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Cooperation and division of labour are fundamental in the ‘major transitions’

in evolution. While the factors regulating cell differentiation in multi-cellular

organisms are quite well understood, we are just beginning to unveil the

mechanisms underlying individual specialization in cooperative groups of

animals. Clonal ants allow the study of which factors influence task allocation

without confounding variation in genotype and morphology. Here, we sub-

jected larvae and freshly hatched workers of the clonal ant Platythyrea
punctata to different rearing conditions and investigated how these manipula-

tions affected division of labour among pairs of oppositely treated, same-aged

clonemates. High rearing temperature, physical stress, injury and malnu-

trition increased the propensity of individuals to become subordinate

foragers rather than dominant reproductives. This is reflected in changed

gene regulation: early stages of division of labour were associated with differ-

ent expression of genes involved in nutrient signalling pathways, metabolism

and the phenotypic response to environmental stimuli. Many of these genes

appear to be capable of responding to a broad range of stressors. They might

link environmental stimuli to behavioural and phenotypic changes and could

therefore be more broadly involved in caste differentiation in social insects.

Our experiments also shed light on the causes of behavioural variation

among genetically identical individuals.
1. Introduction
The ‘major transitions’ in evolution are characterized by cooperation and

division of labour among the components of higher level evolutionary units

[1–3], e.g. individual cells in multi-cellular organisms, individual zooids in

colonial animals and individual insects in insect societies. While the drivers of

cellular differentiation in metazoan embryogenesis have been tracked down,

e.g. to maternal cytoplasmic determinants or inductive signalling [4], it is less

well understood what proximately triggers the functional specialization of the

components of higher level transitions. For example, which environmental or

social factors influence division of labour among individuals in cooperative

groups, and which genes control the early stages of this differentiation?

Division of labour is the fundament of the evolutionary and ecological suc-

cess of social insects (ants, termites, and social bees and wasps). Insect societies

consist of reproductives (queens and, in termites, kings) and non-reproductive

workers, which again may specialize in different non-reproductive tasks, such

as foraging, nest defence or brood care [5,6]. Social feedback [7] and variation in

morphology, age, genotype and personal experience have been shown to affect

the propensity of individuals to engage in particular tasks [8]. Nevertheless,

similarly efficient division of labour arises in the absence of such variation
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Figure 1. Workers of the ant P. punctata and experimental treatments. (a) Workers, pupae and larvae of the thelytokous ant P. punctata. Workers change their
cuticle colour with age from a yellowish to blackish coloration (worker body length approx. 8 mm). (b) Experimental workflow used in this study. Individuals were
marked with a colour code on the day of their eclosion. Three days later, two similarly or differently treated clonemates were placed into a Petri dish with a plaster
floor and a cavity serving as nest (temperature, stress, injury). Asterisk indicates for the nutrition and social environment experiment, 3-day-old clonemates were first
exposed to different conditions for 10 or 18 days (see main text) before grouping. (c) Experimental manipulations performed, hypotheses tested and the different
variables measured for each treatment. (d ) Effect of experimental treatments on the likelihood of workers to become dominant or subordinate in dyadic encounters
with a same-aged, but differently treated clonemate.
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among morphologically identical full sisters of similar age

and experience. In these cases, task allocation has been

suggested to be controlled by individual-specific ‘personal-

ities’ (i.e. consistent individual differences in behaviour) or

‘response thresholds’ (i.e. likelihood to respond to stimuli)

[9–12], but the causes of such idiosyncrasies remain largely

unexplored [12,13]. Clonal ants, in which all nestmates are

genetically and morphologically identical, offer a powerful

system to study which factors influence task allocation without

confounding variation in genotype [14–16].

Most colonies of Platythyrea punctata (Smith F. 1858) lack

morphological queens (figure 1a). Instead, a single, socially

dominant worker produces new workers from unfertilized

eggs by thelytokous parthenogenesis [17] (here, we use

‘worker’ as a morphological rather than functional term

irrespective of reproductive status). Because of a greatly reduced

recombination rate, all offspring are genetically identical and

colonies have a clonal structure [18,19]. The experimental

isolation of two young clonemates in a new nest box quickly

leads to stable division of labour between a dominant reproduc-

tive and a subordinate forager (A. Bernadou, J. Heinze 2014,

unpublished observations). This resembles the emergence of

division of labour in foundress associations of several wasps

[20,21] and ants [22] and allows investigation of the early

stages in the development of individual behavioural profiles

in insect societies [20].

In mammals and fishes, behavioural differences among

clonal or otherwise genetically similar individuals have

been suggested to arise from influences during development

[23–25]. We therefore manipulated larval rearing conditions

and ‘early experience’ of clonally identical, same-aged workers

of P. punctata to determine how environmental and social fac-

tors during early life affect social status and division of labour

(figure 1). We hypothesized that unfavourable environmental

conditions during development, physical stress, injury, pres-

ence of aggressive young nestmates during eclosion and
poor nutritional status might decrease the likelihood of an

individual assuming reproductive tasks when starting a new

colony together with a similarly aged, but oppositely treated

clonemate (figure 1c). We complemented our behavioural

studies by analysing gene expression changes in the heads of

young workers after they had been placed together and started

to develop different behavioural profiles.

Our results show that environmental conditions and

early experience affect dominance status and division of

labour. Matching this, several genes that were differentially

expressed have previously been shown in other species to

cause phenotypic changes in response to environmental

stressors [26,27]. These findings not only give insights into

the emergence of division of labour and caste differentiation

in social insects in general, but also into factors that might

underlie behavioural differentiation among clonally identical

animals.
2. Methods
(a) Stock colony origin and maintenance
In April and May 2012, we collected colonies of P. punctata in El

Yunque National Forest, Puerto Rico. Thereafter, colonies were

kept under near-natural conditions (12 h 268C/12 h 228C, 70%

humidity) in plastic boxes with a plaster floor in climate

chambers. Colonies were fed three times per week with diluted

honey, cockroaches and Drosophila ad libitum. The plaster floor

was regularly moistened. Behavioural and genomic experiments

were done in 2015 and 2016. Prolonged laboratory rearing does

not have any visible effect on division of labour. While field

colonies occasionally consist of different clonal lineages owing

to the adoption of alien workers or the fusion of colonies [28],

genetic heterogeneity is quickly lost in the laboratory, as non-

reproductive workers have a lifespan of only 200 days [14]. Clon-

ality was confirmed by genotyping a subset of 63 freshly eclosed

workers from six colonies at five microsatellite loci (electronic
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supplementary material, table S1). We used stock colonies

containing several dozen workers and brood at all stages.

(b) Basic experimental set-up
To set up the experimental colonies, stock colonies were checked

daily over several weeks for newly hatched workers. These were

marked individually with Eddingw 751 paint markers on the day

of eclosion and returned to their colonies to recover. After 3–18

days, depending on treatment, two similarly treated clonemates

(control experiments, emerging from the same clonal stock

colony) or two differently treated (or to be treated) clonemates

(experimental manipulations, emerging from the same or differ-

ently treated parts of the same clonal stock colony, see below),

which had eclosed within the same 24 h were placed into a

Petri dish (figure 1b; Ø 13.5 cm, height 3 cm) with a plaster

floor and a cavity covered by a microscope slide and red plastic

film serving as nest. We monitored these dyads for aggression

(antennal boxing and biting [16,17]) twice daily for 10 min over

12 consecutive days and during the last 6 days of observation

also noted the occurrence of self- and allo-grooming, inactivity

and time spent outside the nest (20 min day21 nest21, 4 h obser-

vations per nest in total). To ensure data consistency, all

observers received the same instructions and training for the

recording of behaviour. The social status of the two clonemates

was determined by using the number of days an individual

was dominant, i.e. performing most of the aggressive inter-

actions, over the 12 days observation (for details, see the

electronic supplementary material).

(c) Hierarchy formation and division of labour among
clonemates

We first confirmed that pairs of young, unmanipulated clone-

mates establish social and reproductive rank orders when

placed together (control experiment, n ¼ 25). Subsequently, we

determined how different environmental and social conditions

affect division of labour among same-aged clonemates. We

subjected them to different rearing temperatures during larval

development, physical stress, small injuries, different social

environment and food availability (figure 1c). In all experiments,

we originally set up greater than or equal to 25 dyads, but

because a few workers died during the observation period,

sample sizes are typically lower.

The effect of temperature during ontogeny was investigated

by splitting clonal colonies into two equal fragments and keeping

them under constant 228C and 278C, respectively, for 22 months

(n ¼ 27; mean size of colony fragments+95% confidence inter-

val (CI95): 74.7+ 12.6 and 72.7+ 11.3 workers for 228C and

278C colonies, respectively). Three-day-old workers from low-

and high-temperature fragments were paired in a new nest and

observed for 12 days following the basic experimental procedure.

‘Stress’, mimicking an attack by another ant, was induced by

gently squeezing one of the two paired clonemates with forceps

for 1 min twice per day, 15–60 min before each observation

(n ¼ 24) throughout the 12 day observation period. Workers

were injured by clipping the distal part of the middle leg of

one of the two clonemates immediately before putting them

together (n ¼ 20). Injuries, such as the loss of antennae or legs,

are common in insects in nature. Nutritional status was manipu-

lated by isolating 3-day-old workers in small plastic tubes and

providing them with three Drosophila per day for 10 days (30

in total) or three Drosophila only on day 5 (n ¼ 25). After 10

days of this feeding treatment, a well-fed and a starved worker

were paired and observed for 12 days (see Basic experimental

set-up). Finally, we examined the effect of social environment

by keeping a 3-day-old worker for 18 days in a nest containing

either six old foragers or six aggressive young workers [16]
(n ¼ 20). The 3-day-old focal worker and the six (young or old)

workers were simultaneously moved to a new nest. After 18

days, a focal worker raised with young workers and a focal

worker raised with old foragers were placed together and

observed for 12 days (see Basic experimental set-up).

(d) Body size and nutritional status
After the 12 days observation period, workers were placed indi-

vidually in Eppendorf cups, killed by freezing, and stored at

–208C, except for those workers that were kept until they started

laying eggs (see below and Results). We measured maximum

cephalic width on mounted and dried workers under a digital

microscope. In addition, as a proxy of nutritional status, we

determined abdominal fat content using a petroleum ether

extraction protocol (electronic supplementary material) [16].

(e) Ovary dissections
In the experiment with different social environment, social status

could not reliably be determined from aggressive interactions.

We therefore determined reproductive rank orders by ovary dis-

section. We also dissected the ovaries of workers from the control

and the food-manipulation experiment (cf. Results). In these

cases, individuals were kept alive until they started laying

eggs. We measured the length of the largest oocyte under a

microscope (Zeiss Primo Star). Images were analysed using the

free software IMAGEJ 1.48v.

( f ) RNA-seq experiments
To investigate, which early transcriptomic changes are associated

with the emergence of division of labour, we set up five exper-

imental dyads in Petri dishes containing two unmanipulated

3-day-old workers each, studied hierarchy formation for 12 days,

and thereafter analysed gene expression in the heads of the five

dominant and the five subordinate individuals by RNA-seq (elec-

tronic supplementary material, tables S2–S4). Differential gene

expression analysis was done with DEseq2, using a generalized

linear model of the form design¼ � colony þ social status.

Further details about sequencing, de novo transcriptome assem-

bly, gene expression analysis and gene ontology enrichment

analysis are given in the electronic supplementary material.

(g) Statistical analyses
The analyses were performed using the software R v. 3.2.1 [29].

Data in the text are given as mean+CI95 or as median and

range according to the analysis used. For more detailed methods,

see the electronic supplementary material.
3. Results
(a) Hierarchy formation and division of labour among

control clonemates
When placed together in pairs, unmanipulated, equally young

clonemates of P. punctata rapidly established social and repro-

ductive ranks order by antennal boxing (for all pairs of young

workers except one, difference in aggressiveness: binomial

test, p , 0.05, n ¼ 22). Social status could not be explained

by differences in body size (electronic supplementary

material, table S5). The mean durations of the behaviour of

individuals were subjected to a principal component analysis

(PCA) (figure 2a; electronic supplementary material, table S6).

The first two principal components, accounting for 73% of the

variance, were retained (eigenvalues . 1). The first axis was
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Figure 2. PCA and boxplots based on the behaviour of dominant and subordinate workers of the ant P. punctata. (a) PCA based on the behaviour of pairs of young
workers of identical genotype and age with similar history placed together. The bigger dots in the plot indicate the centroid of each group (n ¼ 22 for each group).
(b – e) Four behaviours were recorded for the dominant and subordinate individuals: time spent on self- and allo-grooming inside the nest, time spent inactively
inside the nest and time spent outside the nest (**p , 0.01, n ¼ 22 for each group). (Online version in colour.)
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positively correlated with self- and allo-grooming and

negatively with inactivity; the second axis was positively

associated with time spent outside the nest (figure 2a;

electronic supplementary material, table S6).

The dominance hierarchy led to significant task partition-

ing between the two clonemates (figure 2a; PERMANOVA:

F1,42 ¼ 2.19, p ¼ 0.01) (electronic supplementary material,

video S1). The subordinate worker spent significantly

more time outside the nest (ex ¼ 38:79 s, range: 0.0–137.5 s,

n ¼ 22) than the dominant (ex ¼ 9:75 s, range: 0.0–52.42 s,

n ¼ 22) (figure 2e; paired Wilcoxon rank-sum test: V ¼ 32,

p ¼ 0.003). Dominant workers had also a tendency to be

more inactive inside the nest than subordinate workers

(mean time inactive+CI95: 399.12+ 30.11 and 377.52+
36.57 s for dominant and subordinate workers, respectively;

n ¼ 22) (figure 2d; paired t-test: t ¼ 1.91, p ¼ 0.06).

To confirm that the behavioural dominance observed

during the first 12 days leads to reproductive division of

labour, 17 colonies were kept for an additional three to six

weeks to allow workers to lay eggs. The six other colonies

were frozen after the 12 days and the workers were geno-

typed (electronic supplementary material, table S1). The

worker categorized as dominant after the 12 day observation

period had better developed ovaries than the subordinate

(oocyte length, ex ¼ 1097mm, range: 346–1472 mm and

ex ¼ 193:5mm, range: 0.0–1060 mm for dominant and subor-

dinate workers, respectively, n ¼ 14, as several workers had

died; paired Wilcoxon rank-sum test: V ¼ 105, p , 0.001).
(b) Division of labour and experimental manipulations
In subsequent experiments, we explored what might cause

the specialization into reproductive and non-reproductive

individuals (figure 1c). As in the control experiment, pairs

of differently treated clonemates engaged rapidly in antennal

boxing (total 4715 cases among 116 pairs, observation time

464 h) and occasional biting (22 cases). From the distribution
of antennal boxing and/or ovarian status, we could deter-

mine the social and reproductive rank relationships

between clonemates in 98 of these pairs (for all pairs: bino-

mial test, p , 0.05). Across all treatments, workers showed

a similar division of labour as in the control colonies (results;

electronic supplementary material, figure S1 and table S6).
(c) Effect of treatment on social status
We next investigated in which way treatment affected

division of labour (figure 1d ). Rearing temperature during

larval development strongly influenced the propensity of

workers to become dominant. The clonemate experiencing

low rearing temperatures (228C versus 278C) became domi-

nant in 16 of 21 dyads in which rank relations could be

determined (binomial test, 16 versus 5: p ¼ 0.026; generalized

linear mixed model (GLMM), z ¼ 23.211, p ¼ 0.001).

Stressing workers by gently squeezing them twice per

day with forceps negatively affected their status. Rank

relationships could be determined in 21 of 24 dyads, in 17

of which the non-stressed worker became dominant (bino-

mial test, 17 versus 4: p ¼ 0.007; GLMM, z ¼ 3.682, p , 0.001).

Similarly, an injury strongly decreased the likelihood of

workers to become dominant. A significant difference in

aggressive behaviour was found in 18 of 20 pairs of young

workers. The unharmed ant became dominant in 17 of

18 dyads (binomial test, 17 versus 1: p , 0.001; GLMM,

z ¼ 3.894, p , 0.001).

Among the workers that had experienced different social

environments, we could determine rank relationships from

aggression in only eight of 20 colonies. In five of these, the

worker reared with foragers was significantly more aggressive

than the worker reared with nurses (binomial test, 5 versus 3:

p ¼ 0.726; GLMM, z ¼ 0.989, p ¼ 0.323). To obtain additional

information about division of labour, we waited until workers

had laid eggs. Workers reared with foragers had better

developed ovaries than their clonemates reared with young
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workers in 12 of 19 colonies (binomial test, 12 versus 7: p ¼
0.359; GLMM, z ¼ 1.603, p ¼ 0.109; one pair was discarded

because ovary dissection failed) (mean oocyte length+CI95:

840+200 and 290+ 150 mm for workers reared with foragers

and young individuals, respectively, n ¼ 12).

Finally, in the nutrition experiment, antennal boxing

differed significantly between clonemates in 21 of 25 pairs.

In contrast with the other treatments, workers with poor

nutritional status engaged more in antennal boxing than

well-fed workers (binomial test, 19 versus 2: p , 0.001;

GLMM, z ¼ 24.283, p , 0.001). We therefore kept these colo-

nies until eggs had been laid. Well-fed clonemates had

better developed ovaries than starved workers in 15 of

the 19 dyads (binomial test, 15 versus 4: p ¼ 0.019; GLMM,

z ¼ 3.322, p , 0.001; mean oocyte length+CI95: 920+120

versus 280+ 117 mm, n ¼ 15). In six colonies, one or both

workers died and no eggs were laid.

(d) Effect of experimental treatment on body size and
fat content

To determine whether manipulation might have influenced

social status indirectly via other traits, we investigated head

width and fat content of clonemates. Head width did not

differ significantly between dominant and subordinate clone-

mates in the injury, stress, nutrition and social environment

treatment (electronic supplementary material, table S5). By

contrast, temperature during larval development can affect

adult body size [30]. Indeed, workers reared at lower temp-

erature were on average 3% larger than workers reared at

higher temperature, i.e. lower rearing temperature might

have indirectly affected social status by increasing body size.

Fat content did not differ between dominant and subordi-

nate workers in the temperature and social environment

experiments, but unstressed, dominant workers had a

higher fat content than stressed subordinates (electronic sup-

plementary material, table S5), indicating that physical stress

prevented workers from building up fat stores. Fat content

could not be determined when workers were dissected.

(e) RNA-seq experiments
Our behavioural results suggested that molecular mechanisms

underlying hierarchy formation and division of labour com-

prise changes in pathways pertaining to nutrition, stress and

social behaviour. To test this assumption, we compared gene

expression in heads of individuals from five unmanipulated

clonal pairs after 12 days of hierarchy formation.

The transcriptomic study generated between 26 and 39

million reads per sample that were jointly assembled into

162 673 de novo transcripts. Gene-level expression analysis

on 75 977 assembled transcript clusters (genes) showed

mild divergence in expression profiles between dominant

and subordinate individuals (figure 3a). PCA revealed a

strong colony effect on gene expression patterns (figure 3b).

After correcting for this effect, samples were separated

according to hierarchy by PC1 (figure 3c). One hundred

genes showed differential expression (false discovery rate

(FDR) , 0.05) in the dominant versus subordinate compari-

son with log2 fold changesDom/Sub ranging from 20.64 to

0.85 (figure 3a,d; electronic supplementary material, table S2).

Of these, 58 genes were upregulated in dominants compared

to subordinates (figure 3d,e).
Homology to proteins from Drosophila melanogaster, Apis
mellifera and the ant Harpegnathos saltator was inferred for

84 of the 100 differentially expressed genes (DEGs) and

used to assign putative functional annotations and gene

names (electronic supplementary material, table S2). Based

on these, DEGs were manually grouped in four a priori
defined categories (division of labour, endocrine pathway, metab-
olism and stress) and two categories emerging from manual

annotation (regulator of expression, cuticle). The four a priori cat-

egories were chosen based on the behavioural experiments

(metabolism, stress [26,27]) or previous knowledge about

social insect caste differentiation (division of labour, endocrine
pathway [26,27]). We could assign 57 DEGs to one of these

six categories, 43 genes remained uncategorized (16 without

inferred homologues) (figure 3e). We emphasize that this

grouping is not intended to imply statistically significant

over-representation of DEGs in either of these categories

but for jointly discussing sets of DEGs in a functional context.

Full information on DEGs can be found in figure 3 and

electronic supplementary material, tables S2–S4. Here, we

highlight only several particularly interesting results. Of the

20 genes in the largest category (metabolism), two homologues

to lipid metabolic genes (CG5966, CG5326) and two homol-

ogues to carbohydrate metabolic genes (glycogenin, CG31743)

were upregulated in dominants. By contrast, several mitochon-

drial respiratory chain genes (mt:Cyt-b, mt:ND4, mt:ND1,

mt:Col) were upregulated in subordinates, suggesting an

increased demand on energy generation in these individuals.

In the category endocrine pathway, homologues of the insulin

receptor InR, the InR-binding protein rhea, the juvenile

hormone (JH) methyl transferase jhamt and the ecdysone meta-

bolic gene phantom [31] were upregulated in dominants. In

subordinates, a homologue of the insulin receptor substrate

IGF-1 was upregulated, matching previous studies that JH

and insulin-like signalling (ILS) affect division of labour in

social insects [26,27,32,33].

Similarly, nine additional DEGs found in P. punctata had

previously been implied to be associated with division of

labour in other social insects (category division of labour).

Homologues of the odorant-binding protein Gp-9, sestrin
and major royal jelly protein 1 (MRJP1) were upregulated

in dominants while ejaculatory-bulb-specific protein 3

(EbpIII) was upregulated in subordinates [26,34–36]. We

also detected differential expression in two small-ncRNA-

binding transcriptional regulators (AGO1 and CG17018, a

homologue to Meiosis Arrest Female 1 (MARF1)), which

were grouped in the category regulator of expression together

with transcription factors and transcription factor interacting

proteins.

The enrichment analyses suggest that transcripts involved

in oxidation–reduction processes and transmembrane

proteins were over-represented in our DEG set (electronic

supplementary material, results).
4. Discussion
Clonemates of the ant P. punctata in dyadic encounters

readily form a rank order, which is tightly associated with

division of labour between a dominant reproductive and a

subordinate forager. This highlights that genetically identical

individuals may differ strikingly in behaviour and adds to

the increasing interest in behavioural individuality in clones
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Figure 3. Comparison of head gene expression in 14-day-old dominant and subordinate workers of P. punctata. (a) Overview of average expression levels (x-axis)
and logarithmic expression fold changes (log2, dominant versus subordinate, y-axis) for each gene. Coloured dots show genes with significant overexpression at
FDR , 0.05 in dominant (blue) and subordinate workers (orange). The top density plot shows the distribution of gene expression levels (mean expression
x ¼ 735:74, median expression ex ¼ 7:33), the density plots to the right show the distribution of expression differences. (b,c) PCA results without (b) and
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of genes called to be differentially expressed at different FDR cut-offs. D, dominant (blue); S, subordinate (orange). (e) Detailed summary of the 100 genes
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below 1 � 1023 and 1 � 1025 are indicated by one or two red circles, respectively. Labelled genes are discussed in the results and discussion in more detail.

rspb.royalsocietypublishing.org
Proc.R.Soc.B

285:20181468

6

[23–25,37]. Recent studies suggested that ‘factors unfolding

or emerging during development contribute to individual

differences in structural brain plasticity and behaviour’

[24,25]. By manipulating the rearing conditions of clonemates

during development or shortly after eclosion, we could

identify environmental or social factors that affected an

individual’s probability of taking over a particular task.

Rearing temperature, stress, injury and nutritional status

influenced whether a clonemate became a dominant repro-

ductive or a subordinate forager in dyadic encounters,

while previous social environment played only a limited

role. The transcriptomes of workers shortly after hierarchy

establishment corroborate these results: several genes that

were differently expressed between subordinates and

dominants link environmental stimuli with physiological

responses and/or belong to key pathways that affect caste

differentiation in other social insects. In the following, we

discuss our results in more detail.

Lower rearing temperature may have increased the likeli-

hood of becoming dominant indirectly via an effect on body

size. In many ectotherms, slower growth rate at lower temp-

erature leads to larger body size [30]. We could not identify

an advantage of larger body size in contests among workers

from control colonies, but body size differences were con-

siderably larger in the temperature experiment than in
control colonies. Larger body size has been shown to give

an advantage in dominance contests in several social and

solitary insects [38–41]. Alternatively, temperature during

larval development may have affected division of labour

indirectly via other physiological parameters. For example,

honeybee workers exposed to higher temperatures during

pupal development started to forage earlier and recruited

more nestmates [42,43], and pre-imaginal temperature

affected the temperature preferences for brood location of

brood-tending workers in the ant Camponotus rufipes [44].

Regularly opening the nest and squeezing one individual

with forceps apparently disturbed both nestmates, as indi-

cated by both dominant and subordinate workers having a

lower fat content than in other experiments. Despite the

short duration of the manipulation, squeezed workers

obviously suffered more than their clonemates, documented

by a more significant reduction in fat content and a lower

propensity to become dominant. Squeezing with forceps

resembles dominance grabbing and pulling, thus directly or

indirectly (via ‘loser effects’ [45]) reducing the fighting ability

of stressed workers. Alternatively, squeezing by itself may

have negatively influenced the worker’s ‘emotional state’, as

suggested to explain why vigorously shaking honeybee

workers causes them to classify neutral stimuli as predicting

punishment [46].
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Small injuries and the associated immune challenge may

direct resources from reproduction and dominance to the

activation of the immune system [47,48] and may also affect

aggressiveness [49]. In ants, injuries lead to temporarily

decreased fecundity [50] and precocious foraging [51]. The

trade-off between establishing dominance and immune

defence may explain why almost none of the injured P. punctata
workers became dominant.

Workers that had experienced poor nutritional conditions

were less likely to become reproductive than their well-fed

clonemates. Nutritional status, in particular fat content, has

been suggested to be a mechanism for division of labour in

social insects [52,53], in that low lipid stores predispose indi-

viduals to forage. Interestingly, from the direction of antennal

boxing alone, we would have assumed that poorly fed

P. punctata are dominant over well-fed clonemates, contrasting

the different times the two clonemates spent outside the

nest and also opposite to previous findings on hierarchy

formation in ants. The discrepancy is probably resolved by

the fact that food begging may also involve rapid antennation

in many insects, including species related to P. punctata [54,55].

Surprisingly, social environment during early adulthood

had no or only a small effect on later division of labour.

We had expected that the clonemate kept with young

workers would rarely become dominant because young

workers rapidly form social hierarchies, into which the

young clonemate would have had to integrate. By contrast,

old foragers only slowly begin to lay eggs when all younger

individuals are removed [16]. The absence of a significant

effect of social environment on division of labour in our

dyads might indicate that a dominant individual had already

been established in several forager-only colonies. The low

aggressiveness in this experiment might be a consequence

of the long duration of the exposure to different social

environments: one individual might have secured its

dominant status already before the start of the experiment

and later signalled its status via pheromones rather than

defending it aggressively [56].

The results of the transcriptomic analysis complement the

insights from our behavioural experiments according to

which differences in nutritional and immune state and indi-

vidual stress level govern division of labour in P. punctata.

Intriguingly, these differences appear to translate into social

status and division of labour by recruiting genomic pathways

known to be involved in caste differentiation in social insect

larvae. The period following hierarchy formation in adult

P. punctata might not only conceptually be analogous to the

caste differentiation period in eusocial insect development.

Rather, both mechanisms appear to rely on similar molecular

toolkits to establish division of labour in the colony. By alter-

ing rearing conditions, we probably induced changes in these

molecular pathways, eventually affecting the outcome of

hierarchy formation.

Several of the genes differentially expressed between

dominant reproductives and subordinate foragers, e.g. IGF-1,

InR, rhea and sestrin, are part of or interact with the target of

rapamycin (TOR) and ILS pathways. These pathways are

known to respond to oxidative and social stress [57], nutri-

tional [58] and immune status [48] and in turn affect

morphology, reproduction and lifespan [59,60]. The over-

representation of transcripts involved in oxidation–reduction

processes could be linked to oxidative stress and therefore

imply the possibility that dominant and subordinate workers
will experience different lifespans. TOR and ILS are key for the

induction of queen development in honeybee larvae and hier-

archy formation in the ant Diacamma sp. by regulating juvenile

hormone levels [61,62]. The differential expression of a central

JH-metabolic enzyme ( jhamt) suggests the involvement of JH

also in hierarchy formation and/or division of labour in

P. punctata. In the wasp Synoeca surinama, adult JH titres are

associated with the development of functional ovaries but

not with the expression of dominance [63]. Similarly, JH-appli-

cation induces early wing loss in female sexuals of the ant

H. saltator, but treated individuals fail to lay eggs earlier than

control individuals [64].

While mostly recognized as a moulting hormone, ecdy-

steroids also play a role in the adult brain [65]. The

upregulation of a phantom-homologue—an ecdysteroid meta-

bolic enzyme—in dominant P. punctata might point towards

a role for ecdysteroids in regulating neuronal changes associ-

ated with dominance. Similar to ecdysteroids, MRJP1 is

involved in both larval development and the regulation of

adult behaviour and learning [66,67]. In the honeybee,

MRJP1 is essential for the development of queen- and

worker-destined larvae by exerting growth-factor-like func-

tions on Egfr signalling pathways [68]. Furthermore, MRJP1

is more strongly expressed in the brains of adult honeybee

nurses than those of foragers [69,70]. This resembles the

higher expression in dominants of P. punctata.

Several found DEGs have not yet been associated with

caste differentiation or task allocation in social Hymenoptera.

The differential expression of odorant-binding proteins in

P. punctata suggests a so far unappreciated role in division

of labour [71]. Genes coding for cuticular proteins

(Cpr49Ae, Cpr49Aa) and other cuticle-associated proteins

(e.g. forked or Clect27) were also differentially expressed,

indicating that task allocation may involve specialization of

the cuticle towards a reproductive or a foraging role.

One particularly curious finding is the different expression

of two genes coding for small-ncRNA-binding proteins,

AGO1 and MARF1. These proteins are recognized for their

general role in transcriptional silencing and epigenetic

regulation [72–74]. Their differential expression between sub-

ordinate and dominant individuals might encourage future

studies on non-coding transcriptional regulators in hierarchy

formation and caste differentiation of social insects.
5. Conclusion
What do these results mean for task allocation? The impor-

tance of genotype, experience and age for the specialization

in particular tasks is well known, but efficient division of

labour can also develop in single-age cohorts composed

of genetically very similar individuals. Our study shows that,

temperature gradients in the nest, physical stress, injuries

and food availability during larval development or shortly

after eclosion may affect behaviour and thus underlie different

‘response thresholds’ or ‘personalities’. The differential

expression analysis during the early phase of division of

labour in P. punctata indicates the involvement of genes from

several molecular pathways, known to link environmental

stimuli to behavioural and phenotypic changes and to be

involved in caste differentiation in social insect larvae [26,27].

Interestingly, many of these genes appear to be confer

responses to a broad range of environmental stressors
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[26,27]. Together with the data from our experimental manip-

ulations, these results suggest that different environmental

cues can affect division of labour via a small set of molecular

pathways.
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