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Many conspicuous forms of evolutionary diversity occur within species.

Two prominent examples include evolutionary divergence between popu-

lations differentially adapted to their local environments (local adaptation),

and divergence between females and males in response to sex differences

in selection (sexual dimorphism sensu lato). These two forms of diversity

have inspired vibrant research programmes, yet these fields have largely

developed in isolation from one another. Nevertheless, conceptual parallels

between these research traditions are striking. Opportunities for local adap-

tation strike a balance between local selection, which promotes divergence,

and gene flow—via dispersal and interbreeding between populations—

which constrains it. Sex differences are similarly constrained by fundamental

features of inheritance that mimic gene flow. Offspring of each sex inherit

genes from same-sex and opposite-sex parents, leading to gene flow between

each differentially selected half of the population, and raising the question of

how sex differences arise and are maintained. This special issue synthesizes

and extends emerging research at the interface between the research

traditions of local adaptation and sex differences. Each field can promote

understanding of the other, and interactions between local adaptation and

sex differences can generate new empirical predictions about the evolution-

ary consequences of selection that varies across space, time, and between

the sexes.

This article is part of the theme issue ‘Linking local adaptation with the

evolution of sex differences’.
1. Introduction
Environmental conditions vary across species’ ranges, generating selection

for locally adapted phenotypes. Nevertheless, gene flow—caused by disper-

sal and interbreeding between individuals that were born in different

regions of the range—opposes genetic differentiation between populations

and constrains local adaptation [1,2]. This tension between adaptation and

gene flow is central to several productive research topics in modern evol-

utionary biology, including the genetics of adaptation and speciation

[3–5], the evolutionary ecology of species’ range limits [6–9], the mainten-

ance of genetic variation [10–12], the evolution of phenotypic plasticity [13]

and the empirical study of natural selection and geographical clines in the

wild [14–17].

The theory of local adaptation characteristically ignores a widespread feature

of biology: sexual dimorphism. Yet many classical study species for local adap-

tation comprise separate sexes. Such species often display pronounced sex

differences in selection and demography, which can directly impact the

dynamics of sex-specific adaptation and population dynamics [18–20]. Likewise,

relatively few studies focusing on sex differences and/or sexual selection are

conducted with spatially varying environments in mind (e.g. [21–24]).

Recent empirical and theoretical research has begun to question and extend

many standard assumptions underlying theories of local adaptation with gene
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flow [22,25–27], and of sex-specific selection and adaptation

in heterogeneous environments [23,24,28–31]. These studies

reveal unexplored opportunities for research that merges

the fields of spatial evolutionary ecology, sexual selection

and sexual dimorphism.

There are at least two good reasons for merging studies

of local adaptation with the evolution of sex differences.

First, establishing conceptual connections between tra-

ditionally separated areas of study can enrich and broaden

our understanding of each. For example, evolutionary pre-

dictions about the genetic basis of local adaptation with

gene flow can generate novel predictions about the genetic

basis of sex-specific adaptation and sexually antagonistic

genetic variation [32,33] (see below). Secondly, predictions

regarding single contexts of evolutionary change may

break down, or change in interesting ways, when multiple

contexts co-occur. Recent research shows that sex-specific

selection and local adaptation can interact to drive evol-

utionary dynamics that are unique to the combination of

processes (e.g. persistent sex asymmetries in geographical

patterns of local adaptation and maladaptation across

species’ ranges; [30,31]).

Despite recent efforts to better integrate these two

fields, several general questions remain largely unanswered,

and indeed are rarely asked. How does environmental

variation mediate selection on male and female traits?

How do sex differences in selection impact extinction,

species’ range size evolution and ecological invasions?

How do classical evolutionary concepts of hard and soft

selection apply in species with separate sexes? How do

interactions between sex and local selection shape the

genetic architecture of local adaptation, and sex-specific

patterns of genetic variance and covariance? In this special

issue, we bring together a collection of papers that address

these and related questions at the intersection between local

adaptation and sex differences. The topics covered within

the issue fall within four major themes, upon which we

expand below:

— Parallels between sex-specific adaptation and local adaptation
with gene flow. Processes that play out during the evolution

of local adaptation and of sexual dimorphism bear many

striking dynamical similarities with one another, with

each field enriching our view of the other.

— Sex differences and the genetic basis of local adaptation.
Females and males differ in both genomic architecture

[34] and the intensity with which selection, migration,

recombination, mutation, and genetic drift operate [35].

These fundamental sex differences shape the genetic

basis of population and species divergence.

— Ecological drivers of sex-specific phenotypic selection and
sexual conflict. Research over the past century has estab-

lished the centrality of sexually divergent reproductive

roles in the evolution of phenotypic sexual dimorphism

[36,37]. The role of ecological context in promoting or con-

straining sex differences has only recently begun to

receive the attention that it deserves.

— Environmental variation and the evolution of reproductive
systems. Reproductive systems evolve in response to inter-

actions between members each sex, their reproductive

interests, and ecological conditions that affect mating and

reproduction. Evolutionary diversity of reproductive

systems is shaped by local environments in native and
invasive species’ ranges (e.g. [38–41]), providing an

active arena for theoretical and empirical research.

2. Parallels between sex-specific adaptation and
local adaptation with gene flow

Local adaptation hinges upon the balance between the

strength of local selection, which promotes population diver-

gence, and the magnitude of gene flow, which erodes it

[2,42]. Weak gene flow allows for strong local adaptation

and high genetic differentiation between populations,

whereas high gene flow can severely limit such divergence.

At best, local adaptation is hindered by this strong gene

flow [43] (but see [44,45]). At worst, populations can be

driven to extinction as a consequence of maladaptive gene

flow [7,46].

In contexts of high gene flow, evolutionary scenarios of

local adaptation bear striking similarities to scenarios of selec-

tion for sex differences [33,47]. Consider an extreme example

of a haploid population, where individuals disperse randomly

between a pair of habitat types (‘habitat 1’ and ‘habitat 2’;

figure 1, left), the direction of selection differs between

habitats, and gene flow is very high (table 1). Local selection

promotes genetic differentiation ( p1 . pt . p2, where pt is the

frequency of the focal allele before selection in generation t,
and p1 and p2 are the frequencies in habitats 1 and 2 after selec-

tion; see figure 1), whereas gene flow erodes these differences,

homogenizing allele frequencies between habitats following

dispersal (i.e. both habitats have allele frequencies pt and

ptþ1 in generations t and t þ 1, respectively). Sex differences

in selection result in evolutionary dynamics that parallel the

local adaptation scenario (figure 1, right). Selection promotes

allele frequency differentiation between breeding females

and males of the population (qf . qt . qm; see figure 1),

whereas the equal genetic contributions of each sex to repro-

duction equalize allele frequencies in female and male

offspring (qtþ1 ¼ (qf þ qm)/2; figure 1). In fact, the evolution-

ary dynamics of the two scenarios of selection become

mathematically indistinguishable when adults from habitats

1 and 2 contribute equally to the production of offspring of

the next generation (c1 ¼ c2 ¼
1
2, s1 ¼ sf and s2 ¼ sm; figure 1

and table 1).

The dynamical similarities between scenarios of local

adaptation and sex differences in selection provide an

example of a wider range of parallels between the concepts.

For example, over short evolutionary intervals, both scenarios

can maintain stable genetic variation for fitness [10,47], stabil-

ize linkage disequilibrium in the absence of epistasis [32,50],

and select for tightly linked clusters of alleles that are exclu-

sively beneficial within a given habitat or sex [48,51–54].

Both scenarios can also generate detectable signals of differ-

ential selection between populations or sexes (e.g. through

FST analysis [55–58]). Over long evolutionary intervals,

both scenarios can impact the evolution of genomic architec-

ture, including the evolution of inversions, translocations and

gene duplications [59–64], as well as the evolutionary modi-

fication of genetic dominance [65,66]. Most of the above

scenarios involve simple, univariate patterns of selection (i.e.

selection on single traits), providing an opportunity for

future work in more complex, multivariate contexts of evol-

utionary change. Finally, scenarios of sex-specific selection

and local adaptation can both favour the evolution of sex- or
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Figure 1. Parallels between scenarios of local adaptation with gene flow and of sex-specific adaptation. The left panel shows the life cycle of a haploid population
evolving in response to local selection with high gene flow between habitats (e.g. [10,11]). Allele frequency differentiation between habitats fluctuates during the
life cycle, with dispersal homogenizing the allele frequencies between habitats ( pt and ptþ1 are equal between habitats), and local selection favouring differen-
tiation between habitats ( p1 . pt . p2). The frequency of allele A in offspring of the next generation depends on the frequency in adults from each habitat
( p1, p2) and the proportions of breeding adults from each habitat (c1, c2, where c2 ¼ 1 2 c1). The right panel shows the life cycle of a haploid population
evolving in response to sexually antagonistic selection (e.g. [48,49]). Females and males make equal genetic contributions to offspring, which homogenizes
the allele frequencies of female and male offspring of a given generation (qt and qtþ1 are equal between sexes). Sex differences in selection elevate the frequency
of the A allele in breeding females and decrease the frequency of A in breeding males (qf . qt . qm).

Table 1. Conflicting selection between habitats and sexes.

allele A allele a

local selection

habitat 1 fitness 1 1 2 s1

habitat 2 fitness 1 2 s2 1

frequency in the population pt 1 2 pt

sex-specific selection

female fitness 1 1 2 sf

male fitness 1 2 sm 1

frequency in the population qt 1 2 qt
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environment-dependent phenotypic plasticity, which are

widely observed in nature [13,18].
3. Sex differences and the genetic basis of local
adaptation

Gene flow shapes genome-wide patterns of genetic diver-

gence, leading to empirically detectable genetic bases

underlying locally adapted phenotypes. For example, whereas

gene flow erodes population divergence at loci contributing

weakly to local adaptation or genetic incompatibilities

between species, strong selection maintains sharp genetic

differentiation at loci that contribute the most to traits or

genetic systems under divergent selection. These loci are

identifiable as outliers with sharp genetic clines across
hybrid zones (e.g. from studies of hybrid zones [67,68]), high

FST between geographically diverged populations [55], or

they may be enriched in genomic regions that suppress

ancestral or ongoing gene flow [60,69].

There are several reasons why a view towards sex differ-

ences may be useful in research on the genetic basis of local

adaptation. For example, sex differences in dispersal, genetic

drift, and the strength of natural selection, can impact the

chromosomal locations of loci contributing the most to local

adaptation, as well as the statistical power to identify them

as outliers (see [35,70]). For example, Camus et al. [71]

reported strong effects of mitochondrial genetic backgrounds

on local adaptation of Drosophila melanogaster to variable ther-

mal conditions across eastern Australia. The mitochondrial

genome is maternally inherited, is primarily responsive to

selection in females, and contributes substantially to local

adaptation in thermal tolerance, despite its small size relative

to the nuclear genome. On the other hand, the lower effective

population size of the mitochondrial genome should simul-

taneously elevate background levels of neutral divergence

between populations, complicating interpretation of the evol-

utionary causes of geographical divergence of mitochondrial

DNA. Recent theory suggests that similar considerations

should also apply to X-linked genes: they exhibit female-

biased transmission, are more responsive to selection than

autosomal genes, are expected to disproportionately contrib-

ute to the evolution of local adaptation [70] and are more

likely to fix inversions capturing locally adapted alleles [72]

(this issue). However, X-linked genes also diverge more

readily under genetic drift, which may mask population gen-

etic signals (e.g. based on FST) of local adaptation involving

the X chromosome (see [70,73]).
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The genes and phenotypes that promote local adaptation

may also differ between the sexes. Although most genes

within a genome are expressed by both sexes, expression

levels and phenotypic effects of mutations differ extensively

between the sexes, allowing for sexual dimorphism in the

genetic architecture of traits expressed by both (e.g. [74–

77]). In addition, the way in which selection varies across

a species’ range may differ between the sexes, leading to

differences in the direction or strength of local selection

[23]. Although rare, studies of sex-specific genetic and phe-

notypic trait clines can shed light on processes of sex-

specific selection and local adaptation. For example, Allen

et al. [78,79] (this issue) show that male-biased genes in Dro-
sophila exhibit more extensive clinal divergence than female-

biased genes—a pattern consistent with sex differences in

the intensity of local selection and/or lower pleiotropic con-

straints in male- relative to female-biased genes. Phenotypic

body size clines show similar patterns [80], although

interpretation of the body size data is complicated by poten-

tial effects of sexually dimorphic phenotypic plasticity [81]

and additive genetic correlations between the sexes that

may constrain geographical divergence of sexual dimorph-

ism [82].

Combinations of sex-specific selection and sexually

dimorphic genetic architecture can manifest in sexually

dimorphic fitness consequences of dispersal, local adaptation

and hybridization between populations or species [83,84]. In

these contexts, Runemark et al. [83] (this issue) review and

synthesize consequences of hybridization for the expression

of sexual dimorphism, sexual conflict and the ecology of

local adaptation. Svensson et al. [84] (this issue) review reci-

procal transplant studies in local adaptation, and discuss

the importance of recording sex-specific fitness consequences

in future studies in this field. Although such studies are still

rare, they can elucidate the role of sex differences in local

adaptation, providing a strong impetus for further empirical

attention.
4. Ecological drivers of sex-specific phenotypic
selection and sexual conflict

Phenotypic sexual dimorphism can evolve in response to

sexual selection or natural selection [18,19], although in

practice, delineating the role of each in the evolution of

sexual dimorphism is challenging (e.g. [85–87]). Selection

for sexual dimorphism can potentially arise from different

interactions between each sex and its environment, or

from resource competition leading to ecological character

displacement; both factors can drive the evolution of

niche partitioning between the sexes [18,19]. Selander [88]

suggested that the only reliable evidence for sexual

dimorphism via niche partitioning is a sex-specific modifi-

cation of trophic structures (e.g. mouthparts) beyond what

would be expected from body size differences and the

direction of sexual selection. However, these criteria

could exclude many cases of ecologically based dimorph-

ism, include spurious cases (e.g. dimorphic mouthparts

that reflect sex-specific reproductive functions, such as dig-

ging nesting cavities or incubating eggs, rather than

dimorphic diets), and have empirical difficulties in their

application [85]. In some cases, sexual selection may

initiate selection for sexual dimorphism, with ecological
factors secondarily influencing its magnitude, for example

by placing upper limits on the benefits of expressing sexu-

ally selected traits, or by favouring elaboration of initially

modest sex differences. For example, the evolution of

dwarf male seadevils, which parasitically feed on females,

may have evolved in response to the scarcity of food and

mates within deep sea environments [89]. Forsman [90]

(this issue) synthesizes two decades of pygmy grass-

hopper research to consider how interactions between

each sex and its environment shape sex differences in

coloration, thermotolerance and other ecologically relevant

traits.

The net outcome of natural and sexual selection is that

males and females have different trait optima defined by

the ecological conditions in which they evolve. The sexes

also share nearly identical genomes, constraining the poten-

tial rate of evolutionary divergence between female and

male traits [18,75]. Although this genetic constraint promotes

adaptation when the direction of selection is the same in

each sex [91,92], it becomes maladaptive when selection is

misaligned between the sexes, giving rise to intralocus

sexual conflict [93,94]. Recent research has shown that

the manifestation of intralocus sexual conflict is sensitive

to environmental conditions [29,95–97] and the degree to

which each sex is adapted to its environment [31,98–100].

For example, in well-adapted populations of D. melanogaster,

high-fitness males sire unfit daughters (intralocus sexual con-

flict is present); in maladapted populations, high-fitness

males sire high-fitness offspring of both sexes (intralocus

sexual conflict is absent) [98]. Using a large dataset of field-

estimated selection gradients, De Lisle et al. [101] (this

issue) demonstrate that environmental stressors (measured

using microclimatic data) are associated with patterns of

sexually concordant selection, which weakens intralocus

sexual conflict in environments that are more stressful,

more variable, and closer to the edge of the species’ range

(consistent with theory [31,99]).

Another type of sexual conflict—interlocus sexual con-

flict—arises from direct, antagonistic interactions between

the sexes, including male sexual coercion and female resist-

ance to mating [37,102]. The intensity and consequences of

interlocus sexual conflict for sex-specific phenotypic evol-

ution also depend on ecological context. For example,

experimental populations of D. melanogaster adapted faster

to a novel food resource in spatially complex environments,

where interlocus sexual conflict was relatively weak, than

in spatially simple environments where interlocus conflict

was strong [103–104]. In this issue, Perry & Rowe [105]

review the diverse ways in which ecology can affect coevolu-

tion between males and females through interlocus sexual

conflict. Using water striders as a model system, they show

that population-specific elaboration of sexual armaments

(traits associated with male coercion and female resistance)

is associated with several ecological variables, including

water acidity, temperature, seasonality and winter severity

(see [106]), with harsh conditions providing an advantage to

females in countering male coercion.

Not only do females and males respond differently to local

conditions in their environments; they can, in turn, differen-

tially impact selection in species with which they interact,

providing a context for sexual dimorphism to shape coevolu-

tionary dynamics. Pronounced sex differences in behaviour,

physiology, morphology and immune responses expose
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pathogens to drastically different selective environments in

male and female hosts [107–109]. The adaptation of pathogens

to female and male hosts may also intensify sex difference

in selection on immunity [110]. In the water flea Daphnia
magna, sex differences in morphology, physiology, and life-

history influence potential for growth, performance, and

transmission of a common pathogen, Pasteuria ramosa [111].

Hall & Mideo [111] (this issue) combine experimental data

on infection and transmission of different strains of Pasteuria
ramosa in hosts of each sex with an epidemiological model

of pathogen virulence and transmission evolution. They

show that performance (spore load), transmission and the

dynamics of infection and evolution differ between pathogens

infecting female versus male hosts. Pathogen evolutionary

trajectories may therefore depend upon the sex with which

they interact the most in nature—a scenario that is likely to

differ between taxa and between different geographical popu-

lations of single species (e.g. pathogens tend to interact with

females in facultatively sexual species versus both equally in

obligately outcrossing taxa).

Finally, females and males differ in their spatial distri-

butions and patterns of dispersal across their ranges [112]—

an observation with implications for the manner in which

each sex interfaces with environmental conditions that vary

across space, as well as the evolutionary consequences of

sex-biased dispersal for adaptation with gene flow (e.g.

[35]). For example, sex-biased dispersal can shape the genetic

architecture of local adaptation, since it mediates the effective

strength of gene flow across different regions of the genome

(e.g. male-biased dispersal facilitates responses of mitochon-

drial-encoded and X-linked genes to local selection, but

dampens local adaption at Y-linked genes [70,71]). Unique

responses of each sex to shared environmental conditions

can also affect the expression and evolution of sex-biased

dispersal and ‘dispersal syndromes’ (suites of traits that cor-

relate with dispersal [113]). As Mishra et al. [114] show in this

issue, nutrition levels shape ecologically plastic sex differ-

ences in dispersal syndromes for body size, desiccation

resistance and exploratory behaviour traits. Yet these sex-

specific syndromes are evolutionarily labile, and changed

during the experimental evolution of dispersal (greater than

70 generations). Their results point to developmental and

evolutionary mechanisms that can impact the expression of

sex differences in dispersal behaviour.
5. Environmental variation and the evolution of
reproductive systems

Variation in environmental conditions across native or inva-

sive portions of a species’ range can alter the economics of

reproduction, including the fitness costs and benefits of differ-

ent reproductive strategies and the arena in which mating

competition and mate choice occurs. This provides wide

scope for evolutionary divergence among subpopulations in

the mode of reproduction and the nature of mating interactions

between the sexes. At the most basic level, environmental

variation provides an arena in which natural selection can

favour the evolution and maintenance of sexual reproduction

[115,116], with the details of environmental fluctuation

determining the rate of sexual reproduction that evolves in

a population. At a higher level, environmental variation pro-

vides an ecological context for direct and indirect selection
on mating preferences, and the divergence of mating systems

and species [23,24,117,118].

Individuals of many species can reproduce sexually with

other individuals of the population, or individually through

clonal reproduction, parthenogenesis, or self-fertilization

[119–122]. The frequency with which these different repro-

ductive tactics are employed can vary across the species’

range, as evolved responses to local benefits and costs of

sex and outcrossing (e.g. [38–41,123]). Geographical differ-

ences in the predictability of the environment can lead to

variation across the species’ range in the benefits of out-

crossing, sex and recombination [124], potentially selecting

for different rates of sex across habitats. Gerber & Kokko

[125] (this issue) show that sex can be viewed as one of a

class of bet-hedging strategies [126] for coping with environ-

mental uncertainty. Dispersal, dormancy and sexual

reproduction have bet-hedging attributes that partly comp-

lement one another, and in this context, theory predicts

that the three traits (dispersal, dormancy and sex) exhibit

tightly correlated coevolutionary patterns in simulated

populations that evolve in spatially or temporally variable

environments [125].

The role of males in selecting for or against sex can also

change across a species’ range. Individuals near range

boundaries and those occupying recently invaded ranges

may have difficulty finding suitable mates if local population

densities are low, which can favour the evolution alternative

modes of reproduction. The classic example is Baker’s Rule

(or Baker’s Law), in which colonizing populations show

higher capacity for selfing than their native-range popu-

lations (see [41,127]). Costs associated with males include

the classic ‘twofold’ demographic cost of producing males

[128], as well as indirect and direct costs to female fitness

that arise from inter- and intralocus sexual conflict [105,129]

(see above). Burke and Bonduriansky [130] (this issue) con-

sider the consequences of interlocus conflict on the

evolution of facultative sex; they show that conflict favours

the spread of facultative sex and influences the geographical

distribution of asexual reproduction and the sex ratio. Intralo-

cus sexual conflict is also expected to promote the spread

of asexual reproduction [131]. On the other hand, mate pre-

ferences can help offset costs associated with intralocus

conflict, particularly when females evolve preference for

males that carry genes that benefit daughters. Theory

suggests that such an outcome is possible, although not inevi-

table, in stable environments [132,133]. Li & Holman [134]

(this issue) show that metapopulation structure and spatially

variable environments promote the evolution of choice for

female-beneficial alleles, particularly when selection is hard

(also see [30]).

Finally, the mating system of the species can impact the

evolutionary response to selection on males and females

(or on male and female sex-functions in hermaphrodites).

While the evolutionary trajectories in outcrossing popu-

lations are equally responsive to selection in each sex

(e.g. [18,47]), self-fertilization can tip this balance, leading

to a stronger response to selection through female than

through male sex-functions (e.g. [54,135–137]). Olito et al.
[138] (this issue) merge classical theories of environmental

heterogeneity and sex-specific selection (e.g. [10,47]), to

reveal further complexity in the interplay between sex-

specific selection, self-fertilization and hermaphrodite

mating systems.
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6. Where to?
Studies of local adaptation and of sexual dimorphism each

have rich histories within the field of evolutionary biology.

The interaction between processes that promote evolutionary

differentiation between populations and processes driving

intersexual divergence provides a relatively untapped area

for productive research that advances our understanding of

adaptation, and the many ways in which environment and

sex can mediate it. Closer links between these topics also

provide an ideal opportunity for new collaborations between

researchers with expertise in each context of evolutionary

diversification.

The papers within this special issue highlight many

outstanding research questions at the interface between sex

differences and the geography of adaptation, each worthy

of future attention. Among them, we highlight five sets of

questions that remain largely unaddressed and provide

good material for future exploration:

— How much do females and males ‘agree’ in the direction

or intensity of selection for local adaptation, and how

do sex differences in selection shape patterns of local

adaptation across species’ ranges [101]?

— How do different regions of a genome—including

chromosomes with symmetric versus sex-biased patterns

of inheritance—contribute to local adaptation with

gene flow and the maintenance of species differences

[70,73,139,140]?
— How do sex differences in selection, dispersal and

environmental heterogeneity interact to facilitate the

maintenance of genetic variation in fitness and life-history

traits, and the evolution of mating systems [130,134,138]?

— To what extent do scenarios of local adaptation and

the evolution of sex differences parallel one another

[32,33,47]? To what extent do these scenarios, in combi-

nation, give rise to emergent evolutionary patterns that

qualitatively differ from predictions of either scenario by

itself [30,31]?

— Does sexual selection tend to reinforce or conflict with

natural selection promoting local adaptation and/or

species divergence [24]?
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9. Connallon T, Sgrò CM. 2018 In search of a general
theory of species’ range evolution. PLoS Biol. 16,
e2006735. (doi:10.1371/journal.pbio.2006735)
10. Levene H. 1953 Genetic equilibrium when more
than one ecological niche is available. Am. Nat. 87,
331 – 333. (doi:10.1086/281792)

11. Christiansen FB. 1975 Hard and soft selection in
subdivided populations. Am. Nat. 109, 11 – 16.
(doi:10.1086/282970)
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