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Abstract

Study Design: Narrative literature review.

Objectives: Placental tissue, amniotic/chorionic membrane, and umbilical cord have seen a recent expansion in their clinical
application in various fields of surgery. It is important for practicing surgeons to know the underlying science, especially as it
relates to spine surgery, to understand the rationale and clinical indication, if any, for their usage.

Methods: A literature search was performed using PubMed and MEDLINE databases to identify studies reporting the application
of placental tissues as it relates to the practicing spine surgeon. Four areas of interest were identified and a comprehensive review
was performed of available literature.

Results: Clinical application of placental tissue holds promise with regard to treatment of intervertebral disc pathology, pre-
venting epidural fibrosis, spinal dysraphism closure, and spinal cord injury; however, there is an overall paucity of high-quality
evidence. As such, evidence-based guidelines for its clinical application are currently unavailable.

Conclusions: There is no high-level clinical evidence to support the application of placental tissue for spinal surgery, although it
does hold promise for several areas of interest for the practicing spine surgeon. High-quality research is needed to define the
clinical effectiveness and indications of placental tissue as it relates to spine surgery.
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Introduction

The use of mesenchymal stem cells (MSCs) in orthopedic and

spinal surgery has become a popular topic in recent years with

the introduction of numerous different products of various cel-

lular origins, ranging from bone marrow, adipose tissue, syno-

vial tissue, to placental tissue.1-5 Placental tissue has gained

particular popularity as a tissue source identified as a rich

source of MSCs as well as other growth factors beneficial to

tissue repair and regeneration.6 Several commercially available

products have been introduced recently as a clinical alternative

for spinal injuries and pathologic conditions, ranging from

intervertebral disc degeneration to traumatic spinal cord inju-

ries. However, the evidence supporting the clinical application

of these products often lags behind marketing strategies. The

goal of this article is to review the science and evidence relating

to the clinical application of placental tissue in treating various

spinal pathology.

Placental Tissue

The membranes surrounding the developing fetus are a com-

plex structure of various tissue subtypes that play a critical role

in fetal development and sustenance. The membranes consist

of 4 distinctly different structures: the amnion, chorion, umbi-

lical cord, and placenta (Figure 1). Of these, the fetal-derived

tissues, the amnion, chorion, and umbilical cord, have been

investigated as potential source of MSCs for clinical

application.
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Amnion

The amnion is a thin tissue, derived from the trophoblast that

completely surrounds the developing fetus and facilitates fetal

nutrition via diffusion.7,8 The amnion contains 3 distinct histo-

logic layers: the epithelial layer, the basement membrane, and

the mesenchymal layer (Figure 1).

The epithelial layer is the innermost layer of the amnion,

consisting of a single layer of cuboidal amniotic epithelial cells

(AECs). AECs are derived from the epiblast, developing on the

eighth gestational day9 and have been shown to produce basic

fibroblast growth factor, epidermal growth factor, keratinocyte

growth factor, and hepatocyte growth factor.8,10 Through the

production of these factors, AECs have been shown to promote

epithelization,10 inhibit angiogenesis,11 inhibit fibroblast

activation through the inhibition of transforming growth fac-

tor-b, promote neural differentiation,12-14 provide immunosup-

pression via inhibition of both innate and adaptive immune

systems,15 promote tenocyte proliferation,16 as well as possess

the capability for trilineage cell differentiation, or differentia-

tion into all 3 germline lineages.17

The mesenchymal layer is a vascular layer that abuts the

chorion and contains 3 distinct sublayers: the compact, fibro-

blast, and spongy layers (Figure 1).8,18 The fibroblast layer pro-

vides for the structural integrity via type I and III collagen,

arranged in parallel bundles,18 and contains the embryonic

mesoderm derived mesenchymal stromal cells(AMSCs).8

AMSCs have shown capabilities for trilineage cell differentia-

tion.17 In addition to a higher proliferative rate than adult-

derived MSC sources,19 AMSCs have been found to promote

angiogenesis through the expression of proangiogenic factors8

and suppress the innate and adaptive immune systems.15 The

spongy layer is abundant in proteoglycans and glycoprotenins,

particularly hyaluronic acid, which is thought to serve as a pri-

mary inhibitor of transforming growth factor-b, resulting in ces-

sation of scar formation.20 Additionally, the spongy layer

possesses a loose, nonfibrillar collagen network connecting it

to the adjacent chorion,18 which is exploited for tissue separation

for various commercial graft products that are isolated amnion.

Combined, AECs and AMSCs have shown a particular capac-

ity for osteogenic and chondrogenic cellular differentiation.21

Figure 1. Illustrative image depicting the placenta membranes and the cellular organization of the amnion, chorion, and umbilical cord.
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Although numerous studies have investigated this osseous and

chondral differentiation, the AEC and AMSC cells largely require

induction using various mediums or growth factors.22-26

Chorion

The chorion is an extra-embryonic entity with a bilayered

structure that represents the outermost layer of the placental

tissue. Its villous trophoblast area serves as the primary loca-

tion of nutrient exchange between the mother and developing

fetus.6 As such, it has also been shown to have cross-

contamination with maternal cells, present in approximately

30% of chorionic MSCs.27,28 Chorionic membrane cells have

been identified as pluripotent with the capacity for trilineage

germ line differentiation,29,30 but with a decreased capacity

compared with other MSC cell sources.31 In addition, chorionic

membrane cells demonstrate immunosuppressive effects as

well as promote angiogenesis.27

Umbilical Cord

The umbilical cord is a unique structure of extra-embryonic origin

that connects the fetal and maternal circulatory systems for nutri-

tion and waste exchange.6 The umbilical cord is composed of the

umbilical epithelial exterior, containing connective tissue, termed

Wharton’s jelly, and blood vessels. MSCs have been isolated

from both the epithelium and Wharton’s jelly32-35; however,

Wharton’s jelly has been found to have the highest concentration

of MSC, not just of the umbilical cord, but of all MSC sources.36

Umbilical cord–derived MSCs (UC-MSCs) have shown potential

for multilineage cell differentiation, with a particular capacity for

neural differentiation37-39 and immunosuppression.1,40,41

In addition to the umbilical cord tissue, the blood contained

within the umbilical vessels has been identified as a source of

MSCs, although present in significantly smaller quantity than

other sources.36,42 The predominant stem cell population is

CD34 positive hematopoietic stem cells, but this source has also

been shown to express characteristics in common with bone mar-

row MSCs.43 In addition, umbilical cord blood has also shown

potent production of motor-neuron-related markers, making it a

prime target for motor nerve regeneration research.44

Methods

A literature search was conducted to retrieve previous publica-

tions regarding the use of placental tissue in various avenues

relating to spine surgery. A PubMed search was performed

using the terms “Amnion,” “Chorion,” “Amniotic Membrane,”

“Umbilical,” and “Umbilical Cord” and “Spinal” or “Spine.”

Using this broad search strategy, 4 main categories of clinical

application were identified, consisting of intervertebral disc

pathology, epidural fibrosis, spinal cord injury, and closure

of spinal dysraphism. These 3 categories were individually

inserted in a search strategy using PubMed and MEDLINE

search engines between 1960 and 2017. Inclusionary criteria

consisted of English language articles and investigating the

application of human placental tissue for the 4 identified clin-

ical applications. Review articles and non-English articles

were excluded. Terminology for search parameters consisted

of (1) “Amnion or Amniotic Membrane or Chorion” and

(2) “Umbilical or Umbilical Cord,” with each of the 4 clinical

applications. Search results are summarized in Table 1. The

results and analysis of systematic review, broken down accord-

ing to subgroup headings, are summarized in Appendix 1

(available in the online version of the article).

Epidural Fibrosis

Epidural fibrosis is considered as a cause of continued back pain

following decompressive surgery, as well as a factor complicat-

ing revision spine surgery.45 Three articles were identified,

investigating the application of amniotic membrane (AM) with

and without the adjacent chorion on the development of epidural

fibrosis (Table 2). Choi et al46 investigated the application of

irradiated human AM grafts applied to a rat laminectomy model,

compared to an untreated laminectomy cohort. Gross observa-

tion of surgical sites performed at 1, 3, and 8 weeks following

surgery found a decreased overall amount of scarring in the AM

Table 1. Summary of Basic Science Research as It Related to the Various Placenta Tissues and Their Cellular Capabilities.

Amniotic Membrane
Epithelial Cells

Amniotic Membrane
Mesenchymal Cells Chorion Cells Umbilical Cord Tissue Umbilical Cord Blood

Pro-epithelial, neural,
and tenocyte

Trilineage cell differentiation Trilineage cell differentiation Trilineage cell
differentiation

Hematopoietic
proliferation

Anti-angiogenic Angiogenic immunosuppressive Angiogenic immunosuppressive Immunosuppressive Pro-neural proliferation
Anti-fibroblastic Pro-neural proliferation Immunosuppressive Pro-neural proliferation
Immunosuppressive Immunosuppressive

Table 2. Summary of Literature Review for Spine-Related Articles
Investigating the Application of Placenta Tissue.

Amnion/Chorion Umbilical Cord

Intervertebral disc Identified 2 12
Included 2 7

Epidural fibrosis Identified 4 0
Included 3 0

Spinal cord injury Identified 60 549
Included 11 54

Spinal dysraphism Identified 0 3
Included 0 3
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cohort with less inflammatory cell infiltration and fibroblast

proliferation on histologic examination. Similar findings were

reported by Tao and Fan45 using an adult mongrel dog lumbar

laminectomy model, comparing freeze-dried AM, cross-linked

AM, autologous free fat, and untreated control. Gross observa-

tion and histology examination found decreased scar formation

in the AM cohort cross-linked with glutaraldehyde. The freeze-

dried AM membrane, interestingly, demonstrated no difference

in comparison to the control samples on gross analysis with

complete degradation of the graft demonstrated on histologic

examination at 12 weeks following implantation. Quantitative

analysis of fibroblasts at the surgical site found that the auto-

logous free fat cohort has significantly less fibroblasts than the

remaining cohorts, significantly lower than both AM groups.

Subach and Copay47 were the only authors to report on the

clinical application of a dehydrated combined amnion/chorion

graft. They reviewed a case series of 5 patients undergoing

revision lumbar surgery after implantation of a combined

amnion/chorion graft performed during primary transforaminal

lumbar interbody fusion. At the time of revision surgery, 80%
(4/5) of the patients had easily detachable tissue adjacent to the

dura, with the authors concluding that combined amnion/chor-

ion grafts have favorable effects on epidural fibrosis.

Intervertebral Disc Pathology

Low back pain is a pervasive condition, affecting more than

70% of the adult population at least once during their life-

time.48 Disc degeneration is one progressive etiology that has

gained considerable attention in therapeutic attempts to facil-

itate regeneration.49 Literature review identified one article

investigating the in vitro application of placental tissue and

7 articles investigating umbilical cord blood and tissue for

intervertebral (IV) disc repair (Table 2). Ni et al50 found that

placental-derived MSCs could be facilitated toward nucleus

pulposus-like cell differentiation with increased proliferation

when cultured under hypoxic conditions, suggesting it as a

possible agent for IV disc repair. Similar cell culture studies

were identified for umbilical cord blood and tissue, indicated

inducible proliferation of nucleus pulposus-like cells,51,52 with

production of proteoglycan-rich extracellular matrix (ECM) in

a chondrocyte-like phenotype.53 Beeravolu et al54 reported on

the in vivo application of umbilical cord MSCs and chondro-

progenitor cells (CPGs) derived from the umbilical cord MSCs

to damaged IV discs in a rabbit model. The CPGs-treated ani-

mals demonstrated significant improvement in histologic

appearance, as well as ECM protein and glycosaminoglycan

(GAG) content production while having significantly higher

expression of nucleus-pulposus specific markers.

Tam et al55 compared the intravenous and intradiscal deliv-

ery of multipotent stem cells derived from umbilical cord

blood in a damaged IV disc mouse model. Analysis performed

14 weeks after treatment found limited homing ability of the

implanted cells without engraftment or expansion of the cells.

Direct injection was found to better preserve disc height with a

slight decrease in histologic degeneration.

Leckie et al56 performed a blinded, randomized, placebo-

controlled in vivo rabbit study using umbilical cord tissue–

derived cells in a degenerative disc model. Animal were

subdivided into 4 groups, un-punctured control, punctured with-

out treatment, and punctured with umbilical cord tissue injection

with or without a hydrogel carrier. Serial magnetic resonance ima-

ging (MRI) was performed out to 12 weeks following treatment

with histologic examination performed at 12 weeks. There was no

difference in the MRI analyses between the treatment groups with

qualitative analysis showing less degeneration overall when com-

pared with the untreated punctured group. Histologically, treated

IV discs showed some improvement in cellularity and disc archi-

tecture in comparison to the untreated punctured cohort but were

distinctly different from the un-punctured control cohort.

Investigating the application of these grafts when the disc

degeneration is beyond potential for repair, Goldschlager

et al57 applied AECs to an ovine model of cervical discectomy

and fusion with an interbody cage. They found that when AECs

were combined with a hydroxyapatite-tricalcium phosphate

graft, there was a significant negative effect on the fusion rate,

with a 0% fusion rate at 3 months following surgery.

Two clinical studies were identified that investigated the

application of placental tissue for discogenic pathology (Table

2). Pang et al49 reported the outcomes of 2 patients with chronic

discogenic low back pain who underwent treatment with trans-

plantation of UC-MSCs with 2-year follow-up. Visual analog

pain scale measurements were found to significant decrease at

2-year follow-up with an improvement in function according to

assessment with the Oswestry Disability Index (ODI). Ander-

son et al58 performed a prospective, randomized controlled trial

in 80 subjects undergoing lumbar microdiscectomy with or

without a cryopreserved amniotic tissue graft applied to the

annular defect. Patients were monitored for 24 months using

functional outcome measures and visual analog pain scales, as

well as for the incidence of reherniation. They found that there

was significant greater improvement in mean ODI scores for

patients in the cryopreserved amniotic tissue cohort as well as

improved Short Form-12 physical component scores. Overall,

there were no reherniations in the amniotic tissue cohort, com-

pared with 3 in the control group and 2 control patients requir-

ing subsequent fusion for persistent symptoms.

A review of ongoing clinical trials (www.clinicaltrials.gov,

accessed August 31, 2017) reviews that there is one current trial

investigating the 5-year postoperative outcomes of patients

undergoing discectomy with application of cryopreserved amnio-

tic membrane and umbilical cord grafts. Additionally, there are

4 trials investigating the use of an amniotic membrane–derived

allograft combined with various bone graft products for applica-

tion in lumbar and cervical spine fusion procedures.

Spinal Dysraphism Closure

Spinal dysraphism closure, performed in utero, has proven to

significantly decrease morbidity and mortality in comparison

to postnatal repair.59 Grafts are occasionally required to facil-

itate dural closure with several graft subtypes described in the
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literature.60-62 Papanna et al60 reported on the application of

cryopreserved umbilical cord patch during in utero spina bifida

repair in a sheep model. In comparison to a biocellulose film

adhesive, umbilical cord patch was found to be significantly

superior for facilitating closure and subsequent healing, with a

larger spinal cord area and greater number of preserved anterior

horn cells. In a subsequent study, Papanna et al63 reported on

the neurological outcomes in a separate cohort of umbilical

cord patched sheep and compared with normal control and

untreated spina bifida cohorts. The cryopreserved umbilical

cord patch cohort was found to have improved neurologic out-

comes with improved Texas Spinal Cord Injury Scale scores

and improved bladder control.

A single clinical study was reported on the use of cryopre-

served human umbilical cord for in utero myeloschisis repair in

2 fetuses in which primary closure was unattainable.64 Both

pregnancies were uncomplicated following midgestation

repair, with births occurring at 37 weeks by planned cesarean

delivery. Both repair sites were intact without cerebrospinal

fluid leakage, and normal function of the lower extremities.

Spinal Cord Injury

The role of regenerative interventions has expanded in recent

years with regard to treatment of patients with spinal cord

injuries (SCI). Placental tissues have been extensively investi-

gated with regard to their role in facilitating neurologic recov-

ery given their neurotrophic capabilities.12-14,37-39,44 AECs and

umbilical cord tissue and cord blood have been particular tar-

gets in this line of research. In vivo animal models have shown

that AECs can promote neural cell differentiation,65 reduce

secondary neural damage associated with inflammation and

apoptosis associated with SCI,66 modulate spinal cord micro-

glia activity to suppress mechanical allodynia,67 promote

remyelination of nerve fibers and promote sprouting of nerve

fibers,68 and improve functional recovery.68-70

Umbilical cord tissue has similarly shown a capacity to facil-

itate axonal regeneration,71 increase the number of surviving

neurons,72,73 minimize allodynia and hyperalgesia,74 alter the

local SCI microenvironment to minimize IL-1 expression,75 and

improve functional recovery.38,71,73-77 These physiologic effects

can additionally be accentuated with the co-administration of

various growth factors, to include brain-derived neutrophic

factor,71 glial cell-line neutrophic factor,72 and neurotrophin-3.78

Umbilical cord blood is an additional source of mesenchy-

mal and multipotent stem cells that has shown superiority in

animal models for SCI. Ryu et al73 compared the effect of bone

marrow–derived, adipose-derived, umbilical cord tissue, and

umbilical cord blood MSCs on neural regeneration in a canine

SCI model. All MSCs groups were found to have significant

improvement in locomotion, with an increase in the number of

surviving neurons and neurofilament-positive fibers. Although

there was no difference in functional outcome, umbilical cord

blood–derived MSCs induced significant more nerve regenera-

tion, and anti-inflammatory activity with reduced IL-6 and COX-

2 levels. In contrast to UC-MSCs, umbilical cord blood has shown

improved release of neutrotrophic growth factors,79-86 downre-

gulation of caspase-3 extrinsic pathway, Fas, and other

apoptotic genes to produce an anti-apoptotic milieu at the

injury site,87,88 increase residual white matter,89 upregulate

matrix metalloprotease-2 to reduce glial scar formation,86,90 and

facilitate oligodendricyte and neural cell differentiation.91

Clinical studies have attempted to extrapolate the preclinical

data. Liu et al92 investigated the effect of a single or repeated

intrathecal injection of UC-MSC in 22 patients with mixed

cord–level lesions treated at an average of 56 months following

injury (range 2-204 months). No patient with a complete cord

injury demonstrated any treatment response, while 81% of

patients with an incomplete injury demonstrated a treatment

effect, defined as any improvement in American Spinal Injury

Association (ASIA) sensory or motor score. No patient

reported an adverse effect following treatment.

Cheng et al93 investigated the use of UC-MSCs in thoraco-

lumbar SCI patients, using a cohort of 34 patients subdivided

into a control group of rehabilitation only and a UC-MSC trans-

plantation group, receiving 2 treatment cycles. Patients in the

UC-MSC group showed improved urodynamic parameters

with 70% of patients reporting a neurologic improvement.

Zhao et al94 combined UC-MSC with a collagen scaffold that

was surgically implanted in 8 patients with chronic SCI after

undergoing surgical scar resection with clinical observation for

1 year. Patients demonstrated expansion of sensation and

motor-evoked potential responsive area, improved finger con-

trol, enhanced truncal stability, and autonomic neural function

recovery without developing any adverse effects.

Yao et al95 performed a controlled cohort analysis of either

intravenous or intrathecal application of umbilical cord blood

administration in 25 patients with chronic (>6 months) SCI,

compared with 25 control patients treated with traditional reha-

bilitation alone. They did find that 24% of treated patients

demonstrated improved urinary control and 36% had improved

somatosensory evoked potentials, despite a lack of difference

in ASIA score when compared to pretreatment data. Zhu et al96

reported the results from their Phase I-II clinical trial investi-

gating the intrathecal application of umbilical cord blood of

varying dosages in 28 patients with chronic SCI, C3-T11 level

injuries. There was a lack of treatment uniformity (vast differ-

ence in MSC dosages) and a mixture in adjuvant treatment

(methylprednisolone, lithium); 5 patients converted from com-

plete to incomplete SCIs (2 sensory, 3 motor) with a significant

improvement in ability to ambulate 10 meters (7% vs 75%) and

improvement in urinary and bowel control (0% vs 60%).

A review of ongoing clinical trials (www.clinicaltrials.gov,

accessed August 31, 2017) identified one study investigating

the application of UC-MSCs in patients with spinal cord injury

that is currently enrolling patients, with 3 recently completed

clinical trials.

Conclusions

Human-derived placental tissues have been identified as a

source of pluripotent cells, with promising potential for spinal
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surgical applications, most especially with traumatic SCIs.

Specific tissue effects can be expected, understanding the under-

lying anatomical and biochemical differences of the various

subtypes of placental tissues. However, there is currently no

evidence to support the clinical application of placental tissues

in spine surgery. High-quality research studies are needed to

investigate the potential use of placental tissue in spine surgery.
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