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ABSTRACT

The detection of tumor-derived cell-free DNA in
plasma is one of the most promising directions in
cancer diagnosis. The major challenge in such an
approach is how to identify the tiny amount of tumor
DNAs out of total cell-free DNAs in blood. Here we
propose an ultrasensitive cancer detection method,
termed ‘CancerDetector’, using the DNA methylation
profiles of cell-free DNAs. The key of our method
is to probabilistically model the joint methylation
states of multiple adjacent CpG sites on an individ-
ual sequencing read, in order to exploit the perva-
sive nature of DNA methylation for signal amplifica-
tion. Therefore, CancerDetector can sensitively iden-
tify a trace amount of tumor cfDNAs in plasma, at the
level of individual reads. We evaluated CancerDetec-
tor on the simulated data, and showed a high con-
cordance of the predicted and true tumor fraction.
Testing CancerDetector on real plasma data demon-
strated its high sensitivity and specificity in detecting
tumor cfDNAs. In addition, the predicted tumor frac-
tion showed great consistency with tumor size and
survival outcome. Note that all of those testing were
performed on sequencing data at low to medium cov-
erage (1x to 10x). Therefore, CancerDetector holds

the great potential to detect cancer early and cost-
effectively.

INTRODUCTION

Early detection of cancer - before it has had a chance to
metastasize - presents the best strategy for increasing can-
cer survival. Recently, cancer detection using cell-free DNA
(cfDNA) from blood has attracted significant interest due
to its non-invasive nature. However, tumor cfDNA lev-
els are very low in most early-stage and many advanced
stage cancer patients (1,2). Therefore, the major challenge
in cfDNA-based early cancer diagnostics is how to iden-
tify the tiny amount of tumor cfDNAs out of total cfDNAs
in blood. The mainstream approach to address this chal-
lenge is mutation-based, i.e. using targeted deep sequencing
(>5000x coverage), combined with error-suppression tech-
niques, to call cfDNA mutations in a small gene panel (1-
3). While this approach provides a sensitive way to monitor
cancer recurrence when the mutations are known, a small
gene panel could not serve diagnostic purposes because mu-
tations can be wide-spread and very heterogeneous, even
in the same type of cancer (4-7). However, enlarging the
gene panel, while maintaining the sequencing depth, is cost-
prohibitive. In this paper, we aim to address the challenge of
detecting the trace amount of tumor cfDNA using a differ-
ent approach, namely, using the cfDNA methylation pat-
terns.
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Several reasons motivate the methylation-based tumor
cfDNA detection: (i) DNA methylation patterns are per-
vasive, meaning that the same methylation patterns (methy-
lated or unmethylated) tend to spread throughout a genome
region. This feature has been employed by Dennis Lo’s team
to evaluate DNA hypomethylation across large genome
regions for cancer diagnosis (8). In addition, Lehmann-
Werman et al. has experimentally confirmed that co-
methylation across neighboring CpG sites can enhance dis-
tinction of disease-derived DNA in plasma cfDNA (9).
(i1) Aberrant DNA methylation patterns occur early in the
pathogenesis of cancer (10), therefore facilitating early can-
cer detection. In fact, DNA methylation abnormalities are
one of the hallmarks of cancer and are associated with all
aspects of cancer, from tumor initiation to cancer progres-
sion and metastasis (11-13). These nice properties inspired
a number of recent approaches in using DNA methylation
patterns for cancer diagnosis (14,15). Here, we aim to am-
plify aberrant cfDNA methylation signals at the resolution
of single sequencing reads, therefore providing an ultra-
sensitive detection of a tiny amount of tumor cfDNA even
at a low sequencing coverage.

The key to our method is to focus on the joint methyla-
tion states of multiple adjacent CpG sites on an individual
cfDNA sequencing read, in order to exploit the pervasive
nature of DNA methylation for signal amplification. Tra-
ditional DNA methylation analysis focuses on the methy-
lation rate of an individual CpG site in a cell population.
This rate, often called the S-value, is the proportion of cells
in which the CpG site is methylated (see an example in Fig-
ure 1). However, such population-average measures are not
sensitive enough to capture an abnormal methylation signal
affecting only a small proportion of the cfDNAs. Figure 1
illustrates this point: the average methylation rates of the in-
dividual CpG sites are Bpormal = 1 for normal plasma cfD-
NAs, and Bymor = 0 for tumor cfDNAs; assuming the pres-
ence of 1% tumor cfDNAs, the traditional measure yields
Bmixed= 0.99, which is hard to differentiate from Byormal =
1. However, based on the pervasive nature of DNA methy-
lation, we came up with a new way to differentiate disease-
specific cfDNA reads from normal cfDNA reads. If we av-
erage the methylation values of all CpG sites in a given read
(denoted a-value), we see a striking difference (0 and 1)
between the abnormally methylated cfDNAs and the nor-
mal cfDNAS (¢tumor = 0% and opormar = 100%). In other
words, given the pervasive nature of DNA methylation,
the joint methylation states of multiple adjacent CpG sites
may easily distinguish cancer-specific cfDNA reads from
normal cfDNA reads. Inspired by the «-value, we realized
that the key to exploiting pervasive methylation is to es-
timate whether the joint probability of all CpG sites in a
read follows the DNA methylation signature of a disease.
We therefore propose a novel, read-based probabilistic ap-
proach, termed ‘CancerDetector’, that can sensitively iden-
tify a trace amount of tumor cfDNAs out of all cfDNAs in
plasma.

We first evaluated CancerDetector on the simulated
plasma samples that subsample and combine sequencing
reads of a normal plasma cfDNA sample and a solid tumor
sample at known mixing rates (or tumor fractions). The re-
sults showed that CancerDetector can achieve a Pearson’s
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correlation coefficient (PCC) of 0.9974 (P-value 7.2E-8) be-
tween the predicted and true proportions of tumor cfDNAs
at medium sequencing coverage (10x). And the prediction
performance increases with the sequencing coverage—the
higher the sequencing coverage, the closer the predicted
tumor fraction is to the true value. Moreover, CancerDe-
tector outperformed our previous method of cfDNA tu-
mor fraction prediction, i.e. ‘CancerLocator’ (16), in terms
of both prediction performance and robustness. We then
tested CancerDetector on real plasma cfDNA samples and
demonstrated its high performance across 10 experimental
runs, i.e. sensitivity of 94.8 = 3.6% (when specificity is 100%)
for early-stage cancer patients; while CancerLocator has a
sensitivity of 74.4 + 10.0% (when specificity is 100%). In
addition, the tumor fraction predicted by CancerDetector
showed great consistency with clinical information, such as
tumor size and survival outcome, in longitudinal samples.
Note that we achieved these results based on real samples
that the majority have low sequencing coverage (1x~3x,
averaged across all genome positions).

MATERIALS AND METHODS
Overview

The goal of this approach is to classify each read (in the
methylation marker regions) into either the tumor-derived
cfDNA class (abbreviated as class 7)) or the normal-plasma-
derived cfDNA class (abbreviated as class N). In this paper,
we focus on one type of cancer, liver cancer, but our method
can be generalized to any cancer type. Our approach com-
prises three major steps: (i) Identifying the DNA methy-
lation signatures of liver cancer. We derived the methyla-
tion markers of liver cancer based on DNA methylation
data of liver tumors and their matched normal tissues as
well as normal plasma cfDNA samples. The vast amount
of methylation data was collected from the public database
TCGA (The Cancer Genome Atlas (17)) and recent liter-
atures (8,27). (ii) Calculating the likelihood for a read to
harbor a methylation signature. Given a new patient, we
performed the methylation sequencing on his/her plasma
cfDNA sample. We obtained the sequencing reads of those
cfDNA fragments that fall into the genomic regions of se-
lected markers. To account for data uncertainty and inter-
individual methylation variances in markers, we calculated
the likelihood of each read to come from each class. (iii) In-
ferring cfDNA composition. The likelihood of each read to
come from each class can be used to derive the tumor frac-
tion in cfDNAs. Figure 2 gives an overall picture of our ap-
proach, and we detail individual steps in the sections below.

Identify and characterize methylation markers specific to
liver cancer

A methylation marker includes two kinds of information: its
genomic region and methylation patterns in both solid tu-
mor samples (class 7) and normal plasma cfDNA samples
(class N). To take advantage of the large amount of pub-
lic methylation data from TCGA that were mainly gener-
ated by the microarray platform, we developed the follow-
ing two-step procedure to obtain the liver-cancer-specific
methylation markers:
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Figure 1. Illustration of the rationale why the methylation value averaged across all CpG sites in a sequencing read («-value) is more sensitive at detecting
tumor-derived cfDNAs than the traditional methylation level of a CpG site averaged across all reads (8-value). Each line represents a sequencing read and

each dot represents a CpG site.
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e Step 1: Identify genomic markers for liver cancer—Only
genomic regions that are covered by sufficient microar-
ray probes qualified as potential markers. Therefore, we
use the definition of CpG clusters in our recent work
(16) to identify all potential genomic regions. See the
Results section for details. Among all potential regions,
we select those regions whose methylation levels can
differentiate most liver tumor samples from not only
their matched normal liver tissues but also from normal
plasma samples. This task inherently includes two steps:
(i) Selecting those ‘frequently differential methylation re-

Figure 2. Overview of the CancerDetector method. The color of cfDNA sequencing reads represents their origin: red (green) reads are from tumor (normal
plasma) cfDNA fragments. These reads are from a hypomethylated marker (chr2:4050595-4050945).

gions (FDMR)’, in which the methylations are differen-
tial (greater than a cutoff) between matched tumor and
normal tissues in more than half of the matched pairs.
This step can remove markers specific to liver tissues, but
retain markers specific to liver cancer. (ii) Selecting those
FDMRs that can distinguish tumor samples from normal
plasma samples, i.e. the difference between the medians
of its methylation levels in two classes is greater than a
cutoff. This step ensures that the tumor methylation sig-
nal can be identified in blood. Given a fixed sequencing
coverage of cfDNAs, the more markers we use (that is, the
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larger the panel size), the lower quality these markers may
have, but the more tumor-derived cfDNA reads we may
identify. Therefore, there is a tradeoff between the mark-
ers’ quality and the amount of tumor cfDNA signals we
can use. In this work, since all public plasma cfDNA sam-
ples have low sequencing coverages (1 x to 3x), we chose
the cutoff of the methylation difference in both steps as
0.2 in order to keep relatively good marker quality and
maintain a large enough size for the methylation marker
panel to capture sufficient tumor cfDNAs at this low se-
quencing coverage.

e Step 2: Characterize methylation patterns—In each
marker region identified in Step 1, we shall consider the
inter-individual variance of methylation levels in each
class (7" and N). Given a region, we modelled the methy-
lation levels of all samples in a class to follow a Beta
distribution Beta(n, p), which has been widely used in
methylation data analyses (18-22) and our recent work
(16). Specifically, a marker k is associated with two methy-
lation patterns i.e, Beta(n!, pl) for the class T and
Beta(nk s Pj M) for the class N. Note that n and p are two
shape parameters (usually denoted « and ) of a Beta dis-
tribution, but here we used the symbols n and p to avoid
the confusion with a-value and B-values defined in In-
troduction section. The parameters of a Beta distribution
can be easily learnt from the sample population of a class,
using either the method of moments or maximum likeli-
hood (23). To simplify notation, we denote the methyla—
tion pattern of marker k forclass Tasm] = Beta(n/, o)),
and for class NV as m = Beta(nk , ).

Calculate the class-specific likelihood of each cfDNA se-
quencing read

Our goal is to classify each cfDNA read as class 7 or N,
based on the joint-methylation-status of multiple CpG sites
on the read. The joint-methylation-status in a cfDNA read
is denoted as r = (r1, r2, - - -), where the binary value r ;=
1 or 0 represents methylated or unmethylated status of the
CpG site j in read r. We model this binary vector r by the
Beta-Bernoulli distribution (24). Specifically, given a methy-
lation pattern m = Beta(n, p) of the marker where read r
falls into, the methylation status ; of each CpG site j in the
read is distributed as r; ~ Bernoulli(p), where p is the prior
of average methylation rate of CpG sites within the marker
and follows the Beta prior distribution p ~ Beta(n, p). Us-
ing this statistical model, the likelihood of the joint methy-
lation status in read r = (ry, r, - - -), given the methylation
pattern m, can be calculated as below:

P (rim)=T]; P (r;Beta(n, p))
=[I,;/ o Bernoulli(r;| p)Beta(p|n, p)dp
—r p 1 (1=p)!

=11, 1{(‘1) L p))l i —dp

_ ri+n,1=r;+p

- H.f B(1.p)
where B(x, y) is the beta function. Therefore, for marker &
with methylation pattern m/ of class 7 and m}’ of class N,
we can use the above formula to compute the class-specific
likelihoods of read r, i.e., P(r|m[) and P(r|m}’). Note that
this likelihood calculatlon implements a probabilistic ver-
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Figure 3. Illustration of calculating the likelihood of a cfDNA sequenc-
ing read in a marker, given the methylation patterns of normal and tumor
classes.

sion of w-value for individual reads. An example is illus-
trated in Figure 3.

Predict tumor-derived cfDNA fraction

As illustrated in Figure 2, we develop a probabilistic frame-
work to infer the tumor-derived ¢fDNA fraction (i.e. tu-
mor fraction), denoted as 0 < 6 < 1, by classifying cfDNA
reads into two classes (class 7" for tumor-derived DNAs
and class N for normal plasma cfDNAs), based on a set
of markers associated with the methylation patterns of two
classes. We denote the methylation patterns of all K mark-
ers as M = {(m1 , ) (mk,mk) , (m%, mK)} We
also denote the methylatlon sequencing data of a patrent S
c¢fDNAs as a set of N reads R = {r(V, ... (™} that in
total cover M CpG sites. For a read that is aligned to the
region of marker k, we assume that it can come from one
of two classes with the class-specific likelihood P(r|my),
where mj, is the methylation pattern of class ¢. Let 0 be
the tumor-derived cfDNA fraction, so the fraction of nor-
mal ¢fDNA is 1 — 6. We want to estimate # by maximiz-
ing the log-likelihood log P(R|6, M). This is a maximum
likelihood estimation problem. Assuming the independence
of each read (as widely adopted in literatures (25,26)),

P(RIO, M) =T]Y, P(r?16, M). We can then expand the
likelihood P(r)|9, M) of read r© as follows:

P(V(i)|9, M) = 9P(r(i)|m,{) +(1 - G)P(r(i)|m,iv)

Since P(R|6, M) has only one parameter 6 to be esti-
mated, we can simply apply a grid search to exhaustively
enumerate all 1000 fraction values which are uniformly dis-
tributed between 0% and 100%, i.e., 0%, 0.1%, ..., 99.9%
and 100%. This method can get the global optimization at
the precision of 0.1%, which we think is sufficient for cap-
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turing the tiny amount of tumor-derived cfDNAs. Since the
grid search is computationally fast, we can easily refine the
steps to determine 6 at higher resolutions.

Removal of ‘confounding” markers. Above, we estimated a
global tumor fraction (0) across all cancer-specific mark-
ers. The tumor fraction (6) can also be estimated only for a
single marker. Ideally, for an early-stage cancer patient, the
estimated 6 should be a small number (e.g., <20%), either
across all markers or in individual markers. However, in real
cancer patient data, we observed a number of markers with
individually estimated tumor fractions far larger than the
global tumor fraction. Therefore, cfDNA fragments har-
boring aberrant methylation in these ‘outlier’ markers ob-
viously do not come from cancerous cells, but likely from
normal cells (e.g. white blood cells) due to inter-individual
variance (e.g. age, environment exposure, or other diseases
the person may have). Consequently, including these ‘con-
founding” markers would impair the accuracy of tumor
fraction estimation. We therefore design an iterative algo-
rithm to adjust the global tumor fraction after identifying
and removing ‘germline’ markers. We denote 6; as the tu-
mor fraction at the marker k,to distinguish from the global
fraction 0 obtained using all markers. The procedure of this
algorithm is presented below:

o Initialization—Let M denote the set of markers used for
0 estimation. Initially, we put all markers into M.

e Step 1: Remove ‘confounding’ markers — Estimate 6 of
each marker k£ in M and calculate the standard devia-
tion of all i, denoted as std(6;). Remove from M those
markers whose 6> 6 + Astd(6;), where A is an input fixed
parameter.

e Step 2: Update 6—Estimate the global fraction 6 using
all markers of M updated in Step 1.

o Step 3: Iterate Steps 1 and 2, until 6 converges.

The output 6 is the adjusted global tumor fraction after
removing ‘confounding’ markers. The parameter A of this
algorithm controls how far the 6; of those ‘confounding’
markers deviates from the average 6. We can estimate this
parameter using normal plasma cfDNA samples, because it
is expected that the optimal A should be able to adjust the
global 6 of the normal samples to be close to zero.

Methylation data collection, generation and processing

Data collection. We collected the methylation profiles
of 49 solid liver tumor samples and their matched
adjacent solid liver tissue samples from the TCGA
database. All of these samples were assayed using the In-
fintum HumanMethylation450 microarray. For the plasma
cfDNA samples, we used the methylation sequencing data
from Chan et al. (8) with European Genome-Phenome
Archive database (abbreviated as EGA) accession number
EGAS00001000566 and Sun et al. (27) with EGA acces-
sion number EGAS00001001219. They include the Whole
Genome Bisulfite Sequencing (WGBS) data of plasma sam-
ples taken from 32 healthy people, 8 patients infected with
chronic hepatitis B virus (HBV) and 29 liver cancer patients.
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Data generation. Since the public WGBS data of plasma
cfDNA samples have very low sequencing coverage
(1x~3x), we generated WGBS data of plasma cfDNA
samples from four healthy people, at higher coverage (~10x
on average); and generated WGBS data of solid tumor sam-
ples from two cancer patients, in order to simulate higher-
coverage cfDNA WGBS data from cancer patients. We also
generated WGBS data of plasma samples collected from
4 liver cancer patients. Blood samples were centrifuged at
1600 x g for 10 min and then the plasma was transferred
into new microtubes and centrifuged at 16 000 x g for
another 10 min. The plasma was collected and stored at
—80°C. cfDNA was extracted from 5 ml plasma using the
Qiagen QIAamp Circulating Nucleic Acids Kit and quan-
tified using a Qubit 3.0 Fluoromter (Thermo Fisher Scien-
tific). Bisulfite conversion of cfDNA was performed using
the EZ-DNA-Methylation-GOLD kit (Zymo Research).
After that, an Accel-NGS Methy-Seq DNA library kit
(Swift Bioscience) was used to prepare the sequencing li-
braries. The DNA libraries were then sequenced with 150bp
paired-end reads. For the solid tumor samples, bisulfite
conversion was performed with the EZ-DNA-Methylation-
GOLD kit (Zymo Research), and the sequencing libraries
were prepared using the TruSeq DNA Methylation Kit. The
DNA libraries were then sequenced with 150-bp paired-end
reads using HiSeq X (Illumina). In total, 10 WGBS data
have been deposited to the EGA database (https://www.ega-
archive.org) with accession number EGAS00001002728 for
public research use.

Human subjects. The blood samples of four healthy people
and four liver tumor patients were collected with informed
consent for research use. This project was approved by the
Institutional Review Boards (IRBs) of University of South-
ern California (IRB #HS-15-00740). Two solid liver tumor
tissues were purchased from OriGene Technologies, Inc.

Processing methylation microarray data. The microarray
data (level 3 in TCGA database) provide the methylation
levels of individual CpG sites. We define the methylation
level of a CpG cluster as the average methylation level of
all CpG sites in the cluster. A cluster’s methylation level is
marked as ‘not available’ (NA) if more than half of its CpG
sites do not have methylation measurements.

Processing WGBS data. We used Bismark (28) to align
the reads to the reference genome hgl9 and call the methy-
lated cytosines. After the removal of PCR duplicates, the
numbers of methylated and unmethylated cytosines were
counted for each CpG site. The methylation level of a CpG
cluster is calculated as the ratio between the number of
methylated cytosines and the total number of cytosines
within the cluster. However, if the total number of cytosines
in the reads aligned to the CpG cluster is <30, the methy-
lation level of this cluster is treated as NA (Not Available).
This WGBS data processing procedure is used for calculat-
ing the average methylation level of a CpG cluster in nor-
mal plasma samples that are used for identifying methyla-
tion markers. When a plasma cfDNA sample is used as test
data, we extracted the joint-methylation-status of all CpG
sites of individual sequencing reads that are aligned to the
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regions of the marker panel from Bismark’s output, then fed
this information into CancerDetector as its input data. Since
the sequencing coverage of real data is low, in this work, we
used all reads covering at least one CpG site. For the cfDNA
methylation data with high coverage, we can filter out those
reads covering <3 CpG sites to improve the input data qual-

ity.

RESULTS
Identify methylation markers specific to liver cancer

Defining all genomic regions eligible to serve as methylation
markers. Our training data are from the TCGA solid tis-
sues, measured by the Infinium HumanMethylation450 mi-
croarray with ~450 000 CpGs. However, the majority of our
testing data (8,27) are WGBS data with very low sequenc-
ing coverage. Therefore, we grouped the CpG sites into CpG
clusters in order to use more mappable reads from the test-
ing data. For a CpG site covered by a probe on the microar-
ray, we define the region 100 bp up- and down-stream as its
flanking region and assume that all CpG sites located within
this region have the same average methylation level as the
CpG sites covered by probes. Two adjacent CpG sites are
grouped into a CpG cluster if their flanking regions overlap.
Finally, only those CpG clusters containing at least three
CpGs covered by microarray probes are used, in order to
achieve robust measurement of methylation levels. This pro-
cedure yielded 42 374 CpG clusters, which together include
about one-half of all the CpG sites on the Infinium Human-
Methylation450 microarray. Most of these clusters are each
associated with only one gene. These CpG clusters are used
for subsequent feature selection. The definitions of all CpG
clusters are listed in Supplementary Table S1.

Selecting liver-cancer-specific markers and characterizing
their patterns in normal and tumor classes. Given the 42
374 CpG clusters, we selected the cancer-specific markers by
using the method described in Materials and Methods sec-
tion on the training data: (i) 49 pairs of solid liver tumors
and their matched normal liver tissues and (ii) 75% of all the
32 healthy plasma samples. Note that the remaining 25% of
healthy plasma samples are used as test data, and we ran-
domly partitioned the healthy plasma samples in the ratio of
75/25 as the training/test data, respectively, 10 times. This
indicates that we will have 10 different sets of training/test
data and each set can yield different selected markers and
tumor fraction estimation. Each set of training/test data
and its result is called an experimental run. In each of the 10
runs, we identified an average of 3,214 liver-cancer-specific
markers (CpG clusters), and the majority of these markers
were shared by all runs. The biomarkers for each run are
listed in Supplementary Table S2. We then characterized the
methylation patterns for each marker in the normal and tu-
mor classes as two Beta distributions, with learnt shape pa-
rameters that can capture the inter-individual variance of
methylation levels within a class. In addition, the adjacent
CpG sites within the selected marker show significant cor-
relation in their methylation statuses. The average sample-
wise correlation between the adjacent probes within each
selected CpG cluster (~3200 among 10 runs) is 0.626 with
the median of P-values 2.4e-55, across a large cohort of 711
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normal samples of 18 tissue types collected from the TCGA
database.

Simulation experiments demonstrated the ultrasensitivity of
CancerDetector in detecting tumor cfDNAs

We simulated the methylation data of a plasma cfDNA sam-
ple by sampling and mixing the methylation sequencing
reads of two real samples, a normal plasma cfDNA sam-
ple and a solid tumor sample, at a variety of tumor fractions
(0) and different sequencing coverages (¢). This strategy can
allow us to mimic real data and precisely control the tumor
fraction and sequencing coverage in the mixture samples, in
order to test the power and requirement of the CancerDe-
tector method, e.g. at what tumor fraction and sequencing
coverage can tumor-derived cfDNAs be detected. We com-
pare CancerDetector with another probabilistic cfDNA de-
convolution method, ‘CancerLocator’ (16), that we recently
developed and is so far the only method aimed at deconvo-
luting cancer signals from cfDNA methylation data. While
CancerDetector is a read-based method, CancerLocator is
based on traditional S-values by deconvolving B-values of
markers in the cfDNAs as a linear combination of the -
values of two classes (tumor or normal cfDNAs).

To compare the sensitivity of the two methods in iden-
tifying a minor trace of tumor cfDNAs (i.e., 8 <5%), we
simulated plasma cfDNA samples at 8 different tumor frac-
tions (. = 0, 0.1%, 0.3%, 0.5%, 0.8%, 1%, 3% and 5%), and
3 different sequencing coverages (¢ = 2, 5, 10). The real
samples used in the simulation procedure are the WGBS
data of two normal plasma samples (N1L and N2L) and
of two solid liver tumor samples (HCCI and HCC2). This
experimental setting resultsin8 x 3 x 2 x 2 =96 mixed
samples. Figure 4 demonstrates the sensitivity of the two
methods in detecting tumor cfDNAs, where scatter plots are
shown for the predicted tumor fractions averaged over 10
experimental runs of the simulated samples with eight given
tumor fractions at three given sequencing coverages (2x,
Sx and 10x). As clearly shown in Figure 4, the blood tumor
fractions predicted by CancerDetector are highly consistent
with the true values and have very low prediction variances:
e.g., when using the highest sequencing coverage 10x, Can-
cerDetector achieved a Pearson’s Correlation Coefficient
(PCC) 0f 0.9974+0.0012 (P-value = 7.2E-8), averaged over
10 runs. The consistency increased with the sequencing cov-
erage, i.e. average PCC = 0.9811, 0.9926, 0.9974 and their
associated P-values 2.5E-5, 5.3E-6, 7.2E-8 for the sequenc-
ing coverages of 2x, 5x, 10x, respectively. More impor-
tantly, it can be observed that CancerDetector can (i) detect
tumor ¢fDNAs with a low tumor fraction (0 = 1%) at low
sequencing coverage (2x), and (ii) improve the detection
limit from 1% to 0.3% when increasing the sequencing cov-
erages (5x and 10x). On the other hand, the 8-value-based
method, CancerLocator, cannot detect any tumor DNAs
when the tumor fraction 6 is <5% and 2 x sequencing cover-
age, or 6<3% with 5x coverage. Even with 10x sequencing
coverage, its predictions are not stable (there is high pre-
diction variance) and deviate strongly from the true tumor
fractions. In summary, this result demonstrates that the read-
based CancerDetector method can sensitively detect a small
amount of tumor ¢cfDNAs, even at low sequencing coverage,
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Figure 4. Predicted blood tumor fractions (averaged over 10 runs) for the liver cancer cfDNA samples, simulated by subsampling and mixing sequencing
reads from a real healthy cfDNA sample (N1L or N2L) and a solid liver tumor sample (HCC1 or HCC2) at eight different tumor fractions: 0, 0.1%, 0.3%,
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predicted tumor fraction is out of range (>5%), we draw the point above the box.

and the prediction accuracy and stability increase with higher
sequencing coverage.

Testing on real data confirmed the high sensitivity of Can-
cerDetector in deconvoluting tumor cfDNA

We compiled a collection of public plasma samples (32
healthy people, 8 HBV carriers and 29 liver cancer patients)
from Chan et al. (8) and Sun et al. (27). These data have
low sequencing coverages (1x to 3x). We randomly split
the 32 healthy plasma samples into training set (75%) and
test set (25%) 10 times (runs). In each run, using the com-
bined training set and TCGA microarray data of solid liver
tumors and matched normal tissues, we identified the liver-
cancer-specific methylation markers and then predicted tu-
mor fractions in the test set: the plasma samples from §
HBYV carriers, 33 liver cancer patients (i.e. 29 of them were
collected from Chan et al. (8) and Sun et al. (27), and
four of them are collected in our lab), and the remaining
25% of healthy subjects (i.e., 8 healthy people). In sum-
mary, in each run, the training data for selecting markers
and characterizing their methylation patterns include 24
healthy plasma samples and all TCGA liver samples; and
the test data for classification include cancer positives (33
liver cancer patients) and cancer negatives (16 non-cancer
patients). The performance of predicting tumor fractions
can be measured by the Receiver Operating Characteristic
(ROC) curve, where the sensitivity (a.k.a. true positive rate)
and specificity (a.k.a. one minus false positive rate) of sep-
arating cancer and non-cancer samples are calculated and
plotted by using different tumor fraction cutoffs. As shown

in Figure 5A and B, the average ROC curve of CancerDetec-
tor outperforms that of CancerLocator in terms of both pre-
diction performance and robustness (i.e., much lower stan-
dard deviations). For example, when we chose the point
of the top-left corner in the ROC curve for determining
the tumor fraction threshold, at the specificity of 100% our
method can achieve an average sensitivity of 94.9% across
10 runs with standard deviation 2.7%, where the standard
deviation of sensitivity is calculated among 10 runs for the
fixed specificity (e.g. 100%); while the g-value based Cancer-
Locator method achieved on average a sensitivity of 77.3%
with standard deviation 9.4% at the specificity of 100%.
Note that there are at least 25 early-stage (Barcelona Clinic
Liver Cancer stage A) patients among the 33 liver cancer
patients. Testing only on the 25 early-stage cancer patients
and healthy/HBV samples, at the specificity of 100% our
method can also achieve an average sensitivity of 94.8%
with a standard deviation of 3.6%; while CancerLocator
obtained a sensitivity of 74.4% with a standard deviation
10.0%. Summarizing the performance comparison using
the Area Under Curve (AUC), our method can achieve an
AUC of 0.990 averaged over 10 runs with standard devia-
tion 0.004 for all real samples and an average AUC of 0.988
with standard deviation 0.005 for early-stage cancer pa-
tients; while CancerLocator obtained a lower average AUC
of 0.982 with standard deviation 0.014 for real samples and
an average AUC of 0.979 with standard deviation 0.0143 for
early-stage cancer patients. We also compared our method
with the methylated haplotype load based method (14), us-
ing WGBS data of low sequencing coverage on cfDNAs
from non-cancer individuals and liver cancer patients. As
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methylated haplotype load based method (14) and (D) the relationship between the tumor size and average blood tumor fraction predicted by CancerDe-

tector.

shown in Figure 5C, the competing method achieved the
sensitivity of 71.2 & 13.0% at the specificity of 100%, which
is less accurate and robust than our method (achieved sen-
sitivity of 94.9 £ 2.7% at the specificity of 100%). We also
compared with the average-methylation-rate-based method
(14) that achieved the sensitivity of 76.5 £ 17.0% at the
specificity of 100% and also has lower performance than
our method. For details see the Supplementary Materials.
We also note that CancerDetector correctly predicted the
cfDNA tumor fractions of all eight chronic hepatitis B virus
(HBV) samples to be the same range of the normal samples
(i.e. close to zero) that are well distinguished from cancer
samples. These results demonstrated that CancerDetector
can go beyond distinguishing healthy samples from cancer
samples and handle more sophisticated scenarios, such as
differentiating HBV carriers from cancer patients. There-
fore, using real plasma samples we also demonstrated that the
read-based CancerDetector method can more sensitively de-
tect tumor cfDNAs.

In general, the predicted tumor fraction correlates well
with tumor size. As shown in Figure 5D, among the 26 liver
cancer patients with tumor size information, the PCC be-
tween the predicted tumor fraction and tumor size is 0.87
(P-value = 7.37¢-09). Even after removing the three patients
with the largest tumors (size>6cm), we still get a relatively
good PCC of 0.42 (P-value = 4.61e-02).

CancerDetector can also be used for monitoring the can-
cer progression and treatment. We used two cancer liver pa-
tients from Chan et al. (8) whose plasma samples were ob-
tained before surgical tumor resection and at multiple time
points after the surgery. The first patient survived beyond
12 months, while the second patient died of metastatic dis-
ease after the operation (8). As shown in Figure 6, the pre-
dicted blood tumor fractions are consistent with the treat-
ment effects: the first patient’s tumor fractions quickly fall
into the normal range; while those of the second retain rel-
atively high values after the surgery.

DISCUSSION

The success of early cancer detection largely relies on (i)
the high-quality cancer-specific methylation markers, and
(i1) the computational method for the ultra-sensitive detec-
tion of tiny amounts of tumor cfDNAs (usually <5%, or
even <0.5% in early-stage cancer patients). In this work, we
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Figure 6. Average predicted blood tumor fractions for longitudinal data of
two liver cancer patients before and after tumor resections in all 10 runs.
The second patient passed away after surgery.

propose a novel method to deconvolute the tumor cfDNA
out of total cfDNA at the resolution of individual reads.
Compared with traditional cancer detection methods, our
method has two advantages in identifying subtle tumor sig-
nals: (i) Exploit the pervasive nature of DNA methylation
to significantly amplify aberrant cfDNA signals: As demon-
strated in Figure 1 and in our experimental results, the joint
methylation status («-value) of multiple CpG sites in a read
carries more sensitive tumor signals than the average methy-
lation rate (B-value) of an individual CpG site. Our prob-
abilistic method based on a-value is particularly advanta-
geous when tumor fractions and sequencing coverages are
low. (ii) Jointly deconvolute tumor fraction across all mark-
ers. Existing methods often focus on detecting tumor sig-
nals in one or several tumor markers, not aggregating sig-
nals from a large set of markers (9,29,30). Alternatively, our
method holds the belief that subtle tumor signals should
occur at multiple places in the genome. In practice, if us-
ing low-coverage sequencing to profile cfDNA with low tu-
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mor fraction, tumor-specific reads may not be observed in
all markers (for details see Supplementary Materials). Since
our method can detect tumor cfDNA at the read level, we
combine all possible signals to provide a robust and sensi-
tive estimate of the tumor fraction. The key considerations
of (i) and (ii) promised, as demonstrated, that our method
could do well for extremely low tumor fractions (<1%) at
low or medium sequencing coverage (5x and 10x). There-
fore, our approach holds the potential to largely reduce the
cost of cancer detection.

In the field of methylation studies, our method shares
some common concepts with previous studies (14,25,26,31—
35), but is distinct in several major points. The joint methy-
lation status of individual sequencing reads, often referred
to as epialleles (epigenetic alleles), captures the ‘phased in-
formation’ of CpG sites, and can represent the methyla-
tion haplotype (9,14,32). With the advancement of base-
resolution sequencing techniques (such as WGBS), epial-
leles have recently been studied in several major lines of
DNA methylation research (14,25,26,31-35), such as tumor
clones and their phylogeny (26,33,34), intratumor hetero-
geneity (25,35), solid tissue studies (31), and tissue decon-
volution of ¢cfDNAs (14). Most of these studies proposed
new measures based on epialleles, such as proportion of dis-
cordant reads (PDR) (25), Epipolymorphism (31), methy-
lation entropy (32), and methylated haplotype load (MHL)
(14). These measures are intrinsically population-averaged
metric at the marker level, designed for assessing discor-
dancy, diversity, and co-methylation level of joint methyla-
tion states over a pile of reads, not for classifying individ-
ual reads. Therefore, it is challenging for those methods to
search for tiny tumor signals in cfDNA data with low tumor
fraction and sequencing coverage.

Although a number of targeted sequencing assays that
use error-suppressing technologies have been developed for
detecting point mutations or tissue/tumor-specific DNA
methylation in plasma cfDNA samples, our method is fun-
damentally different from them in two aspects: (i) We ad-
dress a different challenge. Targeted sequencing assays ad-
dress the challenge of how to detect extremely low-allele-
frequency genetic variant or tissue/tumor-specific DNA
methylation alteration in individual hotspot loci that are
provided from a small panel, which needs the (methylation-
specific) PCR amplification and/or sequencing depth up to
10 000x~100 000x (9,36-38). However, due to the large
genetic/epigenetic landscape of diverse cancer etiologies
and the presence of very few tumor DNA fragments in
blood at early stages, a small panel may possibly miss many
tumor signals. On the contrary, our method aims to esti-
mate an overall value of the cfDNA tumor fraction based
on a large marker set, which can be achieved even for
low-coverage data. (ii) Sequencing reads are used in differ-
ent ways. The variant detection algorithms for targeted se-
quencing data usually analyze the reads that cover individ-
ual hotspot loci; while our method scans all reads cover-
ing all markers and then aggregates those probabilistically
tumor-like reads to derive an overall tumor fraction.

Our method can be further enhanced with increased size
and quality of data, in the following ways: (i) Improve the
quality and quantity of cancer methylation markers: Due to
the limited number of methylation data samples for paired
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liver cancer and non-cancer samples, in this work, we iden-
tified the liver cancer methylation markers using the mi-
croarray data of only 49 pairs of liver samples and the low-
coverage WGBS data of 24 normal plasma samples. We ex-
pect that the growing amount of high-resolution methyla-
tion data will significantly improve the quality and quan-
tity of the methylation marker panel. In addition, in prin-
ciple we can improve the quality of cancer methylation
markers by filtering out those markers that could be poten-
tially contributed by different blood cells or different tis-
sues (such as liver, lung, colon, kidney, pancreas, etc). Al-
though this strategy can improve the quality of markers, it
reduces the number of markers and therefore the number
of reads falling into the marker regions, eventually compro-
mising the diagnostic performance if the sequencing cover-
age is very low, as confirmed by our results using the low
coverage sequencing data in this study. Therefore, there is
a tradeoff between the quality and quantity of markers. On
the other hand, by identifying and removing patient-specific
‘constitutive markers’, our approach can maximally use all
good-quality markers. If given the blood or tissue methyla-
tion data of the same patient, our approach shall identify
‘confounding markers’ even more specifically. (i) Improve
the quality of cfDNA bisulfite sequencing data: Although
our results have demonstrated the cfDNA methylation can
be used for sensitive non-invasive cancer diagnosis, there are
still experimental and technical limitations that generally
exist for all bisulfite-sequencing data analyses. For exam-
ple, the bisulfite conversion can degrade more than 45% of
DNA (up to 90%) (39). It results in much less input cfDNA
for the subsequent experiment, although PCR amplification
is adopted for this issue. However, the PCR amplification
procedure can inevitably bring in both PCR errors and bi-
ases. Therefore, future work shall focus on alleviating these
limitations in both experimental and computational proce-
dures. (iii)Transform the tumor fraction estimation into a
cancer diagnostic decision: Generally, the higher the tumor
fraction 6 in plasma cfDNAs, the more likely an individual
may get cancer. In practice, we should perform the cross val-
idation on a large number of non-cancer samples to build a

reliable upper-limit of a non-cancer 6 threshold, i.e., 6, so

that any individual with cfDNA tumor fraction 6 > 9 may
be predicted as a cancer carrier. In this current work, due
to the very limited number of non-cancer plasma samples
available, we can only assess the performance of the esti-
mated 6 by using ‘ROC AUC’ that does not depend on a

specific 6 cutoff. However, in future work, when sufficient
data of non-cancer plasma samples are available, the thresh-

old g can be determined for making diagnostics decisions.
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