrug-resistant (MDR) pathogen that causes
hospital-acquired infections (1). In previous work, we identified a new, putative

major facilitator superfamily (MFS) transporter in A. baumannii strain ATCC 17978,
AU097_RS17040. This transporter, referred to as AbaQ (A. baumannii quinolone resis-
tance transporter), is involved in surface-associated motility as well as the virulence of
A. baumannii (2).

Sequence analysis of AbaQ, annotated as an MFS transporter in A. baumannii strain
ATCC 17978 (accession number WP_000345069), indicated an open reading frame
(ORF) of 1,305 nucleotides. According to the deduced amino acid sequence, the protein
consists of 434 residues and has a molecular mass of 47.8 kDa and a theoretical
isoelectric point (pI) of 9.27. On the basis of predictions of its secondary structure and
transmembrane topology, AbaQ is composed of 12 �-helical transmembrane segments,
with both the N and C termini located in the cytoplasm (Fig. 1A). Support for this
structure came from an independent analysis that revealed the three-dimensional (3D)
structure of the protein (Fig. 1B). These data indicated that AbaQ is a drug H� antiporter
1 (DHA1), which differs from DHA2-type MFS drug transporters by the presence of 12
rather than 14 transmembrane segments (3). The predicted product of the abaQ gene
exhibited low amino acid identity and similarity (�24% and �38%, respectively) with
other MFS transporters involved in drug efflux in A. baumannii (Table 1).

To determine whether a lack of AbaQ alters antimicrobial susceptibilities, the
responses of two A. baumannii abaQ mutants obtained in previous work (2) to
antimicrobials of different classes were tested. Compared to the wild-type (WT) parental
strain, A. baumannii ATCC 17978, the abaQ mutant had 2- to 4-fold higher susceptibil-
ities to trimethoprim and novobiocin (Table 2). The highest susceptibilities (approxi-
mately 8- to 32-fold) occurred in response to the quinolone-type antibiotics ciprofloxa-
cin, levofloxacin, and nalidixic acid (Table 2). In contrast, the mutant and its WT parent
did not differ in their susceptibilities to �-lactams (meropenem and ampicillin), amin-
oglycosides (amikacin and gentamicin), macrolides (erythromycin), and polymyxins
(colistin) or to other antimicrobials (chloramphenicol, tetracycline, minocycline, and
rifampin) (Table 2). To further corroborate the relevance of this MFS in other A.
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baumannii strains, we analyzed the abaQ knockout mutant derived from A. baumannii
strain MAR002, a biofilm-hyperproducing strain recently isolated from a wound sample
collected from a patient at the Hospital del Mar in Barcelona (2, 4, 5). Assays of the
mutant indicated that inactivation of the AbaQ homologue in A. baumannii MAR002
(99% amino acid identity) also caused the highest reduction (approximately 8- to
32-fold) in the MICs of quinolone-type antibiotics (data not shown).

To complement the mutants, the abaQ gene, including its own promoter, was
amplified from the genome of A. baumannii strain ATCC 17978 using the AbaQFXbaI
and AbaQRXbaI oligonucleotides (5=-ACTGTCTAGAGGAATATCACAGCTTGCAGCG and
5=-ACTGTCTAGATTACAAAGGCTTTTGAATATTC, respectively), cloning them into the
XbaI restriction site of the pET-RA vector (6). Complementation of the abaQ-mutant
derived from A. baumannii ATCC 17978 completely restored antimicrobial susceptibility
to the same levels determined in the WT parental strain (Table 2). The recovery of the
WT phenotype was also observed in the complemented abaQ MAR002 mutant deriv-
ative (data not shown). These results provided clear evidence of the critical role of AbaQ
in the efflux of quinolone-type antibiotics in A. baumannii.

To assess whether AbaQ confers resistance to quinolones through an active efflux
mechanism, the MIC of ciprofloxacin in the presence of the efflux pump inhibitor
carbonyl cyanide 3-chlorophenylhydrazone ([CCCP] Sigma) was determined in A. bau-

FIG 1 (A) Prediction of the structure of AbaQ using Protter (10). The putative protein is shown parallel to the cytoplasmic membrane. (B) 3D representation
of AbaQ viewed along the plane of the membrane from the periplasmic side using RaptorX Structure Prediction (26) and visualized using PyMOL software (27).
The 12 transmembrane �-helices are numbered (1 to 12); both the N and C termini are located in the cytoplasm.

TABLE 1 MFS transporters described in A. baumannii

MFSa Accession no. Main antimicrobial exported Identity (%)b Similarity (%)b Reference

AmvA ACQ82816 Erythromycin 17.8 31.0 7
TetA AAO38186 Tetracycline 17.6 28.5 18
TetB AFV67369 Minocycline 19 33.8 19
CraA ABO13543 Chloramphenicol 19 36.9 20
FloR AQT19056 Chloramphenicol 16.9 28.2 21
CmlA AMD83513 Chloramphenicol 17.5 28.3 22
AbaF ABO11759 Fosfomycin 23.7 37.6 23
EmrB ABO12199 Colistin 17.2 30.7 24
AedC ABO11341 Tetracycline-chloramphenicol 18.5 32.7 25
aMFS, Major facilitator superfamily.
bWith respect to AbaQ of A. baumannii strain ATCC 17978, using the Basic Local Alignment Search Tool
([BLAST] http://www.ncbi.nlm.nih.gov) and Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/).
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mannii strains carrying (WT and AbaQ� plus pET-RA�AbaQ) or lacking (AbaQ� and
AbaQ� plus pET-RAØ) the abaQ gene. The addition of CCCP (20 mg/liter) decreased the
ciprofloxacin MIC 16-fold in AbaQ-carrying cells (from 0.25 to 0.015 mg/liter) but only
4-fold in cells lacking the abaQ gene (from 0.0078 to 0.0019 mg/liter). The addition of
CCCP alone did not inhibit bacterial cell growth in any of the A. baumannii strains,
indicating that the above results were not due to the toxicity of CCCP itself. Accord-
ingly, when ampicillin, which is not a substrate of the AbaQ transporter (Table 2), was
used instead of ciprofloxacin, there was no difference in the antimicrobial susceptibil-
ities in the presence or absence of CCCP in any of the cultured A. baumannii strains
(data not shown). These results unequivocally demonstrated that the abaQ gene
product confers decreased susceptibility to quinolones by encoding an active efflux
transporter.

The majority of the MFS transporters involved in drug-efflux described thus far in A.
baumannii mediate chloramphenicol efflux, with a smaller number mediating the efflux
of other antimicrobials, such as erythromycin, tetracycline, minocycline, fosfomycin,
and colistin (Table 1). Among the latter group of transporters is AmvA, which partici-
pates in the efflux of erythromycin and different classes of disinfectants, detergents,
and dyes but also confers modest resistance to quinolone-type antimicrobials (7). In
amvA mutant strains, susceptibilities to both ciprofloxacin and norfloxacin were 2-fold
higher than in the WT strain, whereas the susceptibility to nalidixic acid was unchanged
(7). Other transporters belonging to different families and involved in the extrusion of
a wide range of antimicrobials, including quinolones, have been described in A.
baumannii: AdeABC (8), AdeDE (9), AdeFGH (10), AdeIJK (11), AdeM (12), and AdeT (13),
all belonging to the resistance/nodulation/division (RND) superfamily; AbeM, AbeM2,
and AbeM4 transporters, belonging to the multiple antimicrobial toxin extrusion
(MATE) family (12, 14); and AbeS, belonging to the small multidrug resistance (SMR)
family (15). No role in quinolone efflux has been detected in the only ATP-binding
cassette (ABC) transporter described so far in A. baumannii (A1S_1535) (16) or in any of
the transporters that make up the most recently discovered family of efflux pumps: the
proteobacterial antimicrobial compound efflux (PACE) transporters (17).

To our knowledge, AbaQ, which is widely present in A. baumannii clinical isolates
and involved in both surface-associated motility and virulence (2), is the first MFS efflux
pump shown to play an important role in the extrusion of quinolone-type antimicro-
bials in this MDR nosocomial pathogen.

TABLE 2 MICs of various antimicrobials in wild-type A. baumannii ATCC 17978 and the
abaQ mutant derivative

Antimicrobial

MIC (mg/liter)

Fold
changea

MIC (mg/liter)

Fold
changebWT AbaQ�

AbaQ� plus
pET-RAØ

AbaQ� plus
pET-RA�AbaQ

Ciprofloxacin 0.25 0.0078 32 0.0078 0.25 32
Levofloxacin 0.125 0.0078 16 0.0078 0.125 16
Nalidixic acid 8 1 8 1 8 8
Trimethoprim 16 4 4 4 16 4
Novobiocin 8 4 2 4 8 2
Meropenem 2 2 1 2 2 1
Ampicillin 16 16 1 16 16 1
Amikacin 1 1 1 1 1 1
Gentamicin 0.5 0.5 1 0.5 0.5 1
Erythromycin 4 4 1 4 4 1
Colistin 0.5 0.5 1 0.5 0.5 1
Chloramphenicol 16 16 1 16 16 1
Tetracycline 4 4 1 4 4 1
Minocycline 0.062 0.062 1 0.062 0.062 1
Rifampin 4 4 1 NAc NA NA
aRatio of the MICs of the wild type (WT) versus abaQ mutant derivative (AbaQ�).
bRatio of the MICs for the abaQ mutant carrying the pET-RA�AbaQ plasmid (complemented mutant) versus
the abaQ mutant carrying the empty pET-RA plasmid (pET-RAØ).

cNA, not applicable (the pET-RA plasmid carries rifampin resistance).
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