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Abstract
Genomic variation underlying major depressive disorder (MDD) likely involves the interaction and regulation of
multiple genes in a network. Data-driven co-expression network module inference has the potential to account for
variation within regulatory networks, reduce the dimensionality of RNA-Seq data, and detect significant gene-
expression modules associated with depression severity. We performed an RNA-Seq gene co-expression network
analysis of mRNA data obtained from the peripheral blood mononuclear cells of unmedicated MDD (n= 78) and
healthy control (n= 79) subjects. Across the combined MDD and HC groups, we assigned genes into modules using
hierarchical clustering with a dynamic tree cut method and projected the expression data onto a lower-dimensional
module space by computing the single-sample gene set enrichment score of each module. We tested the single-
sample scores of each module for association with levels of depression severity measured by the Montgomery-Åsberg
Depression Scale (MADRS). Independent of MDD status, we identified 23 gene modules from the co-expression
network. Two modules were significantly associated with the MADRS score after multiple comparison adjustment
(adjusted p= 0.009, 0.028 at 0.05 FDR threshold), and one of these modules replicated in a previous RNA-Seq study of
MDD (p= 0.03). The two MADRS-associated modules contain genes previously implicated in mood disorders and
show enrichment of apoptosis and B cell receptor signaling. The genes in these modules show a correlation between
network centrality and univariate association with depression, suggesting that intramodular hub genes are more likely
to be related to MDD compared to other genes in a module.

Introduction
RNA-Seq is a transcriptome profiling technique that

uses next-generation sequencing to provide a sensitive,
quantitative measurement of RNA abundance or gene
expression. Challenges associated with the RNA-Seq
approach include both technical limitations (e.g., tissue
heterogeneity and batch effects) and statistical concerns
(e.g., over dispersion and multiple hypothesis testing).
Furthermore, major depressive disorder (MDD) is a

complex phenotype involving systems of interacting
genes, and single-gene associations of expression have not
reached genome-wide significance. While these approa-
ches have provided biological insights and identified
candidate biomarkers associated with some neurological
diseases1,2, network and gene–gene interaction approa-
ches may enrich the variable space to better predict or
characterize the genomic architecture of more complex
phenotypes3.
Co-expression network techniques for detecting coor-

dinated gene expression changes at a gene set (modular)
level have potential power to provide novel insights into
the genetic architecture of psychiatric disorders4,5. A
module can be understood as a collection of genes that
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are highly interconnected (e.g., by co-expression) and,
thus, more likely to share a similar biological function6.
Modular analysis also helps alleviate the multiple
hypothesis testing problem inherent in RNA-Seq data and
may be more robust than single-gene investigation.
Clustering thousands of genes into pathway-sized mod-
ules and collapsing these genes onto single statistical units
significantly reduces the number of hypotheses to be
tested. Combined with statistical learning methods, as
well as meta-analyses of existing databases, modular
analyses of co-expression networks have been conducted
in several studies to identify groups of differentially
expressed genes in schizophrenia7–9, autistic spectrum
disorder10, Alzheimer’s disease11, and MDD12.
Initial genome-wide association studies (GWAS) of

MDD had limited success at finding significant variants
due to the contribution of many loci with small effect
sizes as well as the heterogeneous characteristics of MDD
and the complex interaction between genetic variation
and environmental factors13. More recently, many small,
but significant, main effect loci have been identified
through the accumulation of extremely large samples14,15.
Similarly, it has been difficult to identify significant single-

gene effects at the expression level from RNA-Seq of
MDD. In Mostafavi’s RNA-Seq study of 922 subjects, only
29 genes were found to have significant association with
MDD status at the relaxed FDR threshold of 0.25, but sets
of top genes were significantly enriched for the IFN α/β
signaling pathway16. Combining a modular approach with
meta-analysis of 11 transcriptome studies of postmortem
brains, Chang et al. identified a transcriptome module of
88 genes based on consistency with GWAS results for
MDD, other neuropsychiatric disorders, and brain func-
tion12. This meta-module is enriched for genes that
encode proteins implicated in neuronal signaling and
structure.
Modularity is a ubiquitous feature of biological sys-

tems17 and genes within modules tend to be functionally
related18,19, which may help us find regulatory genes that
affect disease risk along with direct disease-related genes.
Thus, in the present study, we applied a data-driven
approach to detect depression gene modules (DGMs),
which are co-expression modules associated with
depression phenotypes. Because our analytical approach is
sensitive to weak individual effects and takes biological
interactions among genes into account, it can potentially

Fig. 1 Workflow for RNA-Seq computational analyses: Preprocess the raw counts data (Step 1). Obtain normalized RNA-Seq expression values
and perform coefficient of variation filtering (COV threshold= 0.8) (Step 2). Create weighted co-expression matrix and apply hard threshold (0.2) to
construct an un-weighted co-expression network from the topological overlap matrix (Step 3). Detect modules using dynamic tree cut with WGCNA
(Step 4). Steps (3) and (4) are iterated to tune hard threshold (0.2) to yield modules of similar size. Collapse expression of individual genes onto
modules with ssGSEA (Step 5). Perform statistical testing with false discovery adjustment to find association between modules and MADRS score
(Step 6). Modules passing the false discovery threshold are tested for replication in an independent study
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reveal biological effects that are neglected in univariate
models. Using RNA-Seq from peripheral blood, we con-
structed a co-expression network for the combined MDD
and healthy control (HC) subjects and created hier-
archical clusters of similar size using the dynamic tree cut
from the weighted gene co-expression networks analysis
(WGCNA) tool20. We then projected each subject’s gene-
level expression onto a lower-dimensional space of
modules using single-sample gene set enrichment analysis
(ssGSEA) approach21,22.
The resulting 23 modular expression profiles were not

conditioned on the phenotype and thus may be used as
predictor variables in a greatly reduced hypothesis space.
We applied false discovery rate adjusted linear regressions
to each modular expression profile to identify modules
that are associated with subject’s depression severity
characterized by the Montgomery-Åsberg Depression
Scale (MADRS). We then explored the relation of several
genes in these significant modules to the clinical pheno-
type, MDD, along with other psychiatric disorders based
on the extant literature. Of the two modular expression
profiles that survived multiple hypothesis testing, one
module (DGM-5) replicated in an independent data set.

Methods and materials
The co-expression network module analysis involves

multiple steps to obtain gene set predictors of MDD
(Steps 1–6, Fig. 1). In this section, we provide details of
the RNA-Seq preprocessing of the raw count data, nor-
malization of expression values, and variation filtering
(Steps 1 and 2). We describe our iterative approach to
module construction using a hard threshold of the co-
expression matrix and the topological overlap matrix
(Step 3), combined with clustering by the dynamic tree
cut algorithm (Step 4). Steps 3 and 4 are iterated with a
grid of hard thresholds to obtain modules of similar size.
We reduce the hypothesis space by collapsing the
expression of individual genes onto these modules (Step
6) and test these module features for association with
MADRS score with false discovery rate adjustment.

Subjects
Participants between the ages of 18 and 55 years were

recruited from the clinical services of the Laureate Psy-
chiatric Clinic and Hospital (LPCH) and media adver-
tisements in the Tulsa metropolitan area, Oklahoma. A
total of N= 160 subjects, including 80 subjects who met
DSM-IV-TR criteria for MDD (52 females, mean age=
33 ± 11) and 80 HCs who showed no history of any major
psychiatric disorder in a first-degree relative (41 females,
mean age= 31 ± 10), participated in the study. However,
because one MDD subject’s expression data were cor-
rupted and two additional subjects (one MDD and one
HC) were outliers, their data were excluded from the

analyses (see below for details). The diagnosis of MDD
was established using the Structural Clinical Interview for
DSM-IV-TR Axis I Disorders (SCID-I/NP; 1 January
2010) and confirmed by an unstructured interview with a
psychiatrist. Exclusion criteria included the use of psy-
chotropic medications for at least 3 weeks prior to study
entry, major medical or neurological illness, psychosis,
traumatic brain injury, and a history of drug/alcohol abuse
within 1 year. All subjects gave written informed consent
to participate in our study and received financial
compensation.
The present study was approved by the Western Insti-

tutional Review Board, and it was conducted according to
the principles expressed in Declaration of Helsinki. All
participants gave written informed consent to participate
and received financial compensation.

Materials
The clinician-administered Montgomery-Åsberg

Depression Rating Scale (MADRS; Williams & Kobak,
2008) was used to rate the severity of depressive symp-
toms. In clinical trials of major depressive disorder, the
ten-item diagnostic questionnaire MADRS is accepted by
the FDA and other health authorities as valid and reliable
rating instruments for obtaining the primary outcome
measure of antidepressant treatment efficacy23.

Steps 1 and 2. RNA-Seq data generation and processing
Morning blood samples were obtained from the parti-

cipants, and peripheral blood mononuclear cells (PBMCs)
were isolated using cell preparation tubes. We quantified
RNA expression obtained from frozen (PBMCs) by ana-
lyzing complementary DNA derived from the PBMCs
with RNA-Seq. Following initial quality-control steps,
sequencing libraries were generated using the Illumina
Truseq Stranded mRNA with library prep kit according to
the manufacturer’s protocol. Sequencing was performed
on an Illumina Hiseq 3000 instrument with paired-end
150 bp reads. Samples were sequenced to an average
depth of 30 million reads and RNA integrity number of
8.6 per sample. RNA-Seq measures gene expression by
sequencing, yielding the abundance of each transcript
present. After gene-level transcripts were computed from
transcriptomic sequencing, the sequencing reads are
aligned and mapped to individual exons. We used RefSeq
for the cDNA alignment. The total number of read counts
was obtained per gene from the mRNA expression.
Normalization of the gene counts was performed with
conditional quantile normalization (CQN), which
accounts for differences in library size and also adjusts for
GC content and gene length24. These normalized values
were used for subsequent analyses. The RNA-Seq raw
counts preprocessing steps involved: (i) removal of genes
with low counts (threshold defined below) and
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normalization, (ii) outlier detection, (iii) batch effect
correction, and (iv) high coefficient of variation (COV)
filtering of genes. Briefly, analyses included autosomal
genes with ≥15 individuals with ≥2–7 reads, depending on
the library size. Then, we applied an angle-based outlier
(ABO) detection25 to remove samples with exceptionally
small ABO factor. Batch effect was adjusted with the
function “removeBatchEffect” from the R package
“limma”26 (Fig. S2). Reasoning that expression values that
differ greatly across subjects are likely due to technical
variability27, we excluded genes with (COV) larger than
0.8 to obtain genes whose expression values were roughly
consistent across samples. Details on data generation and
preprocessing are provided in Supplements 1, 2. Pre-
processed RNA-Seq data are available upon request to
corresponding authors.

Steps 3 and 4. Gene co-expression network construction
and module identification
We used an iterative procedure to identify the module

predictors for association testing with depression severity.
We first built a co-expression network by calculating the
correlation of the pairwise gene expression, applied a hard
threshold to the network and then computed the net-
work’s topological overlap matrix (TOM) dissimilarity
between the genes (Fig. 1, Step 3). We used the new TOM
distance matrix from the hard threshold to construct a
hierarchical tree and used dynamic tree cutting to con-
struct modules (Step 4). Steps 3 and 4 (Fig. 1) were
repeated for a grid of hard thresholds to obtain a final
hard threshold (0.2) that yields similar module sizes
(mean size of 200 genes28). In the optimal weighted net-
work, we removed edges with correlation values below a
threshold of 0.2. Our motivation was to find cluster sizes
that were relatively similar in size and with a large enough
number of genes for ssGSEA to be effective. Gene set
enrichment often tests modules of size 200 genes, and
having similar module sizes (Fig. S3) help alleviate
potential module-size bias in ssGSEA. We note that we
did not detect correlation between module-size and sta-
tistical significance of ssGSEA module associations with
depression phenotype. We obtained 23 collections of
genes (modules) with similar connectivity in the co-
expression network. Slight variation of the hard threshold
value does not have a meaningful effect on the number of
modules.
To perform the hierarchical clustering, we used

unsigned weighted correlation networks analysis20

(WGCNA), which has been used in a variety of fields (e.g.,
cancer and brain imaging analysis29). Specifically, we
measured dissimilarity between pairs of expression values,
created a dendrogram of genes, and identified modules
from the different levels of similarity structure. We used a

dynamic tree cut clustering method30 to identify modules
from the TOM matrix of this network of normalized gene
expression values. The WGCNA tool includes a dynamic
tree cut method that provides a flexible dendrogram
cutting mechanism that is effective at detecting nested
modules.

Step 5. Projection of module gene sets onto lower-
dimensional feature space
We generated normalized enrichment profiles for each

gene cluster using single-sample gene set enrichment
analysis (ssGSEA)21,22. Similar to the notion of eigengene
in WGCNA20, ssGSEA calculates an enrichment profile of
modules in each subject based on individual expression
values in the modules. However, instead of using a prin-
cipal component analysis, ssGSEA is based on the
cumulative distribution of the ranked expression values.
Particularly, ssGSEA assigns a sample-level enrichment
score to a gene module by rank-normalizing the expres-
sion values and comparing the empirical cumulative dis-
tribution of these ranks inside and outside that module.
The scaled module’s score of a sample represents the
degree to which its genes are coordinately up- or down-
regulated within that sample. Consequently, within a
particular sample, the expression profile in the higher-
dimensional space of genes is projected onto a lower-
dimensional space of modules, yielding a smaller set of
new variables that helps reduces the hypothesis space’s
dimension and is more biologically interpretable.
One of our goals was to test module hypotheses in an

independent data set. We felt the ssGSEA would provide a
more reproducible mechanism than eigengene for col-
lapsing a set of genes onto a predictor variable. The
ssGSEA method can be applied to an independent
expression data set directly without recomputing a cor-
relation matrix and the eigengenes. Furthermore, we did
not strictly follow the WGCNA protocol to create mod-
ules. Rather than optimize a soft threshold power based
on the degree of distribution, we optimized a hard
threshold cutoff based on similar module sizes.

Step 6. Testing gene module features for association with
depression severity
The modules’ enrichment profiles were then considered

as explanatory variables in the linear models to estimate
each participant’s scaled MADRS score. In addition to
these enrichment scores, the design matrix also included
sex, age, BMI, and batch as covariates. Further, because
smoking status is known to be associated with depres-
sion31 and may confound gene expression32,33, we also
considered an additional model where smoking status is
added as a covariate. Moreover, although the majority of
participants are Caucasian, the data set also contains
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other self-reported ancestries (SRAs). As a sensitivity
analysis, we tested our hypotheses on a subset of the data
with only Caucasian participants to examine whether the
results were confounded by multiple SRAs. The p values
obtained from the analysis are corrected based on
Benjamini–Hochberg’s procedure34. Genes in modules

with false discovery rate (FDR) adjusted p values <0.05
were designated as differentially expressed in aggregate.
We also search for the enriched genes among the genes
within each significant module using GeneAnalytics35 and
VarElect36 of the GeneCard Suites (http://www.genecards.
org/) for additional interpretation.

Table 1 Characteristics of the sample

Variable All (N = 157) MDD (n = 78) HC (n = 79) t or χ2

Age (years) 32 (1) 33 (10) 31 (10) 1.40 (155)

Sex 2.93

(Female/male) 91/66 51/27 40/39 (1)

SRA

Caucasian 120 59 61 1.09 (5)

African-American 12 6 6

Native American 4 3 1

Native Hawaiian/Pacific Islander 2 1 1

Asian American 4 2 2

Other 15 7 8

Occupational status

Employed full time 55 25 30 7.62 (7)

Employed part time 19 11 8

Homemaker 5 1 4

Full-time student 34 11 23

Unemployed less than 6 months, but expects to work 7 4 3

Unemployed 6 months or more, but expects to work 1 1 0

Unemployed 6 months or more and does not expect to work 1 1 0

Other 2 1 1

Educational status

Some high school 3 1 2 10.39 (5)

High school graduate 11 8 3

Some college/technical school 62 32 30

College graduate 37 12 25

Masters or above 10 2 8

Other 1 0 1

Smoking status

Non-smoker 111 46 65 4.52* (1)

Smoker 14 10 4

BMI 28.1 (6.43) 29.3 (6.81) 26.9 (5.85) 2.33* (155)

MADRS 11.7 (11.76) 22.2 (7.99) 1.8 (2.45) 21.49** (150)

Values enclosed in the parenthesis represent standard deviations (under “All,” “MDD,” and “HC”) or degrees of freedom (under “t or χ2”). The variables of SRA,
occupational status, and educational status contained missing values
HC healthy controls, SRA self-reported ancestry, BMI body mass index, MADRS total score on Montgomery-Åsberg Depression Rating Scale
*p < 0.05; **p < 0.01
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Network centrality and individual gene’s importance in
discriminating phenotypes
In a secondary univariate analysis, we investigated the

individual effect of genes by conducting logistic regres-
sions of the diagnosis phenotype (MDD/HC) on each of
the 5912 genes and adjusting the p values according to the
Benjamini–Hochberg procedure34. We also computed
eigenvector centrality for each of the 5912 genes based on
the co-expression network. Centrality analysis approx-
imates the relative importance of genes based on their
connectivity within the network structure: a gene with
higher centrality is more influential than a low-centrality
gene. The simplest centrality metric is degree centrality,
which counts the number of connections a specific gene
has with other genes. In this analysis, we computed the
eigenvector centrality, a variant of degree centrality that
takes into account the importance of neighboring genes.
Within the most significant modules, we then examined
the relationship between each gene’s centrality and its
individual importance, measured as the negative log of its
adjusted p value:

si ¼ � log pið Þ�
We find that the centralities of genes within statistically

significant modules are more correlated with their uni-
variate diagnosis statistical association compared to genes
in other modules.

Results
According to Chi-square test or t-test, there was no

difference in age, sex, SRA, occupational status, and
educational status between the MDD and HC groups
(Table 1). The MDD group showed significantly higher
BMI and, as expected, more severe depressive symptoms
(based on MADRS score) than the HC group. Therefore,
even though BMI does not significantly correlate with
MADRS (p= 0.123), we controlled for BMI in our sub-
sequent analyses to ensure our results were not con-
founded by BMI.
Figure 1 shows the overall workflow for RNA-Seq data

analyses. Out of 19,968 identified genes 12,049 genes with
a low count were removed. The remaining 7919 sig-
nificant counts are then normalized and used as inputs to
the angle-based outlier (ABO) analysis, an outlier detec-
tion method that is robust for high-dimensional data
(Supplement 2-ii). We also removed two outlier samples
(one MDD and one HC) with distinctly small ABO factors
(<0.001, Fig. S1). We note that, if included in the analyses,
these two samples would have had exceptionally high
TMM normalization factors. In addition, 2007 expression
values with high variability (calculated by coefficient of
variation) were also filtered out. As a result, input to the
gene co-expression network construction is a logCPM
matrix of dimension 157 samples × 5912 genes. We note

that the size of this filtered data set is similar to that of
other gene expression studies8,28,37. Our iterative thresh-
olding and dynamic branch cut of the co-expression
network (Steps 3 and 4, Fig. 1) results in 23 modules. The
number of genes in each module ranges from 86 to 746
genes.
After correcting for multiple hypothesis testing, we find

that two modules’ enrichment profiles, DGM-17 (β=
15.4, se= 4.21, praw= 0.000352) and DGM-5 (β= -5.31,
se= 1.75, praw= 0.00284), are significantly associated with
MADRS score (Fig. S4). When tested on only 120 samples
of Caucasian subjects, despite the reduction in power,
these two modules remain significantly associated with
this measure of depression severity (praw= 0.0024 and
0.0032). We concluded that the results were robust to
SRA. Furthermore, when smoking status was added as a
covariate in the linear model, DGM-17 (praw= 0.000395)
and DGM-5 (praw= 0.00244) still showed statistically
significant associations with MADRS. The results are
similar likely because no participants in the data set were
heavy smokers. However, because the Bayesian Informa-
tion Criterion of this model is larger than that of the
original model, we presented the result from the original
model without smoking status.
DGM-17 and DGM-5 contain 109 and 291 genes,

respectively, including VRK2, OPRM1, and TCF7L2 in
DGM-17; AKT1, CREB1, CALB1, FAS, FKBP4, FOXP3,
HDAC5, and PDE6C in DGM-5, which, as we discuss
below, are components of pathways potentially related to
mood disorders. Comparing this approach to the tradi-
tional individual significance of genes on diagnosis phe-
notypes, we found DGM-17 and DGM-5 contain
significantly more top genes compared to other modules
(hypergeometric test results of observing xi genes from
module i in the most 100 significant genes are shown in
Table S2). Moreover, within these two significant mod-
ules, genes’ global centralities are positively correlated
with its statistical association with diagnostic status (Fig.
2). This high correlation between univariate gene sig-
nificance and network centrality implies that genes with
high centrality in DGM-17 and DGM-5 tend to be highly
correlated with diagnosis status.

Replication in previous RNA-Seq study of MDD
We used the RNA-Seq study by Mostafavi et al.16 as a

replication set to test for association with MDD of the
significant modules, DGM-17 and DGM-5, from our cur-
rent study. This independent data set consists of RNA-Seq
measurements of 15,231 genes in 463 MDD cases and 452
controls. Of the 291 genes in module DGM-5 and 109
genes in module DGM-17 (Supplements 6, 7), we found
238 and 72 genes in Mostafavi’s study that belong to these
two modules, respectively. We applied ssGSEA on these
genes to obtain the enrichment scores of 915 subjects for
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the two modules. Because MADRS score is not reported in
this independent data set, we alternatively ran a logistic
regression of the diagnosis phenotype (MDD/HC) on the
module’s enrichment score, including sex, age, and BMI as
in the original modular regression. Even though we only
found 82% overlap of module DGM-5’s genes with the
Mostafavi data set, DGM-5’s enrichment score was shown
to be significantly associated with the diagnosis status in
this independent data set (p value= 0.033). We found no
significant association of DGM-17’s enrichment value with
the diagnosis phenotype in the replication set. However, this
may be explained by the fact that more than a quarter of the
genes in the original, already relatively small, module DGM-
17 are not present in the replication data set due to the
difference in low-abundance filtering thresholds.

Discussion
We employed a novel combination of approaches to

RNA-Seq data obtained from a cohort of depressed and
healthy individuals that led to the replication of a
depression gene module in a two-stage analysis. Some of
these approaches include enforcing similar module sizes
to guide co-expression network thresholding and gene

set variation analysis to collapse genes onto modular
units of analysis to reduce multiple hypothesis testing.
Most gene expression studies have used individual genes
as the unit of analysis for differential expression between
phenotypes.
Module-based analysis is a sensitive technique to detect

weak, but coordinated, gene expression changes at a
module level. A related limitation of this approach is that
summarizing the score for a module to one value, whether
by ssGSEA, eigengene or other dimension reduction
techniques, results in the loss of information at the single
gene level. However, this technique reduces the high
dimensionality of the hypothesis space by clustering
thousands of genes into a manageable number of modules
of interacting genes that may share similar biological
functions. In the lower-dimensional variable space, sta-
tistical learning methods can be applied to identify gene
modules that are significantly associated with depression
severity without overfitting. Thus, we argue that a gene-
module approach based on expression networks is a
useful statistical model of the genetic architecture of
complex diseases such as depression, in which multiple
interacting homeostatic systems are affected38.
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The two statistically significant modules (after FDR
adjustment) contain candidate genes for MDD and related
disorders. Several genes in module DGM-5 include
HDAC5 and CREB1 whose expression has been reported
to be altered in MDD patients39. The histone methylation
processes in which HDAC5 participates have also been
implicated across different psychiatric disorders40. Link-
age of variation in CREB1, the cyclic AMP response
element-binding protein gene, to anger expression and
treatment outcome in MDD patients41,42 as well as
gender-specific susceptibility for MDD43,44 has been
reported. CREB1 is also considered one of the important
targets of antidepressants45. FOXP3, an intracellular
marker for regulatory T cells (Tregs), has shown
decreased expression level in depressed patients compare
to HC group46, while our group previously reported
increased circulating numbers of Tregs in MDD versus
HC47. FOXP3 also plays an essential role in maintaining
homeostasis of the immune system, one of the pathways
that have significant association with aggregate psychiatric
disorders40. Variation in FAS, a gene involved in T cell
activation and apoptosis, is associated with antidepressant
prognosis48. A significant increase in FAS expression is
also observed in depressed patients49.
Another noteworthy gene in module DGM-17 is OPRM1

because of its association with depression symptoms through
interaction with stressful life events50. Alteration of opioid
neurotransmission has also been observed in MDD
patients51. Additional gene-level information in the sig-
nificant modules, DGM-5 and DGM-17, is summarized in
Table 2 based on relevance to mood disorders from the lit-
erature. We found more mood disorder-related genes in the
literature for DGM-5 than DGM-17, which may explain the
fact that DGM-5 replicated while DGM-17 did not. How-
ever, we acknowledge that many of the genes found in the
mood disorder literature have not been well replicated
because, in part, MDD is a complex disorder of hetero-
geneous etiology. This complexity is a potential motivation
for modular approaches that accumulate the coordinated
variation of genes to detect gene modules related to
depression. Module DGM-5 also contains more genes than
DGM-17; however, we did not find evidence of module-size
bias, finding no correlation between module size and statis-
tical significance of modules (results not shown). Another
reason that DGM-17 did not replicate may be due to the
lower overlap of genes in the replication data set (83% for
DGM-5 vs 73% for DGM-17).
In addition to containing several candidate genes,

DGM-5 and DGM-17 show enrichment (q value 0.2) for
several pathways involving immune function (Table 3).
The enrichment of the apoptosis pathway in DGM-5
suggests a genetic signature involving brain region-
specific volume reduction due to cell loss in MDD52,53.
The enriched PI3K/AKT activation pathway is involved in

apoptosis and plays a role in mRNA translation of type I
interferon-dependent genes54. The viral protein R (VPR)
pathway, enriched in DGM-17, is involved in the induc-
tion of apoptosis in proliferating cells and B cell signaling.
The DMG-5 module contains the binding protein for VPR
(VPRBP in Supplement 7), which suggests additional
overlap of the function of these two modules.
The apoptosis signal in the blood expression may ori-

ginate from the brain (e.g., neuronal death due to apop-
tosis) and/or from other sources of cellular stress (e.g.,
activated T cells). The detection of the apoptosis signal in
DGM-5 suggests the signal may be brain derived. One
may strengthen the evidence for brain-derived apoptosis
by testing for the association of expression of apoptosis
genes with brain volumetric variation. This hypothesis
could be tested in a whole-brain approach or a more
targeted region-of-interest approach, conditioning on
MDD status, and adjusting for age.
As a secondary analysis, we compared the co-expression

network centrality of each gene with the statistical sig-
nificance of its univariate effect on MDD status. Within
the most significant modules, we found a positive corre-
lation between a gene’s centrality and the statistical sig-
nificance of the gene’s differential expression. In other
words, “hub” genes in these top modules are potentially
more predictive of the diagnosis phenotype compared to
other genes that have lower centrality in the modules. In
addition to the cumulative variation of genes within
modules, using information related to the centrality of
genes may improve the discovery of MDD-related genes
and further limit the number of hypothesis tests. Hub
genes in significant modules also may make it easier to
identify biologically meaningful genes55.
One of the limitations of our study is the relatively small

sample size. However, the dimensionality reduction,
multiple test adjustment, and replication in a previous
RNA-Seq MDD study adds evidence that module DGM-5
is not an artifact. A recent microarray study56 did not
replicate individual gene effects found in the Mostafavi
RNA-Seq study. However, their meta-analysis of the
p values identified six genes that showed a consistent effect
(the genes had p < 0.05 in both studies)56. Similarly, Leday
et al.57 used a Bayesian technique to identify concordant
gene effects across two independent cohorts. DGM-5, in
the current study, contains many genes that are biologi-
cally relevant or previously associated with mood disorders
(Table 2). However, the pathway enrichment signals of
DGM-5, such as apoptosis, point to genes outside of Table
2 as playing an important role in MDD etiology. Incor-
porating eQTL analysis may fill in part of the functional
gaps in the DGM-5 network and further characterize the
mechanisms of this mood disorder module.
In the first stage of our analysis, we used MADRS as the

primary outcome with the aim of including greater
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Table 2 Mood disorder-related genes in significant modules and summary of their relevance to mood disorders from
the literature

Module Gene Description/related pathways Prior studies linkage to mood disorder/

schizophrenia

DGM-17 OPRM1 μ-opioid receptor/GABAergic synapse Stressful life events50

Sustained sadness condition in women51

Response to antidepressants65

DGM-5 HDAC5 Histone deacetylase 5/ phospholipase-C Pathway MDD pathophysiology39

Histone pathways66

DGM-5 CREB1 The cyclic AMP response element-binding protein 1, sequence-specific DNA

binding and enzyme binding/constitutive signaling by AKT1 E17K in cancer

MDD pathophysiology39

Anger expression and treatment outcome in

MDD patients41,42

Gender-specific susceptibility for MDD43,44

Important targets of antidepressants45

DGM-5 FOXP3 forkhead box P3, the marker for regulatory T cells/Th2 differentiation pathway Decreased expression level in depressed

patients46

Immune system responses40

DGM-5 FAS fas cell surface death receptor, T-cell activation and apoptosis/ bacterial infections

in CF airways, allograft rejection

Antidepressant prognosis48

Expression increase in depressed patients49

DGM-5 FKBP4 FK506 Binding Protein 4, paralog of FKBP5/ PEDF induced signaling, HSF1-

dependent transactivation

FKBP5: strong evidence for association with

MDD67–72

DGM-5 AKT1 AKT serine/threonine kinase 1, critical mediator of growth factor-induced neuronal

survival/ ICos-ICosL pathway in T-helper cell, development IGF-1 receptor signaling

Schizophrenia73–75

Depression in different populations76

Neuronal pathways66

DGM-17 VRK2 Vaccinia related Kinase 2/nuclear envelope reassembly, mitotic prophase. Schizophrenia77–79

DGM-17 TCF7L2 Transcription Factor 7 Like 2/Wnt signaling pathway Schizophrenia80

Genetic variants that are crucial in MDD

susceptibility81

Table 3 Reactome pathway enrichment results of the two statistically significant MDD modules DGM-5 (replicated) and
DGM-17

REACTOME pathways Genes in pathway p value FDR q value Over lapping genes

DGM-5: 291 genes

Apoptosis 148 1.19e−3 0.108 AKT1, BAD, PSMD5, PSMD7, FAS

Downstream signaling by B cell receptor 97 5.76e−4 0.108 AKT1, BAD, CREB1, PSMD5, PSMD7

PIP3/AKT and PI3K/AKT signaling activation 29 4.82e−4 0.108 AKT1, BAD, CREB1

GAB1 signalosome 38 1.07e−3 0.108 AKT1, BAD, CREB1

PI3K events in ERBB4 and ERBB2 signaling 38 1.07e−3 0.108 AKT1, BAD, CREB1

tRNA aminoacylation 42 1.44e−3 0.108 WARS2, DARS2, LARS

AKT phosphorylates targets in the cytosol 12 1.77e−3 0.108 AKT1, BAD

DGM-17: 109 genes

Interactions of Vpr with host cellular proteins 33 2.38e−5 0.016 NUP214, SLC25A5, PSIP1

Comprehensive results of the pathway enrichment analysis for all modules are presented in Table S1. The Reactome enrichment FDR q value threshold for DGM-5 and
DGM-17 is 0.2
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phenotypic variation than the diagnostic phenotype.
Using a precision quantitative trait in a population has the
advantage of capturing more variation than a
case–control phenotype and may also have more power.
For example, it has been shown that dichotomizing a trait
variable at the median reduces the power by the same
amount as throwing away 1/3 of the data58. One limita-
tion of treating MADRS quantitatively is the lack of var-
iation in the scale among healthy subjects. In the second
stage analysis, we used diagnostic status as the dependent
variable because depression severity was not available.
Another potential limitation of our study is the use of

gene expression from PBMCs, which contain many cell
types and may not detect brain-specific mechanisms16,56.
Peripheral blood is an easily accessible source of cells that
may more easily translate into a clinical biomarker com-
pared to cell or tissue-specific gene expression. We did
not find significant overlap between our top module genes
and known cell-type signatures; however, depression-
associated changes in cell frequencies may account for
some of the differences in gene expression59. While effect
sizes may be diluted if small subsets of cells contribute to
the signal, we were able to detect module-level signals that
replicated in an independent study. Deconvolution
methods may help identify cell-specific differences in
major immune system cells (such as monocytes, Thelper,
B and NK cells) and uncover cell-specific gene expression
changes associated with mood disorder phenotypes60.
Our modular approach aggregates the effects of genes

with shared variation to discover depression gene mod-
ules. This approach is influenced by GWAS studies
showing that individual variants with small effect sizes,
dispersed throughout the genome, drive complex disease
risk by key genes and regulatory pathways61. Methods for
aggregating genetic variation and association signals from
prior biological knowledge have been used in GWAS to
facilitate more powerful analysis62,63. At the level of gene
expression, we aggregate the variation from co-expressed
genes into modules. This aggregation was done without
prior pathway knowledge and in an unbiased way (not
conditioned on the phenotype) to mitigate multiple
hypothesis testing. Future studies to refine and char-
acterize these depression-related modules will involve
identifying regulatory variants through cis- and trans-
eQTL and interaction QTL analysis64.
Our analysis used stranded RNA-Seq preprocessing

where the forward direction was used for the second fast
sequence files. This stranded preprocessing enriches for
antisense non-coding RNA, sometimes called Natural
Antisense Transcripts (NATs). These NATs are labeled
with AS1 (for antisense) appended to their gene symbols,
and they are known to recruit epigenetic machinery and
other mechanisms to regulate coding RNA (mRNA/
genes). In addition to NATs, stranded preprocessing

enriches for protein coding genes that can be transcribed
in the antisense direction, which occurs for a significant
proportion of mammalian genes (i.e., protein coding).
Thus, the replicated module (M5) contains genes that are
enriched for antisense expression of protein coding genes
and expression of NATs that regulate partner coding
genes through an antisense mechanism. We include the
RNA-Seq data preprocessed for both antisense RNA and
sense RNA gene expression in the github repository
(https://github.com/insilico/DepressionGeneModules).

Code availability
https://github.com/insilico/DepressionGeneModules
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