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Healthy aging is accompanied by motor inhibition deficits that involve a slower process of stopping a prepotent motor response (i.e.,
reactive inhibition) rather than a diminished ability to anticipate stopping (i.e., proactive inhibition). Some studies suggest that efficient
motor inhibition is related to GABAergic function. Since age-related alterations in the GABA system have also been reported, motor
inhibition impairments might be linked to GABAergic alterations in the cortico-subcortical network that mediates motor inhibition.
Thirty young human adults (mean age, 23.2 years; age range, 18 –34 years; 14 men) and 29 older human adults (mean age, 67.5 years; age
range, 60 –74 years; 13 men) performed a stop-signal task with varying levels of stop-signal probability. GABA � levels were measured
with magnetic resonance spectroscopy (MRS) in right inferior frontal cortex, pre-supplementary motor area (pre-SMA), left sensorimo-
tor cortex, bilateral striatum, and occipital cortex. We found that reactive inhibition was worse in older adults compared with young
adults, as indicated by longer stop-signal reaction times (SSRTs). No group differences in proactive inhibition were observed as both
groups slowed down their response to a similar degree with increasing stop-signal probability. The MRS results showed that tissue-
corrected GABA � levels were on average lower in older as compared with young adults. Moreover, older adults with lower GABA � levels
in the pre-SMA were slower at stopping (i.e., had longer SSRTs). These findings suggest a role for the GABA system in reactive inhibition
deficits.
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Introduction
The ability to inhibit inappropriate actions is important for adap-
tive behavior. In some situations, we need to quickly cancel an

already initiated action in response to an external cue, such as
stopping yourself from crossing the road when suddenly a car
comes around the corner; this is called reactive inhibition. How-
ever, often it is possible to anticipate the potential need for inhib-
iting a motor action. For example, when driving close to a school,
one might expect children to cross the street. This leads us to slowReceived March 22, 2018; revised July 6, 2018; accepted July 24, 2018.
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Significance Statement

Inhibitory control has been shown to diminish as a consequence of aging. We investigated whether the ability to stop a prepotent
motor response and the ability to prepare to stop were related to GABA levels in different regions of the network that was
previously identified to mediate inhibitory control. Overall, we found lower GABA levels in older adults compared with young
adults. Importantly, those older adults who were slower at stopping had less GABA in the pre-supplementary motor area, a key
node of the inhibitory control network. We propose that deficits in the stop process in part depend on the integrity of the GABA
system.
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down and prepare to stop in time if the need arises, which is called
“proactive inhibition.” Evidence indicates that healthy aging re-
sults in difficulties in reactive inhibition, whereas proactive inhi-
bition remains intact (Smittenaar et al., 2015; Bloemendaal et al.,
2016; Kleerekooper et al., 2016).

Successful motor inhibition is mediated by a cortico-subcortical
network (Aron, 2011; Jahanshahi et al., 2015). The right inferior
frontal cortex (RIFC), pre-supplementary motor area (pre-
SMA), and subthalamic nucleus (STN) are recruited during re-
active inhibition (Aron and Poldrack, 2006; Aron, 2007), whereas
proactive inhibition is thought to rely more heavily on the stria-
tum (Aron, 2011; Leunissen et al., 2016). When an external cue
signals the need for inhibiting a prepotent motor response, the
frontal regions of this network generate a stop command to in-
tercept the planned movement that is generated in the primary
motor cortex (M1). Transcranial magnetic stimulation (TMS)
studies have shown that successful cancelation of movement is
associated with active suppression of M1 activity (Wessel et al.,
2013) mediated by GABA receptors (Coxon et al., 2006; van den
Wildenberg et al., 2010). However, it is difficult to assess cortical
GABAergic functioning other than M1 with TMS, and especially
subcortical regions require other techniques such as magnetic
resonance spectroscopy (MRS), to probe the GABA system.

The use of spectral editing techniques in MRS allows the dif-
ferentiation of the GABA signal from more highly concentrated
overlapping signals of other brain metabolites by selectively ma-
nipulating the GABA signal in half of the transients of the acqui-
sition, but not in the other half. The difference spectrum then
contains only those manipulated signals, resulting in a GABA-
edited spectrum (Puts and Edden, 2012; Mullins et al., 2014).
MRS studies in young adults have shown that GABA levels in the
striatum and anterior cingulate cortex are correlated with inter-
individual differences in go–no-go task performance (Silveri et
al., 2013; Quetscher et al., 2015), suggesting that motor inhibition
efficiency depends on GABAergic functioning within the cortico-
subcortical network.

Emerging evidence suggests that the
GABA system is altered in healthy aging.
Several TMS studies have shown that the
modulation of intracortical inhibition in
M1 during motor performance is dimin-
ished in older adults (Levin et al., 2014).
Using MRS, an age-related decrease in
GABA levels has initially been observed in
frontal and parietal regions (Gao et al.,
2013; Porges et al., 2017a). However, a re-
cent study (Porges et al., 2017b) reported
that age-related declines in GABA levels
may also depend on the applied tissue cor-
rection. More specifically, when account-
ing for the unequal distribution of GABA
within gray matter (GM) and white mat-
ter (WM) and the amount of atrophy in
the different tissues, no age-related effect
was observed. Nevertheless, GABA levels
within frontal regions were predictive for
global cognitive performance, indepen-
dent of tissue correction (Porges et al.,
2017b). Despite evidence for a role of
GABA in motor inhibition, no study has
yet investigated GABA levels within the
cortico-subcortical network and their age-
related implications for motor inhibition.

Here, younger and older adults performed a stop-signal task,
with varying levels of stop-signal probability (SSP) to assess reac-
tive and proactive inhibition. GABA levels in the RIFC, pre-SMA,
left sensorimotor cortex (LSM1), bilateral striatum, and occipital
cortex (OCC) were measured using edited MRS of GABA. We
hypothesized that reactive inhibition would be less efficient in
older, compared with younger, adults, whereas the degree of pro-
active inhibition would be similar across groups. Based on prior
imaging and TMS evidence (Coxon et al., 2006; Aron, 2011), we
hypothesized that reactive inhibition efficiency would correlate
with GABA levels within the RIFC, pre-SMA, and LSM1, whereas
the amount of proactive inhibition would correlate with GABA
levels in the striatum. We hypothesized that lower GABA levels
would be related to worse motor inhibition (Silveri et al., 2013;
Quetscher et al., 2015).

Materials and Methods
Participants. A total of 30 healthy young adults (14 men; mean age � SD,
23.2 � 4.3 years; age range, 18.3–33.8 years) and 29 healthy older adults
(13 men; mean age � SD, 67.5 � 3.9 years; age range, 60.2–73.8 years)
participated in this study. All participants were right handed according to
the Oldfield Handedness Scale (laterality quotient: mean � SD, 91 � 12;
range, 57–100; number missing, 4), and none reported a history of psy-
chiatric or neurological disorders. There were five young adults who
completed only the MRS session, due to early dropout. The experiment
was approved by the local Ethics Committee for Biomedical Research
(approval #s58333), and all participants gave written informed consent.

Stop-signal task. An anticipated response version of the stop-signal
task (Fig. 1) was used to investigate reactive and proactive inhibition
(Coxon et al., 2007; Zandbelt and Vink, 2010). Participants were in-
structed to rest their right index finger on a switch (operating force, 0.10
N; catalog #V-7-2B17D8-162, Honeywell). A vertical indicator (Fig. 1,
blue bar) was shown on a computer screen (refresh rate, 60 Hz), which
moved upward at a constant speed on each trial, crossing a horizontal
target line at 800 ms from onset. The main task was to stop the indicator
as close as possible to the target line by lifting the right index finger from
the switch (i.e., go trials). Participants received feedback with respect to
performance on go trials. More specifically, the color of the target line

Figure 1. Stop-signal task. A, Participants had to rest their right index finger on a switch. On a computer screen, a bar started to
fill at a constant and equal rate, crossing a red horizontal target line at 800 ms. The color of the bar was light blue, dark blue, or
magenta for the 0%, 20% and 40% stop-signal probability, respectively. B, In go trials, participants had to stop the indicator as
close as possible to the red target. The bar could be stopped by lifting the finger/releasing the switch. C, In stop trials, the bar would
stop filling before it reached the target line. Participants had to cancel the movement of lifting their finger/releasing the switch.
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changed after each go trial as a function of task performance (green,
yellow, orange, or red for responses within 20, 40, 60, or �60 ms from the
target line, respectively). In some trials (i.e., stop trials), the indicator
stopped before reaching the target line, and participants were instructed
to cancel the movement of lifting their finger/releasing the switch. A
dynamic staircase algorithm was used to adjust the time that the indicator
stopped (i.e., the stop time) ensuring equal numbers of successful and
unsuccessful stop trials (i.e., P(inhibit) �50%). More specifically, the
stop time increased by 33 ms after a successful stop trial, whereas it
decreased by 33 ms after an unsuccessful stop trial. To investigate proac-
tive inhibition, the SSP was manipulated and stop trials occurred in 0%,
20%, or 40% of all trials. The color of the indicator was light blue for the
0% SSP condition, dark blue for the 20% SSP condition, and magenta for
the 40% SSP condition. The 0% SSP condition was presented in the first
block, which consisted of 25 trials. Next, the 20% and 40% SSP condi-
tions were randomly presented within the second block, which consisted
of 150 trials with a matching number of stop trials across the conditions
(80 go trials and 20 stop trials for the 20% SSP condition; 30 go trials and
20 stop trials for the 40% SSP condition). The intertrial interval was set to
3.25 s, and the indicator was set to empty 1.28 s after trial onset in each
block. Participants performed the task twice on separate days, resulting
in a total of 350 trials. All participants performed three practice blocks on
the first day: one with 0% SSP (20 trials), one with 30% SSP (35 trials),
and one with both 20% and 40% SSP (35 trials).

We instructed participants to perform the task as accurately as possible
(aim for green or yellow lines after go trials) and that it would not be
possible to cancel the movement of lifting their finger on all stop trials.
Furthermore, the participants were told that no stops would occur when
the indicator was light blue and that the probability of stops was higher
when the indicator was magenta compared with dark blue. After the
practice blocks, participants were asked to describe the difference be-
tween the colors to make sure that the instructions were understood
correctly.

Behavioral data analysis. Behavioral data analysis was performed for
the 2 d separately, and the results were averaged across days. The response
time on go trials (GoRT) was measured as the time between the start of
the trial and the moment when the finger was lifted from the switch. A
GoRT of 800 ms reflects a perfectly timed response. Go trials with early
response times (�400 ms) or no response (�1280 ms) were removed. To
validate the assumptions of the horse race model (Logan and Cowan,
1984), we checked whether the average response time was shorter on
failed stop trials than go trials for each participant separately and for each
age group (paired t test; SPSS Statistics 24, IBM; RRID:SCR_002865). As
a measure of reactive inhibition, the stop-signal reaction time (SSRT)
was calculated across the 20% and 40% SSP conditions using the integra-
tion method (Verbruggen and Logan, 2009). More specifically, the num-
ber of failed stop trials was divided by the total number of stop trials to get
P(respond). Next, GoRTs were sorted in ascending order, and the nth
GoRT was obtained where n equals the number of go trials multiplied by
P(respond) (Verbruggen and Logan, 2009). The SSRT was estimated by
subtracting the average stop time from the nth GoRT.

MRI acquisition. Scanning was performed on a Philips 3 T Achieva
Dstream System ([Philips Healthcare]) with a 32-channel receiver head
coil. A high-resolution 3D T1-weighted structural image [3D turbo field
echo (TFE); repetition time (TR) � 9.6 ms; echo time (TE) � 4.6 ms;
0.98 � 0.98 � 1.2 mm 3; 185 coronal slices] and two short 3D T1-
weighted structural images (3D TFE; TR � 9.6 ms; TE � 4.6 ms; 1.2 �
1.2 � 2 mm 3; 111 coronal slices) were acquired. GABA-edited MRS data
were acquired using the MEGA-PRESS spectral editing method (Me-
scher et al., 1998) and the following acquisition parameters: 14 ms editing
pulses at 7.46 ppm (edit-OFF) and 1.9 ppm (edit-ON); TE � 68 ms;
TR � 2 s; 320 averages; 2 kHz spectral width; MOIST (multiple optimi-
zations insensitive suppression train) water suppression for a total acqui-
sition time of 11 min (i.e., the “Big GABA” protocol; Mikkelsen et al.,
2017). A total of 16 additional water-unsuppressed averages were ac-
quired in an interleaved manner from all voxels (Edden et al., 2016). The
editing scheme results in a 3 ppm signal that contains a substantial
(�50%) contribution from coedited macromolecules (Rothman et al.,
1993; Harris et al., 2015b; Mikkelsen et al., 2016) in addition to the

targeted GABA signal. Therefore, all GABA values are reported as
GABA � (i.e., GABA � macromolecules).

Voxels of interest were planned in the LSM1 (3 � 3 � 3 cm 3), bilateral
pre-SMA (3 � 3 � 3 cm 3), RIFC (4 � 2.5 � 2.5 cm 3), bilateral striatum
[left striatum (LSTR)/right STR (RSTR), 3 � 3 � 3 cm 3], and bilateral
OCC (3 � 3 � 3 cm 3; control region). The imaging protocol started with
the long high-resolution T1 scan followed by three MRS scans. After a
short break outside the scanner, a short T1 scan was acquired followed by
two MRS scans, a short T1 scan, and an MRS scan. All regions were
acquired in a random order, except that the LSTR was followed by the
RSTR or vice versa. The T1-weighted images were used to position the
voxels according to anatomical landmarks (Fig. 2, representative voxel
positions). The LSM1 voxel was centered over the left-hand knob
(Yousry et al., 1997) with one surface parallel to the cortical surface in the
coronal and axial views (Puts et al., 2011). For the pre-SMA voxel, a
horizontal line was drawn between the anterior commisure (AC) and the
posterior commissure in the sagittal plane, and a perpendicular line was
constructed to this line through the AC. The pre-SMA voxel was centered
over the median line with the posterior superior corner intersecting the
perpendicular line (Behrens et al., 2006; Kim et al., 2010). Subsequently,
it was aligned with the cortical surface in the sagittal view. The RIFC voxel
was positioned above the temporal lobe and centered over the inferior
frontal gyrus, with the longest axis extending anterior to posterior, par-
allel to the cortical surface. The STR voxels were centered over the puta-
men. In the coronal and axial view, we checked that the voxel was not
positioned in the ventricle, and, as a consequence, only part of the cau-
date was covered. The OCC voxel was centered on the median line,
positioned as posterior as possible and aligned with the cerebellar tento-
rium in the sagittal plane (Puts et al., 2011).

MRS analysis. MRS spectra were analyzed using Gannet 3.0 (Gannet;
RRID:SCR_016049) and Matlab 2016b (RRID:SCR_001622; Edden et
al., 2014). All individual frequency domain spectra were frequency and
phase corrected using spectral registration (Near et al., 2015), filtered
with a 3 Hz exponential line broadening and zero filled. The difference
spectrum was fitted between 2.79 and 4.10 ppm using a three-Gaussian
function with a nonlinear baseline to estimate GABA � at 3.0 ppm. Water
was modeled with a Gaussian–Lorentzian model. All short T1-weighted
images were coregistered to the long high-resolution T1-weighted image
using a rigid transformation with 6 df (SPM 12; RRID:SCR_007037).
Subsequently, each voxel was coregistered to the (coregistered) T1-
weighted image that was used to position the voxel. The resulting voxels
in the long T1 image space were segmented, and the different tissue
fractions of the voxels were obtained (GM, WM, and CSF). GABA �

levels were calculated relative to water and corrected for tissue-related
factors with the assumption that GABA � levels are twice as high in GM
compared with WM, according to the study by Harris et al. (2015a).
Subsequently, GABA � levels were normalized to the average voxel com-
position separately for each age group (i.e., young or older age group;
Harris et al., 2015a, their Eq. 6). Quantitative data quality metrics were
measured for each voxel (Mikkelsen et al., 2017), including fit errors of
the GABA � peak, N-acetylaspartate (NAA), and GABA � signal-to-noise
ratios (SNRs), and the SD of the water frequency offset (FreqStdevHz),
which is an indication of frequency drift and motion. A total of 44 of 354
spectra were excluded due to high-fit errors (young, N � 8; older, N � 7;
range fit errors, 13– 68%) or poor data quality (insufficient water sup-
pression/lipid contamination: young, N � 11; older, N � 18). Table 1
shows a summary of the data quality measures of the spectra that were
included after visual inspection. Age-related differences in data quality of
the remaining spectra were tested with a Student’s t test.

Experimental design and statistical analyses. The effect of age on P(in-
hibit), stop time, and the GoRT difference (GoRT40 –20) score was tested
with Student’s t tests. Group differences in reactive inhibition were tested
with a Student’s t test with SSRT across the 20% and 40% SSP conditions
as dependent variable. Group differences in proactive inhibition were
tested with a 2 (age group, young/older) � 3 (SSP condition, 0%/20%/
40%) ANOVA with GoRT as the dependent variable. GoRTs were ex-
pected to increase as a function of SSP when participants proactively
prepared to stop. When the assumption of sphericity was violated, a
Greenhouse–Geisser correction was used.
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To investigate group differences in tissue-corrected GABA � levels, a
mixed model was used with age group and brain region as fixed factors
and participant as a random factor (JMP Pro 12, SAS Institute; RRID:
SCR_014242). Additionally, we performed a secondary analysis and
added FreqStdevHz and NAA SNR to the mixed model to control for the
possible effect of data quality on measured GABA � levels. Previously, an
association was found between GABA � levels and frequency offset (Mik-
kelsen et al., 2017).

Pearson correlation analyses were performed to investigate the rela-
tionship between tissue-corrected GABA � levels and reactive/proactive
inhibition in young and older adults separately. SSRT was used as a
measure of reactive inhibition, whereas the difference in GoRT between
the 40% and 20% SSP conditions (GoRT40 –20 � GoRT40 	 GoRT20) was
used as a measure of proactive inhibition. Participants who proactively
prepare to stop by slowing down as a function of SSP will have a positive
GoRT difference score. These two behavioral measures were correlated

with GABA � levels in LSM1, OCC, pre-SMA, RIFC, LSTR, and RSTR.
The significance level was set at p � 0.05 for all tests, and data are pre-
sented as the mean � SD in the text.

Results
Stop-signal task
The percentage of GoRT errors across all SSP conditions was low
in young (early GoRT, 0%; no response, 0.55 � 1.52%) and older
adults (early GoRT, 0.16 � 0.54%; no response, 0.45 � 0.96%).
The average GoRT on failed stop trials was lower than the average
GoRT for each participant. Moreover, a paired t test indicated
that this difference in GoRT was significant in both young adults
(t(24) � 	12.738, p � 0.001) and older adults (t(28) � 	12.959,
p � 0.001), which is consistent with the assumptions of the horse
race model (Logan and Cowan, 1984). The P(inhibit) value was

Figure 2. Example voxel positions (coregistered to T1) and spectra from all participants with fitting results (i.e., red lines). The GABA � peak is visible at 3 ppm.
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close to 50% in young adults (52.6 � 1.0)
and older adults (52.5 � 1.1) and did not
significantly differ between groups
(t(52) � 0.499, p � 0.620). Furthermore,
there was no effect of age on stop time
(young, 616 � 14; older, 609 � 23; t(46.655)

� 1.511, p � 0.138).
We found an age effect on SSRT with

longer SSRTs in older adults (young,
193 � 12; older, 206 � 17; t(52) � 	2.998,
p � 0.004). There was no age effect on
overall GoRT (F(1,52) � 2.177, p � 0.146).
However, both young and older adults
showed a significant increase in GoRT as a
function of SSP (young: GoRT0, 802 � 10;
GoRT20, 813 � 9; GoRT40, 823 � 11; old-
er: GoRT0, 806 � 17; GoRT20, 818 � 19;
GoRT40, 832 � 24; F(1.727,89.798) � 92.882,
p � 0.001). Moreover, the interaction be-
tween age group and SSP was not signifi-
cant, indicating that the effect of SSP
on GoRT was similar in both groups
(F(1.727,89.798) � 0.907, p � 0.395). Also,
the GoRT difference score (GoRT40 –20)
did not significantly differ between young
and older adults (young, 10 � 6; older, 14 � 16; t(37.014) �
	1.061, p � 0.269). Together, our results indicate that reactive
inhibition efficiency was worse in older compared with young
adults while proactive inhibition was intact.

MRS
A mixed model was used to investigate group differences in
tissue-corrected GABA� levels. There was a significant main ef-
fect of age group (F(1,55.9) � 10.912, p � 0.002) and brain region
(F(5,251.7) � 5.963, p � 0.001). The interaction between age group
and brain region was not significant (F(5,251.7) � 1.784, p �
0.117), indicating an overall decline in GABA� levels across brain
regions with aging (Fig. 3).

Group analysis of the data quality metrics (Table 1) showed
that there was no effect of age on the fit error of the GABA� peak
(all p values �0.395) except in the OCC voxel (t(53) � 	3.723,

p � 0.001). The NAA SNR was significantly higher in older than
in young adults (all p � 0.021). Last, the FreqStdevHz value was
significantly higher in older than in young adults in all voxels (all
p � 0.038) except for the (t(41) � 	1.544, p � 0.131). This likely
indicates that there was more motion in older adults.

A secondary analysis was performed using a mixed model with
NAA SNR and FreqStDevHZ as fixed factors of no interest to
control for group differences in data quality metrics (Mikkelsen
et al., 2017). Importantly, the inclusion of these metrics did not
influence the primary results. There was a significant effect of age
group (F(1,81.6) � 9.737, p � 0.003) and brain region (F(5,259.8) �
4.715, p � 0.001) on tissue-corrected GABA� levels. The inter-
action between age group and brain region was not significant
(F(5,251.8) � 1.772, p � 0.119). Finally, NAA SNR (F(1,293) �
0.313, p � 0.576) and FreqStDevHz (F(1,132.6) � 0.170, p � 0.681)
were not associated with tissue-corrected GABA� levels in these
cohorts. Post hoc pairwise comparisons with Tukey’s test HSD

Figure 3. Tissue-corrected GABA � levels in young adults (black bars) and older adults (white bars). Older adults had lower
GABA � levels compared with young adults (main effect age group: F(1,81.6) � 9.737, p � 0.003; interaction effect age group �
region: F(5,251.8) � 1.772, p � 0.119). Bar plot shows mean values; error bars show SEM.

Table 1. Data quality metrics for the tissue-corrected GABA � levels and segmentation results

Region Group N

Data quality metrics Tissue segmentations

Fit error (%) NAA SNR GABA SNR FreqStDevHz GM WM CSF

LSM1 Young 30 4.11 � 1.25 392 � 74 28 � 4 0.46 � 0.28 0.34 � 0.03 0.60 � 0.04 0.06 � 0.02
Older 27 4.44 � 1.60 296 � 88 23 � 4 0.73 � 0.29 0.26 � 0.03 0.62 � 0.04 0.12 � 0.03
p value 0.395 �0.001 �0.001 0.001 �0.001 0.052 �0.001

Pre-SMA Young 27 7.04 � 1.60 406 � 58 27 � 5 0.51 � 0.32 0.53 � 0.03 0.32 � 0.04 0.15 � 0.03
Older 22 7.10 � 2.07 307 � 65 23 � 4 0.69 � 0.24 0.45 � 0.03 0.32 � 0.04 0.23 � 0.04
p value 0.903 �0.001 0.001 0.038 �0.001 0.707 �0.001

RIFC Young 29 5.32 � 1.47 304 � 44 21 � 4 0.57 � 0.29 0.56 � 0.04 0.37 � 0.05 0.08 � 0.03
Older 29 5.25 � 1.53 264 � 47 20 � 4 0.96 � 0.43 0.47 � 0.04 0.40 � 0.05 0.13 � 0.04
p value 0.848 0.001 0.444 �0.001 �0.001 0.010 �0.001

LSTR Young 22 6.61 � 1.83 225 � 38 19 � 4 0.80 � 0.55 0.58 � 0.03 0.35 � 0.03 0.08 � 0.01
Older 21 6.76 � 1.90 198 � 36 16 � 4 1.06 � 0.53 0.51 � 0.03 0.35 � 0.04 0.14 � 0.03
p value 0.796 0.021 0.005 0.131 �0.001 0.770 �0.001

RSTR Young 23 7.10 � 2.26 263 � 46 19 � 4 0.64 � 0.42 0.58 � 0.03 0.33 � 0.03 0.09 � 0.01
Older 25 7.13 � 1.89 212 � 23 17 � 3 1.02 � 0.44 0.51 � 0.03 0.34 � 0.04 0.15 � 0.03
p value 0.966 �0.001 0.012 0.004 �0.001 0.827 �0.001

OCC Young 30 4.27 � 0.80 375 � 67 23 � 4 0.53 � 0.31 0.66 � 0.04 0.26 � 0.04 0.08 � 0.02
Older 25 5.30 � 1.31 294 � 61 18 � 4 0.90 � 0.44 0.56 � 0.04 0.30 � 0.03 0.14 � 0.03
p value 0.001 �0.001 �0.001 �0.001 �0.001 �0.001 �0.001

Data are shown as the mean � SD.
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were used to explore the effect of brain region on GABA� levels
and showed that GABA� levels were significantly different be-
tween LSM1 and LSTR (p � 0.026), LSM1 and RSTR (p �
0.011), LSM1 and OCC (p � 0.001), and LSM1 and pre-SMA
(p � 0.007; all other p values �0.308), which is suggestive of
regional differences in GABA� levels even after tissue correction
and normalization.

Behavior and MRS
As shown in Figure 4, SSRT significantly correlated with tissue-
corrected pre-SMA GABA� levels in older adults (r(20) �
	0.459, p � 0.031). Older adults who demonstrated less profi-
cient reactive inhibition, as indicated by a slower inhibitory pro-
cess (i.e., longer SSRTs), had less GABA� in the pre-SMA. The
observed correlation cannot be explained by individual differ-
ences in tissue fractions since these did not correlate with SSRT
(GM: r � 	0.113, p � 0.616; WM: r � 0.003, p � 0.991). Ac-
cording to the Fisher r-to-z transformation, this correlation was
significantly different between young and older adults (z �
	2.16, p � 0.031). There were no other significant correlations
(all p values �0.077).

Discussion
The present study is the first to investigate the relationship be-
tween GABA� levels in a network consisting of cortical and sub-
cortical regions known to be involved in motor inhibition and
reactive/proactive inhibition efficiency in young and older adults.
As expected, we found that older adults demonstrated perfor-
mance decrements in reactive inhibition, whereas proactive inhi-
bition was intact. GABA� levels within the different regions of
the cortico-subcortical network were generally lower in older
adults compared with young adults. However, our results suggest
that specifically GABA� levels in the pre-SMA were related to the
efficiency of reactive inhibition in older adults.

An anticipated response version of the stop-signal task with
manipulation of stop-signal probability was used to measure re-
active and proactive inhibition. The latency of the stop process
(SSRT) was longer in older than young adults, indicating that
reactive inhibition becomes less efficient with aging. This result is
in agreement with the findings of previous studies (Williams et
al., 1999; Bedard et al., 2002; Smittenaar et al., 2015; Bloemendaal

et al., 2016; Coxon et al., 2016; Kleerek-
ooper et al., 2016; Hsieh and Lin, 2017). In
contrast, we did not find an age-related
effect on proactive inhibition. Both young
and older adults slowed down their re-
sponse to the go signal when the probabil-
ity of stopping increased. The absence of
an age effect is in line with the findings of
most studies (Smittenaar et al., 2015; Blo-
emendaal et al., 2016; Kleerekooper et al.,
2016; Hsieh and Lin, 2017), although one
study reported that proactive slowing was
even more pronounced in older adults
(van de Laar et al., 2011).

Consistent with results of previous
MRS studies (Gao et al., 2013; Porges et
al., 2017a), GABA� levels were on average
lower in older adults compared with
young adults. Nonetheless, one needs to
be cautious when comparing MRS results
across studies of healthy aging because
different tissue correction methods have
been used. As a consequence of age-

related brain atrophy, it is important to account for age-related
differences in voxel composition when estimating GABA. Recent
studies have shown that the results change as a function of the
applied tissue correction method (Porges et al., 2017b). More
specifically, it was reported that there is no effect of age on
GABA� levels in frontal and parietal regions (Porges et al.,
2017b) when the � correction was used (Harris et al., 2015a). The
� correction includes the following: (1) the assumption that
GABA� levels are twice as high in GM compared with WM; and
(2) the normalization of GABA� levels to the group average voxel
composition. This correction makes it less likely that differences
in GABA levels are solely driven by interparticipant differences in
voxel composition. We found that GABA� levels were on average
lower in older adults compared with young adults when applying
the � correction separately for the two groups. Furthermore, the
age-related effect on GABA was still present when data quality
measures were included in the statistical analysis, which indicates
that this effect cannot be explained by group differences in head
movement during scans. Interestingly, the amount of GABA�

differed across brain regions in young and older adults. This sug-
gests that there are regional differences in GABA� levels, corrob-
orating previous findings (Greenhouse et al., 2016).

It is not clear which processes may underlie the observed age-
related changes in GABA� levels. Possibly, these changes are
driven by altered production of GABA. Evidence for this notion is
provided by animal studies that have documented an age-related
decrease in glutamic acid decarboxylase, an enzyme that is im-
portant for synthesizing GABA (Ling et al., 2005; Burianova et al.,
2009). It has also been shown that the percentage of GABAergic
neurons in the striate visual cortex of cats decreases as a function
of age (Hua et al., 2008). The loss of GABAergic inhibitory in-
terneurons might explain a decline in GABA� levels. However,
this is highly speculative and requires further investigation.

Neuroimaging studies have shown that motor inhibition re-
lies on an interaction among the RIFC, pre-SMA, and the basal
ganglia (STN and/or striatum; Aron and Poldrack, 2006; Aron,
2007; Chambers et al., 2009; Coxon et al., 2016). Where the STN
seems to be essential for reactive inhibition, the striatum may
play a greater role in proactive inhibition (Vink et al., 2005; Zand-
belt and Vink, 2010; Jahfari et al., 2011; Majid et al., 2013; Zand-

Figure 4. Relationship between SSRT, a measure of reactive inhibition efficiency, and tissue-corrected pre-SMA GABA � levels
in young adults (r � 0.185, n � 24, p � 0.387) and older adults (r � 	0.459, n � 22, p � 0.031). Lower SSRT values reflect
better performance.
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belt et al., 2013; Leunissen et al., 2016). Moreover, several studies
suggest that the GABA system plays an important role in response
inhibition (Coxon et al., 2006; Silveri et al., 2013; Quetscher et al.,
2015). Along these lines, we hypothesized that GABA� levels
within the pre-SMA, RIFC, and LSM1 would correlate with in-
hibitory proficiency in general, while striatal GABA might predict
proactive inhibition efficiency more specifically. The STN was
not included due to its small size. In young adults, however, we
did not observe a relationship between GABA� and behavior. In
agreement, one study (Boy et al., 2010) that measured GABA�

in a similar region (SMA) did not find a correlation with SSRT in
young adults. In contrast, our results showed that GABA� levels
in the voxel centered over the pre-SMA were negatively corre-
lated with the latency of the stop process in older adults. This
relationship might become apparent only when GABAergic func-
tion is more variable. Even though not formally tested, this sug-
gestion would fit with the observation that several patient groups
with clear response inhibition impairments, such as attention-
deficit/hyperactivity disorder and Tourette’s syndrome, also
show alterations in GABAergic functioning (Edden et al., 2012;
Puts et al., 2015).

The observed correlation in older adults fits with a large body
of evidence that implicates the pre-SMA in motor inhibition.
Patients with lesions to the SMA or pre-SMA have motor inhibi-
tion impairments (Floden and Stuss, 2006; Picton et al., 2007).
Disruptive TMS delivered over the pre-SMA lengthens the SSRT
(Chen et al., 2009; Cai et al., 2012). Neuroimaging studies re-
ported increased activity in pre-SMA during successful stopping
in young adults (Aron and Poldrack, 2006; Swick et al., 2011;
Coxon et al., 2016), while hypoactivity has been observed in older
adults (Coxon et al., 2016). The results of our study suggest that
GABAergic inhibitory processes might (in part) underlie the role
of the pre-SMA in the efficiency of reactive inhibition.

One limitation of the present study is the contribution of
macromolecules to the GABA signal. Given that macromolecules
have been shown to increase with aging (Marjańska et al., 2018),
the effect of age on GABA might be underestimated in the present
study.

In summary, we found that GABA� levels in both cortical and
subcortical regions were lower in older adults compared with
young adults. Moreover, pre-SMA GABA� levels were predictive
for reactive inhibition performance in older adults. The struc-
tural network mediating motor inhibition is well known, but less
is known about the functional role of the regions that are part of
this network. Our results suggest that GABAergic functioning in
pre-SMA may partly contribute to the efficiency of reactive inhi-
bition. Pharmacological interventions targeting the GABA sys-
tem may ameliorate reactive inhibition impairments.
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