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Prey animals have evolved a wide variety of behaviours to combat the threat

of predation, and these have been generally well studied. However, one of

the most common and taxonomically widespread antipredator behaviours

of all has, remarkably, received almost no experimental attention: so-called

‘protean’ behaviour. This is behaviour that is sufficiently unpredictable to

prevent a predator anticipating in detail the future position or actions of

its prey. In this study, we used human ‘predators’ participating in 3D

virtual reality simulations to test how protean (i.e. unpredictable) variation

in prey movement affects participants’ ability to visually target them as

they move (a key determinant of successful predation). We found that target-

ing accuracy was significantly predicted by prey movement path complexity,

although, surprisingly, there was little evidence that high levels of unpre-

dictability in the underlying movement rules equated directly to decreased

predator performance. Instead, the specific movement rules differed in

how they impacted on targeting accuracy, with the efficacy of protean vari-

ation in one element depending on the values of the remaining elements.

These findings provide important insights into the understudied phenom-

enon of protean antipredator behaviour, which are directly applicable to

predator–prey dynamics within a broad range of taxa.
1. Introduction
Prey organisms have evolved a wide diversity of behavioural mechanisms to

combat the threat of predation. These range from avoiding detection (for

example through nocturnality [1–3], cryptic coloration [4] or living under-

ground [5,6]), to actively warding off attack (for example via thanatosis [7] or

startle displays [8–10]), to fleeing away from a predator [11]. Many antipredator

behaviours, including those described above have received considerable empiri-

cal and theoretical attention and are generally well understood in terms of their

function and mechanistic underpinning [12]. However, one of the most com-

monly observed and taxonomically widespread antipredator behaviours of

all has, remarkably, received almost no experimental investigation: so-called

‘protean’ behaviour [13].

Protean behaviour is broadly defined as behaviour that is sufficiently unpre-

dictable to prevent a predator from anticipating the future position or actions of

its prey [13], and there are many anecdotal examples of animals engaging in

this behaviour upon the detection of a predator. For instance, the erratic

‘zig-zagging’ behaviour observed in the dwarf blaasop pufferfish (Torquigener
flavimaculosus) [14] and the wedge-snouted desert lizard (Meroles cuneirostris)

[15], or the sharp turns and powered dives by the male budwing mantis

(Parasphendale agrionina) [16] have all been hypothesized to make it harder for

a predator to anticipate the animal’s subsequent location, and hence make it

harder to catch [13]. These are potential examples of active protean movement

(i.e. behaviour in which prey engage when they are aware of an immediate

predatory threat), although, protean behaviour may also be displayed in a

passive context as ‘insurance’. By continuously displaying protean movement,
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prey animals may deter or unknowingly evade attacks from

undetected predators [13]; for example many fly and butter-

fly species incorporate protean-like elements in their normal

flight [17,18]. However, despite the almost universal presence

of putatively protean behaviour in the animal kingdom,

only one study has empirically investigated whether this

behaviour actually increases the chance of escaping [19].

In their study, Jones et al. [19] found, using human subjects

‘preying upon’ computer-generated moving prey, that individ-

ual prey items were harder to catch when their turning angles

were drawn randomly from a relatively wide angular range

(which they classed as ‘protean’) than when their turn angles

were selected (also randomly) from a relatively narrow angular

range (which they classed as ‘predictable’). This elegant study

therefore provides clear evidence that incorporating protean

elements into an animal’s movement can have positive anti-

predator benefits, although by focusing solely on turning

angle it does not consider that an animal’s movement could

be considered protean in various different ways. For example,

animals may show unpredictable changes in speed or the

distance travelled before turning, alongside (or even instead

of) unpredictable turning angles; both of which would be pre-

dicted to make an animal’s future position harder to predict.

Furthermore, because in Jones et al.’s [19] study all prey items

incorporated some element of unpredictability into their

turns, it is unclear what would happen if prey moved in pre-

dictable, but non-trivial, ways, such as spiralling. This has

been highlighted as a putatively protean escape behaviour in

the take-off flight of chironomid midges [13] and could

occur, for instance, if movement parameters such as turning

angle had fixed, rather than protean, values. Pulling apart

the effects of these different movement elements is crucial to

furthering our understanding of how a broad range of species

respond to potential, and real, threats of predation.

In this study, we used human ‘predators’ playing a 3D vir-

tual reality (VR) simulation to test how protean variation in one

or more of these three movement elements (speed, the distance

travelled between turns, and turn angle) influenced a predator’s

ability to target the prey item as it moved (a key determinant of

successful predation; [20]), relative to prey that exhibited move-

ment elements with fixed (and hence potentially predictable)

values. We predicted that, as the number of movement elements

that exhibited protean variation increased, this would result in

increasingly unpredictable prey movement paths which would

be more difficult to target.
2. Methods
(a) Simulations
All simulations were created in the Unity3D game engine (Unity

Technologies, San Francisco, USA), and built to run on a Samsung

Galaxy S7 smartphone using the Samsung Gear VR system. Unlike

simulations on a standard computer screen, where movement is

confined to a restricted 2D space, within VR the participant can

observe a full 3608 3D environment. This allows both a greater

range of motion (e.g. objects can potentially move behind as well

as in front of the participant) and, crucially, the third dimension

(allowing objects to be perceived as moving away from the partici-

pant). Simulations consisted of a black sphere (the ‘prey’) moving

in a 3D virtual space centred on the participant. The prey had a

radius of 0.1 m and was presented against a homogeneous white

background to maximize contrast. The high contrast between the

prey item and its background, combined with the lack of visual
clutter in the virtual environment, minimizes the likelihood of

attentional lapses (e.g. by excluding the possibility that attention

is involuntarily drawn to salient features of the background) [21].

Prey movement consisted of a series of steps during each of

which it travelled in a straight line in 3D space before turning

and moving off on a different trajectory. This pattern of movement

is commonly used in animal movement models and is character-

istic of the movement patterns of a wide variety of species

[22–24]. Movement of prey in the simulation was therefore deter-

mined by three parameters: the distance travelled in a straight line

between turns (hereafter termed ‘distance’), the time taken to travel

over this distance (‘speed’) and the angle turned within a cone

centred on the prey’s direction of travel (‘angle’). We considered

that each of these parameters could be either ‘fixed’ (that is, the

value assigned to a given prey item was randomly chosen but

remained constant throughout a trial; see below) or ‘protean’

(the parameter value was randomly chosen each time the prey

performed a particular behaviour, e.g. each time it turned). The

specific values used were based on those obtained from pilot

experiments, and were as follows: distance could take fixed

values of either 1 m or 5 m (termed ‘short’ and ‘long’, respectively)

or a protean value drawn from a uniform distribution on (1 m,

5 m); speed could take fixed values of either 1 ms21 or 3 ms21

(termed ‘slow’ and ‘fast’, respectively) or a protean value drawn

from a uniform distribution on (1 ms21, 3 ms21); and angle

could take fixed values of either 0.1p radians or 0.5p radians

(termed ‘narrow’ and ‘wide’, respectively) or a protean value

drawn from a uniform distribution on (0.1p radians, 0.5p radians).

In total, this resulted in 27 possible combinations of fixed/protean

movement elements (e.g. short distance, fast speed and protean

angle, and so on).

Within the simulation, participants were free to look around

the virtual environment. A small, red circle (the reticle) was super-

imposed onto the centre of the participants’ field of view and

provided a point of reference for the participant to facilitate target-

ing, allowing them to interact with moving prey objects in real

time. We use the term ‘targeting’ to emphasize the similarities

between this process and, for example, maintaining a target

within a rifle’s sights (a process that requires the participant to

move their head to maintain alignment with the target), although

note that eye movements will be required to fine-tune tracking

accuracy [21,25]. Quantifying targeting accuracy using head move-

ments alone is therefore likely to suffer from reduced stability

(greater jitter), result in slightly slower response times, and be

less sensitive to minor attentional lapses than when also consider-

ing eye movements [21], although importantly our simulated prey

were not making subtle movements that could be tracked solely

with the eyes (cf. [21,25,26]). Instead, they moved rapidly around

the virtual environment, requiring participants to constantly

move their head in order to keep the prey within their field of

view. Targeting, as measured using head movements, therefore

provides a useful overall measure of a participant’s ability to

follow a fast moving prey item, while providing a measure of

biological realism in the context of predator–prey interactions

(where animals often align their head with the target before

attack; e.g. [27,28]).
(b) Experimental protocol
A total of n ¼ 40 participants took part in this study (20 females

and 20 males, with a mean age of 20.7 (range, 18 to 28)), all of

whom were students of the University of Lincoln. Before provid-

ing consent to take part in the study, participants were given

written information on the general aims of the study (although

not the specific hypotheses being tested), what they would be

asked to do, and the approximate time required to complete

the study. Their age and gender were noted, but not linked to

their experimental data.
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Figure 1. Representative movement paths from a prey with all fixed move-
ment parameters (red; which has a path complexity of 1.53) and a prey with
all protean movement parameters (blue; which has a path complexity of
2.29). The black triangle denotes the location of the participant’s head in
each case, and all prey start from the same position.
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When participants put on the headset to begin the simulation

they were presented with a series of simple text instructions to fam-

iliarize them with the VR environment and demonstrate how to

interact with objects within it. Each experimental trial presented

the participant with one prey item to target. At the start of each

trial, the prey was coloured red and appeared at a fixed default

position (5 m directly in front of the participant) and trajectory

(facing directly away from the participant). To start each trial,

the participant used their head movements to position the reticle

over the prey for 3 s. The prey item then turned from red to

black to indicate that the trial had started, and began to move

based on the combination of fixed/protean movement rules it

had been allocated for that particular trial. Participants were

instructed that their task was to constantly target the prey item,

by maintaining the reticle as close to its centre as possible as it

moved around the virtual environment. Each trial lasted 10 s

and there were 27 trials in total per participant (one for each poss-

ible combination of fixed/protean parameter values). The order of

these trials was randomized for each participant.
20181112
(c) Data collection
Data on prey location (its Cartesian coordinates in 3D space) and

the participant’s head orientation (a 3D vector passing through a

point between the participant’s eyes and towards the reticle)

were collected every 0.02 s throughout each trial, and stored in

anonymised text files. At each time step, we subsequently calcu-

lated the minimum distance between a 3D point representing

the centre of the prey and a ray indicating the participant’s

head orientation; if the reticle was directly over the centre of

the prey this distance would be 0, and would increase with as

the reticle moved further away from the prey’s centre. This distri-

bution of distance values was used to calculate the mean distance

from the centre of the prey over the 10 s of each trial, as a

measure of overall targeting accuracy (where a lower mean dis-

tance indicates better overall accuracy) and therefore the overall

effectiveness of prey ‘behaviour’ in terms of avoiding predation.

We also used the data on prey location to compute a measure

of prey movement path complexity in each trial, using the infor-

mation-theoretic approach described by Herbert-Read et al. [29].

This method assigns a numeric value to each path, such that

more complex paths receive higher values, and so provides an

objective measure of how ‘protean’ each movement path was.

In brief, we constructed an embedding matrix M containing

the 3D positions of the prey over the time window

t, tþ 1, . . . , tþ n (where here n was simply the total number of

positions recorded during each 10 s trial). The x component of

the embedding matrix Mx was derived from the x coordinates

of the positions, such that

Mx ¼
xt xtþ1 � � � xtþn=2

..

. ..
. . .

. ..
.

xtþn=2 xtþn=2þ1 � � � xtþn

2
64

3
75, ð2:1Þ

with My and Mz derived similarly from the y and z coordinates,

respectively. The full embedding matrix is then simply given by

M ¼ [MxMyMz]. We next subtracted the mean from each column

of M, before extracting the vector of singular values s from its

singular value decomposition. Each singular value was normal-

ized by dividing it by the sum of all singular values, to give ŝ,

and the complexity of the movement path, H, taken as the

entropy of the distribution of the singular values

H ¼ �
Xn

i¼1

bsi log2
bsi: ð2:2Þ

Representative movement paths, of varying complexity, are

given in figure 1.
(d) Statistical analysis
All analyses were conducted using general linear mixed-effects

models (glmm) in R version 3.3.2, using the lmer function in

the lme4 package [30]. We first tested whether path complexity

predicted targeting accuracy, regardless of the specific movement

rules underpinning each path. Log10-transformed targeting

accuracy was included as the dependent variable, with path com-

plexity as a continuous predictor and trial order as a covariate to

control for possible learning or fatigue effects over consecutive

trials. Each participant’s anonymous identifier was included as

a random effect to control for repeated data from the same indi-

vidual. Significance was determined by comparing the full

model to a reduced model lacking the term of interest using a

likelihood ratio test [31]. The validity of the model assump-

tions was confirmed by visually assessing the normality of the

model residuals.

We next considered how the number of protean elements

making up the movement rules for each path (which could

range from 0, when all three movement parameters had fixed

values, to 3, when all three parameters were protean) affected

both path complexity and participant performance. Either

log10-transformed targeting accuracy or log10-transformed path

complexity was included as the dependent variable, with

the number of protean movement elements as a fixed factor.

As above, we also included trial order as a covariate and each

participant’s anonymous identifier as a random effect. As we

would predict systematic trends in the dependent variable as

the number of protean movement elements increased, we

additionally fitted polynomial (linear, quadratic and cubic) con-

trasts over successive levels of the fixed factor. For the analysis

involving targeting accuracy, we tested whether the mean target-

ing distance was significantly different from 0.1 (the radius of

the prey’s body) by including an offset of 0.1 in the model and

testing the significance of the intercept.

Finally, we considered whether the values assigned to the

movement parameters predicted participant performance. Each

model included log10-transformed targeting accuracy as the

dependent variable, and the three movement parameters (dis-

tance, speed and angle, each with three levels), along with their

three- and two-way interactions, as fixed factors. As above, we

included trial order as a covariate and each participant’s anon-

ymous identifier as a random effect. In each case, a global model

was initially fitted containing all explanatory variables and their

interactions. A final model was then determined by stepwise exclu-

sion of the least significant terms, starting with the non-significant

highest order interactions and then non-significant main effects.

The resulting minimum adequate model is presented. For signifi-

cant factors we also tested for differences between factor levels
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using planned treatment contrasts, in which protean movement

(the reference group) was compared to each of the other two

levels. This allowed us to specifically test the relative efficacy of

protean, compared to fixed, movement strategies.
3. Results
(a) Path complexity
The complexity of prey movement paths significantly predicted

participant performance, with participants exhibiting poorer

accuracy (i.e. having a greater mean distance from the prey’s

centre) as path complexity increased (glmm: x2
1 ¼ 88:01, p ,

0.001; figure 2a). Moreover, path complexity itself was signifi-

cantly predicted by the number of protean elements in the

movement rules underpinning it (x2
3 ¼ 956:01, p , 0.001),

with an increasing number of protean elements resulting

in increased path complexity (cubic contrasts: p , 0.001;

figure 2a,b). This in turn had a significant (although modest)

effect on participants’ ability to accurately target prey

(x2
3 ¼ 24:07, p , 0.001; figure 2a,c), with the mean distance

from the prey’s centre increasing linearly (and targeting

accuracy thereby reducing linearly) as the number of pro-

tean movement elements rose (linear contrasts: p ¼ 0.002;
figure 2c). There was, however, considerable variation within

these categories. In particular, even though prey with 0, 1 or 2

protean movement elements contained exemplars that were

comparatively easy to target (i.e. on average participants were

able to maintain the targeting reticle within the prey’s ‘body’;

figure 2c), targeting accuracy was comparatively poor for the

majority of prey items across all categories (including the cat-

egory with 0 protean movement elements). As such, the mean

targeting distance was considerably outside the prey’s body in

each category, on average (all p , 0.001; figure 2c). This suggests

that rather than targeting accuracy being simply a function

of movement path complexity, the specific movement rules

underpinning them may be important.

(b) Movement rules
When considering the specific movement rules underpinning

prey movement, and hence contributing to the observed vari-

ation in path complexity, targeting accuracy was significantly

predicted by a single interaction between the speed at which

the prey moved and the angle at which it turned (x2
4 ¼ 22:06,

p , 0.001). Specifically, regardless of whether the turning

angle was narrow, protean or wide, accuracy was always sig-

nificantly poorer for prey moving at high speeds than those

exhibiting protean variation in speed (treatment contrasts: all
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p , 0.001) and significantly poorer for protean speeds com-

pared to low speeds (all p , 0.001) (figure 3). However, the

relationship between targeting accuracy and turning angle dif-

fered depending on the speed of movement: at low speeds,

accuracy was significantly poorer when prey turned at protean

compared to narrow angles ( p , 0.001); at protean speeds,

there was no difference in accuracy between turn angles;

while at high speeds accuracy was significantly poorer

when prey turned at protean angles compared to both

narrow ( p , 0.001) and wide angles ( p ¼ 0.024) (figure 3).
4. Discussion
Previous studies have found that prey exhibit increased

movement path complexity following a simulated threat

(e.g. [29,32]) with the (untested) assumption being that this

increased complexity makes targeting the prey harder, result-

ing in a reduced chance of predation. Here, we tested this

assumption directly by quantifying the ability of human

predators to target virtual prey which differed in the unpre-

dictability of their underlying movement rules, and hence

exhibited variation in their resultant movement path com-

plexity. Our results provide direct empirical support for the

overall prediction that increased path complexity results

in a reduced ability to accurately target prey, although, sur-

prisingly, there was little evidence that high levels of

unpredictability in the underlying movement rules equated

directly to decreased predator performance. Indeed, prey

items that displayed no protean variation in their movement

elements at all (and which typically travelled along a puta-

tively ‘predictable’ spiralling path; e.g. see figure 1) were

found to be as difficult to target as prey exhibiting protean

variation in all three movement elements (which moved

along far more tortuous paths). This may explain the evol-

ution of spiralling take-off behaviours observed in some

insect species [13], which may be as effective as the more clas-

sically ‘protean’ erratic zig-zag-type behaviours in evading
predators. It also suggests that the mathematical predictabil-

ity of movement (as encompassed here by our measure of

movement path complexity), while a good general predictor

of predator performance, ignores the importance of specific

movement parameters. Interestingly, here we found that the

interaction between movement speed and turn angle was

the best predictor of predator performance, while the distance

between turns was of limited importance (and not included

in the minimum adequate model). More specifically, the rela-

tive efficacy of turning behaviour (i.e. whether turns were

narrow, protean or wide) differed as a function of speed,

with the most effective protean behaviour involving a mix

of protean and fixed elements (in this case high speeds and

protean turn angles, regardless of distance travelled). This

demonstrates that in terms of efficacy, the ‘most protean’ be-

haviour may not always be as effective as combinations of

protean and fixed elements.

Our understanding of prey escape decisions has been

advanced greatly by considering the fitness costs and benefits

of escape, and economic models of escape behaviour have

been used to provide qualitative predictions about aspects

of escape behaviour [33]. In these models, the costs of escap-

ing typically refer to the lost opportunities of engaging in

other behaviours (such as feeding and engaging in social

activities including courtship, mating and territorial defence),

and the costs of escape are often considered relatively insig-

nificant [34]. However, the energetic and/or cognitive costs

of maintaining behaviours at the extremes of an animal’s abil-

ities, such as travelling at high speeds or turning at wide

angles [34–36], or, in the case of protean behaviour, behaving

unpredictably [19,37] could be considerable. Animals may

therefore be expected to optimize the trade-off between the

increased chances of avoiding predation and the costs of

engaging in protean behaviour. Our results suggest that

engaging in escape behaviour that is potentially less cogni-

tively or energetically challenging, but equally efficacious in

terms of predator avoidance (such as spiralling), may offer

animals a solution to this trade-off. However, the specific eco-

logical conditions that allow the evolution of these different

types of behaviour are still to be established.

Literature examples of real-world predator–prey pursuits

show a great variation in strategies that vary based on several

factors (e.g. the type of predator (solitary or pack hunters) or

the difference in size between predator and prey). For example,

prey pursued by a single predator tend to use sharp turns [38]

while prey fleeing from multiple predators will often make few

or no turns and try to outrun them [39,40]. However, active

evasion of predators may not be the only successful strategy:

for example, in a recent study Combes et al. [17] reported

that fruit flies (Drosophila melanogaster) attacked on the wing

by dragonflies (Libellula cyanea) rarely responded with evasive

manoeuvres; instead, the flies performed routine, erratic turns

during flight (i.e. passive protean behaviour; sensu [13]) which

were responsible for more failed predation attempts than active

evasive manoeuvres. We note, though, that whether prey

adopt a constitutive or induced anti-predator strategy may

depend strongly on the prevailing environmental conditions:

the former is likely to be better when predation pressure is con-

stant, or at least predictable; the latter when predation is

variable or difficult to predict. The fact that the results from

our virtual study into protean behaviour are in agreement

with those from a real-life system highlights the benefits of a

virtual approach in the study of adaptive prey behaviour.
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For example, the use of easily manipulable artificial prey

circumvents animal welfare concerns and allows the rapid

generation of large sample sizes. Furthermore, our novel

approach to this study through the use of VR allowed targeting

within a 3D space, allowing prey to flee away from a predator

(the most common behavioural response of a fleeing animal

[12]), thereby conferring a greater degree of realism over pre-

vious 2D approaches (e.g. [19]), at least for simulated animals

that ‘fly’ or ‘swim’ within a 3D environment. In our study,

participant performance was assessed by their ability to con-

sistently and accurately target moving prey items using head

movements alone, although in humans (and most likely

many other animals) visual attention is in fact a function of

both head movements and accompanying eye movements

[26,41]. Our approach, while providing sufficient resolution

to uncover clear relationships between protean movement

and participant performance, may nonetheless benefit by sim-

ultaneously considering the movement of the eyes, particularly

in terms of reducing noise, recording faster response latencies,

and detecting subtle attentional lapses of the sort that may be

important in the precise local tracking of an erratically

moving target [26].

In summary, we can draw several general conclusions

about protean behaviour from this study. Firstly, incorporating

protean variation into a prey’s movement can improve the

chances of escaping predators; however, more important with

respect to avoiding predation were the interactions between
these different movement rules. Interestingly, here we found

that the ‘most protean’ behaviour was not the most effective

at avoiding predation. In fact the most effective behavioural

strategy incorporated a combination of protean and fixed

elements. To put the results of this study into a broader context,

here we have provided strong experimental support for the

widely held assumption that protean strategies can reduce

chances of predation, and have determined how the individual

behavioural rules that make up prey movement can interact to

affect the overall efficacy of protean behaviour. Our virtual

methodology into the study of adaptive behaviour, combi-

ned with the parallels between our results and those from

real-world systems demonstrates the utility of this approach.

Ethics. This project was approved by the College of Science ethics
committee at the University of Lincoln (reference CoSREC265).

Data accessibility. Data used in the analyses reported here are available
from the Dryad Digital Repository: http://dx.doi.org/10.5061/
dryad.9h95737 [42].

Authors’ contributions. All authors designed the study, G.R. collected the
data, G.R. and T.W.P. conducted the statistical analysis, and all
authors wrote the paper.

Competing interests. The authors declare that they have no competing
interests.

Funding. G.R. was supported by a scholarship from the School of Life
Sciences, University of Lincoln.

Acknowledgements. We thank the two anonymous referees for their
helpful comments.
References
1. Culp JM, Glozier NE, Scrimgeour GJ. 1991 Reduction of
predation risk under the cover of darkness—
avoidance responses of mayfly larvae to a benthic fish.
Oecologia 86, 163 – 169. (doi:10.1007/Bf00317527)

2. Duverge PL, Jones G, Rydell J, Ransome RD. 2000
Functional significance of emergence timing in bats.
Ecography 23, 32 – 40. (doi:10.1034/j.1600-0587.
2000.230104.x)

3. Mougeot F, Bretagnolle V. 2000 Predation risk and
moonlight avoidance in nocturnal seabirds. J. Avian
Biol. 31, 376 – 386. (doi:10.1034/j.1600-048X.2000.
310314.x)

4. Stevens M, Merilaita S. 2009 Animal camouflage:
current issues and new perspectives. Phil. Trans. R.
Soc. B 364, 423 – 427. (doi:10.1098/rstb.2008.0217)

5. Hemmi JM. 2005 Predator avoidance in fiddler
crabs: 1. Escape decisions in relation to the risk of
predation. Anim. Behav. 69, 603 – 614. (doi:10.
1016/j.anbehav.2004.06.018)

6. Langerhans, R.B. 2007 Evolutionary consequences of
predation: avoidance, escape, reproduction, and
diversification. In Predation in organisms (ed. AMT
Elewa), pp. 177 – 220. Berlin, Germany: Springer.

7. Miyatake T, Katayama K, Takeda Y, Nakashima A,
Sugita A, Mizumoto M. 2004 Is death-feigning
adaptive? Heritable variation in fitness difference of
death-feigning behaviour. Proc. R. Soc. Lond. B 271,
2293 – 2296. (doi:10.1098/rspb.2004.2858)

8. Martins M. 1989 Deimatic behavior in Pleurodema
brachyops. J. Herpetol. 23, 305 – 307. (doi:10.2307/
1564457)
9. Umbers KDL, De Bona S, White TE, Lehtonen J,
Mappes J, Endler JA. 2017 Deimatism: a neglected
component of antipredator defence. Biol. Lett. 13.
(doi:10.1098/Rsbl.2016.0936)

10. Vallin A, Jakobsson S, Wiklund C. 2007 An eye for
an eye? On the generality of the intimidating
quality of eyespots in a butterfly and a hawkmoth.
Behav. Ecol. Sociobiol. 61, 1419 – 1424. (doi:10.
1007/s00265-007-0374-6)

11. Edmunds, M. 1974 Defence in animals: a survey of
anti-predator defences. Burnt Mill, UK: Longman.

12. Krause J, Ruxton GD. 2002 Living in groups. Oxford,
UK: Oxford University Press.

13. Humphries DA, Driver PM. 1970 Protean defence by
prey animals. Oecologia 5, 285 – 302. (doi:10.1007/
Bf00815496)
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