
© 2018 Brain Circulation | Published by Wolters Kluwer Health – Medknow	 43

Cerebrovascular dysfunction with 
stress and depression
Emily Burrage, Kent L. Marshall1, Nalini Santanam2, Paul D. Chantler1

Abstract:
Maintenance of adequate tissue perfusion through a dense network of cerebral microvessels is 
critical for the perseveration of normal brain function. Regulation of the cerebral blood flow has to 
ensure adequate delivery of nutrients and oxygen with moment‑to‑moment adjustments to avoid 
both hypo‑ and hyper‑perfusion of the brain tissue. Even mild impairments of cerebral blood flow 
regulation can have significant implications on brain function. Evidence suggests that chronic stress 
and depression elicits multifaceted functional impairments to the cerebral microcirculation, which 
plays a critical role in brain health and the pathogenesis of stress‑related cognitive impairment and 
cerebrovascular events. Identifying the functional and structural changes to the brain that are induced 
by stress is crucial for achieving a realistic understanding of how related illnesses, which are highly 
disabling and with a large economic cost, can be managed or reversed. This overview discusses 
the stress‑induced alterations in neurovascular coupling with specific attention to cerebrovascular 
regulation (endothelial dependent and independent vasomotor function, microvessel density). The 
pathophysiological consequences of cerebral microvascular dysfunction with stress and depression 
are explored.
Keywords:
Depression, metabolic syndrome, stress, vascular

Introduction

The meaning of “stress” is ambiguous 
and often refers to life events that 

are seen as predominantly negative. 
Stress has been defined as a subjective 
perception of an adverse environmental 
change, which usually leads to a stress 
response allowing for adaptation to the new 
condition.[1] Different stress stimuli  (i.e., 
physical or psychological in nature) 
innervate separate regions of the central 
nervous system to elicit an appropriate 
response.[2] Activation of the autonomic 
nervous system and hypothalamic–
pituitary–adrenal (HPA) axis are prominent 
features of a stress response, which in turn 
impacts immune and metabolic mediators. 
These physiological responses operate 

non‑linearly and promote adaptation 
through “allostasis,” i.e., reestablishing 
homeostasis.[3] In the short term, these 
changes may be adaptive; but chronic stress 
exposure (i.e., allostasis overload) leads to 
maladaptive responses in various body 
organs and activates pathophysiological 
mechanisms. Indeed, chronic stress acts 
as a pre‑disposing and participating factor 
in the onset of depression in humans.[4] 
Over 350 million people worldwide suffer 
from depressive disorders, establishing 
depression as a leading cause of disease 
burden.[5,6] Importantly, both stress and 
depression are linked to cardio[7,8] and 
cerebrovascular diseases.[9]

The brain is the key organ of stress reactivity, 
coping, and recovery processes. Within 
the brain, a distributed neural circuitry 
determines what is threatening and thus 
stressful to the individual. As such, there 
is tight coupling between neural activity 
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and cerebral blood flow to meet metabolic demands. 
The brain receives energy substrates from its blood 
supply, however, the brain lacks a reservoir to store 
fuel, thus the brain must dynamically regulate blood 
flow to quickly meet the metabolic needs. Failure to 
do so has disastrous consequences, and if blood flow 
is not well matched to energy demands, then more 
subtle brain alterations ensue, leading to chronic 
brain injury. The moment‑to‑moment matching of 
blood flow to metabolic demand is ensured by the 
signaling mechanisms of neurovascular coupling. The 
neurovascular unit consists of the cerebral microvessels, 
glial cells (astroglia, microglia, and oligodendroglia), and 
neurons. Harmonious interactions between neuronal 
and endothelial cells must be maintained to ensure 
normal cerebral circulation. For example, when neurons 
become active, they signal to local arterioles through 
astrocytes which generate a calcium wave in response 
to neuronal activity to evoke dilation through the release 
of potassium ions and other vasodilators to the arteriolar 
smooth muscle cells.[10‑12] This response increases local 
blood flow and provides the nutrients necessary to 
support neuronal function. It has been suggested that 
stress impairs this balance.

To date, the effects of stress on neurovascular coupling 
has mainly focused on its effects on neurotransmitters, 
hormones, and neuronal plasticity. In postmortem 
biopsies of patients with a history of depressive 
symptoms, the morphology of neurons was altered 
leading to a loss in number and synaptic connectivity 
causing impairment in synaptic function.[13] More 
recent work has established that astrocytes are also an 
important target of stress, with both acute and chronic 
stressors altering the morphology and the expression 
of several astrocyte‑specific proteins. We direct the 
readers to excellent reviews describing the impact of 
stress on neurons and astrocytes.[14‑16] However, there is 
limited information as to what effect stress has on the 
cerebrovasculature. The following review will focus on 
how stress affects the cerebral vessels. We will describe 
briefly the hormonal changes due to stress, the effects on 
the cerebrovasculature that seem to be sex‑dependent, 
and how pre‑existing cardiovascular disease further 
impacts the stress‑induced cerebrovascular dysfunction. 
We will also describe the relationship between 
cerebrovasculature dysfunction and the upregulation of 
oxidative stress and proinflammatory cytokines.

Hormonal Changes during Stress

Acute exposure to stress results in the release of 
catecholamines through the sympathetic-adrenomedullary 
system and an increase in the stress hormones through 
the HPA axis [Figure 1].[17] Stressful stimuli can produce 
plasma levels of epinephrine to 10,000  pg/ml.[18] The 

release of epinephrine and norepinephrine into the 
bloodstream increases heart rate, blood pressure, and 
respiratory rate, and reflects the typical “fight‑or‑flight 
response.” In order to do this, epinephrine triggers the 
releases of glucose from temporary storage sites within 
the body such as adipose tissue. When faced with physical 
stressors, the pituitary gland also releases growth 
hormones to enhance metabolic activity. However, 
changes in growth hormone responses are seldom seen 
when faced with psychological stress.

The activation of the HPA axis results in the secretion of 
corticotropin‑releasing hormone, which acts to regulate 
the anterior pituitary adrenocorticotropic hormone 
to stimulate the adrenal cortex to secrete cortisol 
(in humans) and corticosterone  (in humans, rats, and 
mice). Plasma levels of these hormones can increase 
two‑  to five‑fold during stress in humans.[19] Cortisol 
reaches every organ by way of the circulation and 
facilitates a cascade of physiological changes, including 

Figure 1: Acute and chronic hormonal response to stress. Normal 
physiological response to stressful stimuli leads to activation of the 

hypothalamic–pituitary–adrenal axis. This activation is characterized by 
hypothalamic release of corticotropin‑releasing factor which elicits pituitary 
release of adrenocorticotropic hormone followed by the adrenocorticotropic 

hormone dependent release of cortisol and catecholamines. The production of 
corticotropin‑releasing factor and adrenocorticotropic hormone is typically inhibited 
by negative feedback from increasing levels of catecholamines and cortisol. When 
exposed to chronic stressful stimulus, the normal physiological response is altered. 

The negative feedback mechanism is removed and the physiological system 
becomes oversensitive to stress. This leads to an increase in circulating stress 

hormones that compound rather than returning to homeostatic levels
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increased metabolism, blood flow, and gluconeogenesis 
to facilitate the fight‑or‑flight response. Thus, circulating 
cortisol permits coordination between the brain 
and body functions that are geared toward coping, 
recovering, and adapting to the stressful stimulus. 
Cortisol also plays a key role in regulating the stress 
response by providing inhibitory feedback at the HPA 
axis, thereby terminating the stress response once the 
stressor has subsided. Chronic stress, on the other hand, 
has been seen to decrease neurogenesis and increase 
oligodendrogenesis from neuronal stem cells in regions 
of the hippocampus.[20] This means there is an increase in 
the white matter in this brain area and an altered cellular 
composition, preventing the hippocampus from properly 
executing its role within the brain.

Stress and the Cerebral Vasculature

Regulation of cerebral blood flow in a normal 
brain is determined by a variety of intrinsic control 
mechanisms  (myogenic, chemical, metabolic, and 
neurogenic) that match cerebral blood flow to 
metabolic demand. Overall, the diameter of the cerebral 
vessels (vascular tone) is maintained by the sympathetic 
nervous system. This sympathetic innervation ensures 
that fluctuations in blood pressure do not result in 
an overstretching of the cerebral arterioles, or lead to 
blood–brain barrier leakage. During acute psychological 
stresses, the norepinephrine released improves the ability 
to couple blood volume to oxygen demand and thus can 
stimulate an increase in cerebral blood flow to increase 
perfusion in areas of heightened neuronal activity.[21] 
Corroborating evidence for this stress mechanism came 
in the form of perfusion functional MRI revealing an 
increase in cerebral blood flow in the ventral right 
prefrontal cortex and left insula/putamen area during 
acute psychological stress.[22] Further, in individuals with 
a high‑stress level response, the physiological response to 
a mild‑to‑moderate stressor is sustained even when the 
stress/task is completed.[22] Indeed, it can take minutes for 
heart rate and hours for cortisol to return to their baseline 
levels, despite a return to normal behavioral.[17,23] It is 
also interesting to note that some studies have suggested 
that psychophysiological stressors might compromise 
the blood–brain barrier.[24,25] However, a recent study 
has shown that acute psychophysiological stress does 
not increase blood–brain barrier permeability.[26] Thus, 
the acute cerebral vascular responses to stress are likely 
emergent to protect the brain and improve cerebral 
blood flow to metabolic demand. Whereas, a chronically 
stressed brain may be incrementally and deleteriously 
remodeled through the repeated neural activation 
pattern and sustained hyperactivity of the HPA axis.[27]

Chronic activation of the HPA axis and ANS can have 
significant detrimental effects that impact the integrated 

responses of the immune, metabolic, and cardiovascular 
systems. The breakdown of this integrated stress response 
is referred to as allostatic overload. The neurovascular 
endothelium plays a key role in regulating the influx of 
essential nutrients, the efflux of toxic substances, ionic 
homeostasis of the brain interstitial fluid, and prevent the 
brain influx of peripheral substances, neurotransmitters, 
etc.[28] Neurovascular endothelial dysfunction contributes 
to blood–brain barrier hyperpermeability. Thus, it is 
important to ask to what extent chronic stress leads 
to endothelial dysfunction in the cerebral circulation. 
Figure 2 provides a summary of the main downstream 
effects of chronic stress exposure on cerebrovascular 
dysfunction.

Overstimulation of the ANS and HPA axis is associated 
with an overactivation of the renin–angiotensin system, 
which leads to increased levels of homocysteine and 
elevated cardiovascular activity accompanied by various 
degrees of endothelial damage. Further, glucocorticoids 
regulate vascular reactivity by acting on both endothelial 
and vascular smooth muscle cells. Increased cortisol 
levels decrease nitric oxide (NO; a powerful vasodilator) 
bioavailability directly by inhibiting endothelial NO 
synthase directly,[29] and indirectly through increasing 
the production of oxidative stress through cortisol.[30] An 
increase in cortisol has also been shown to decrease cyclic 
adenosine monophosphate expression, an important 
second messenger mediating vascular function.[31] 
Cortisol‑induced dysregulations of NO production in 
the endothelium may, therefore, induce some of the 
deleterious effects associated with stress. Acute stress 
raises the circulatory levels of inflammatory cytokines 
interleukin tumor necrosis factor (IL‑6 and TNF‑α)[32] and 

Figure 2: Systematic representation of the potential downstream effects 
of chronic stress exposure on the cerebrovasculature system. HPA: 

Hypothalamic–pituitary–adrenal axis, ANS: Autonomic nervous system, 
CD14+: Cluster of differentiation 14, ET‑1: Endothelin 1, TNF‑α: Tumor necrosis 

factor alpha, PGI2: Prostaglandin I2, IL‑1 β: Interleukin 1 beta, IL‑6: Interleukin six. 
ROS: Reactive oxygen species, BH4, THB: Tetrahydrobiopterin, O2

−: Superoxide, 
AC: Adenylyl cyclase, cAMP: Cyclic adenosine monophosphate, NF‑kb: Nuclear 
factor kappa‑light‑chain‑enhancer of activated B cells, eNOS: Endothelial nitric 

oxide synthase, RAAS: Renin–angiotensin–aldosterone system, BP: Blood 
pressure, E: Epinephrine, NE: Norepinephrine
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results in platelet activation.[33] Thus, it is not surprising to 
note that from a peripheral vascular perspective, chronic 
psychological stress can contribute to intimal‑medial 
thickening,[34] the development of arterial stiffness[35] and 
atherosclerosis.[36,37]

There are few studies that have attempted to understand 
the effects of stress on the vascular system in the brain. 
Previous studies, including our own, have used the 
unpredictable chronic mild stress  (UCMS) model to 
induce depression‑like behaviors in rodents.[38] The 
UCMS model exposes rodents to mild daily stresses 
that are randomized. The UCMS protocol is considered 
to be the most appropriate rodent model for human 
clinical depression, based on its ability to reproduce 
the development of many human clinical depressive 
symptoms, including anhedonia and learned 
helplessness.[39] Recently, our laboratory, using the 
UCMS model, has established significant pathological 
adaptations in the large proximal arteries, which 
represent up to 40% of the total cerebrovascular 
resistance and their functional response are critical for 
preventing pressure fluctuations from reaching the distal 
regions of the cerebral circulation.[40,41] Specifically, we 
identified that 8 weeks of chronic stress in lean male rats 
reduced middle cerebral artery (MCA) vasodilation to 
acetylcholine  (a potent endothelial‑dependent dilator) 
and an exaggerated MCA constriction response to 
serotonin (a potent cerebrovascular constrictor).[42] These 
adaptations to chronic stress were coupled with increased 
levels of oxidative stress and reduced NO bioavailability 
in the cerebral vessels. Indeed, pro‑oxidative conditions, 
such as UCMS, can alter the balance between constricting 
and dilating metabolites, by shifting arachidonic acid 
metabolism through cyclooxygenase to the production 
of vasoconstricting metabolites (e.g., thromboxane) that 
can compete against the vasodilatory stimulus from NO, 
prostacyclin, or other vasodilators.[43] Others have shown 
that chronic stress, induced by immobilization, decreased 
the cerebral vascular hemodynamic response to electrical 
stimulation, a reduction and delay in the blood volume 
recruitment through the pila arterioles, implying overall 
alterations to the cerebrovascular system, including 
arteries and capillaries.[44] Further, the impaired vascular 
responses were accompanied by a downregulation 
in neuron NO synthase and heme oxygenase‑2 and 
enhanced inducible NO synthase  (iNOS) expression. 
The increased iNOS expression may indicate changes 
in inflammation‑mediated signaling pathways and 
increased neurotoxicity.[44] In addition to the endothelial 
damage, 7  days of stress  (induced by a variety of 
stress stimuli: foot shocks, forced swim, restraint, and 
oscillation) greatly reduced vasodilation of parenchymal 
arterioles to neuronal stimulation and impaired dilation 
of isolated parenchymal arterioles to external potassium 
ions.[45] These data would suggest a defect in smooth 

muscle inwardly rectifying potassium ions channel 
function with stress. It was postulated that the chronic 
stress resulted in a glucocorticoid‑mediated decrease 
in functional potassium channels in the parenchymal 
arterioles myocytes, which rendered the arterioles less 
responsive to potassium ions released from astrocytic 
endfeet during neurovascular coupling, leading to 
impairment of this process.[45]

The total length of capillaries in the human brain 
is approximately 600  km and almost all neuron is 
supplied blood and nutrients by its own capillary. 
Neovascularization is  an innate physiologic 
response by which tissues respond to various stimuli 
through arteriogenesis  (collateral remodeling) and 
angiogenesis  (new vessel formation from existing 
vessels). Our laboratory has recently demonstrated a 
significant reduction in cerebral microvessel density in 
male lean rats after 8 weeks of UCMS.[42] In contrast, using 
the social defeat model of chronic stress, Pearson‑Leary 
et al.[46] indicated that microvessel density in the brain was 
increased. It was postulated that increase in microvessel 
density would provide metabolic support following 
increased neural activity. These differing results may 
be a consequence of different stress models  (social 
stress vs. UCMS), or more likely the duration of stress 
imposed (7 days vs. 8 weeks), and the different animal 
model utilized  (Lean Zucker rat vs. Sprague Dawley 
rat). Irrespective, the mechanism by which chronic stress 
results in decreased angiogenesis in the brain is not fully 
understood. A previous study has shown that the balance 
between oxidant stress and endothelial function (e.g., NO 
bioavailability and altered arachidonic acid metabolism) 
were key factors involved in the progression and severity 
of microvascular rarefaction.[47] Both arteriogenesis and 
angiogenesis are tightly modulated by environmental 
cues and in likely differ under physiologic and disease 
conditions. Further, these processes are critically 
dependent on expression of vascular endothelial 
growth factors (VEGF).[48‑50] While VEGF is an essential 
trigger to initiate angiogenesis, evidence suggests that 
thrombospondin‑1  (TSP‑1) is an important factor for 
capillary regression and/or pathologically mediated 
rarefaction.[51] Indeed, a fine bidirectional interaction 
exists between TSP‑1, VEGF, and NO. For example, 
TSP‑1 can negatively regulate NO signaling,[52,53] and 
in turn, decreased NO production can induce TSP‑1 
expression.[54] TSP‑1 can also interfere with VEGF 
binding to its receptor.[55,56] When TSP‑1 is elevated, the 
VEGF signal pathways can be endogenously inhibited, 
regardless of whether VEGF levels are elevated. 
Further, NO simultaneously induces vasodilatation and 
enhances VEGF expression.[57] Evidence suggests that 
the processes of oxidative stress and inflammation on 
microvascular rarefaction are interconnected. Reactive 
oxygen species stimulate the induction of VEGF 
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expression in endothelial cells, smooth muscle cells, and 
macrophages.[58,59] In addition, up‑regulation of TSP‑1 is 
mediated by superoxides.[60] Our laboratory has made a 
similar observation in obese Zucker rats (OZR; a model 
for metabolic syndrome, MetS), where TSP‑1 expression 
can be elevated up to 2‑fold in OZR whole brain extracts, 
with either VEGF protein expression being unchanged 
or slightly elevated in OZR compared to similar‑aged 
healthy lean controls  (PD Chantler and IM Olfert 
unpublished data).

Sex‑specific differences
Sex differences have been established in the stress‑related 
hormonal secretion, whereby females, regardless 
of age, have an increased hormonal secretion in 
comparison to males.[61] In premenopausal women with 
an ovariectomy, a significant reduction of ACTH and 
cortisol are found.[62] Further, there are sex differences 
in the cognitive consequences of repeated stress, with 
males showing impairment of hippocampal‑dependent 
memory, whereas females do not.[63‑65] In men and 
women, neural activation patterns to the same tasks are 
quite different between the sexes even when performance 
is similar.[66] This leads to the concept that men and 
women often use different strategies to approach and 
deal with issues in their daily lives, in part because of 
the subtle differences in brain architecture.

Recent data demonstrated important sex‑specific 
differences in the response to chronic stress. Using a 
mild UCMS protocol, female Wistar rats were found to 
have a reduced serotonergic activity in the hippocampus 
and reduced dopaminergic activity in the prefrontal 
cortex. This disparity was not identified in male 
rats.[67] Sex‑differences have also been reported in the 
dysregulation of the HPA axis, whereby higher serum 
corticosterone concentrations were reported in female 
versus male rats.[68,69] These data would suggest that 
females may be more vulnerable to the UCMS model 
than the male sex. Indeed, we have previously shown 
that female rats display a more phenotypically severe 
depressive state compared to male rats.[70] At the neural 
level, exposure to chronic stress results in dendritic 
atrophy of neurons in the prefrontal cortex in male rats 
but dendritic hypertrophy in female rats.[71] However, 
dendritic hypertrophy was absence in ovariectomized 
female rats, suggesting that ovarian hormones modulate 
the morphological changes with stress.

These data, both in human and preclinical models, 
would suggest that chronic stress may affect the 
cerebrovasculature differently in men and women or to 
a different magnitude of response. However, despite a 
more phenotypically severe depressive state in female 
compared to male rats, female rats demonstrate a better 
MCA endothelial‑dependent dilation  (albeit lower to 

female nonstressed rats) compared to male rats exposed 
to UCMS.[70] The vascular protection from UCMS in 
females appeared to reflect a superior maintenance of 
endothelial function, with more normal levels of NO, 
hydrogen peroxide  (another endothelium‑dependent 
vasodilator), prostacyclin, and thromboxane. However, 
the protective effect in female rats was dependent 
on the maintenance of a normal sex hormone profile, 
as ovariectomized females before UCMS abolished 
the protective effect and resulted in cerebrovascular 
outcomes being virtually identical to those in males. 
Previous studies have shown not only the protective 
effects of estrogen on vascular endothelial function 
through its action on promoting the bioavailability 
of NO, prostacyclin, and potentially other dilator 
metabolites,[72,73] but also the ability of estrogen to blunt 
a pro‑oxidant or pro‑inflammatory environment.[74,75]

The role of preexisting cardiovascular disease
The presence of preexisting cardiovascular and metabolic 
diseases (obesity, MetS, and diabetes) has been shown 
to dysregulate the HPA axis with neuroendocrine 
hyperresponsiveness to different neuropeptides and 
acute stress challenges.[76‑78] With diabetes, in addition 
to an increased plasma adrenocorticotrophic hormone, 
RNA expression of corticosterone, and hypothalamic 
corticotrophin‑releasing hormone are upregulated.[79] 
We have also established that circulating corticosterone 
was elevated in MetS compared to lean control rats, and 
that circulating corticosterone concentrations was further 
elevated with exposure to chronic stress.[42,80] Such data 
point toward vascular dysfunction. Indeed, there is strong 
evidence linking existing vascular dysfunction, due to 
the presence of metabolic/cardiovascular diseases, to the 
development of major depressive disorders especially 
with the presence of two or more classic risk factors.[81,82] 
The MetS affects ~20%–25% of adults worldwide and 
has a strong association with depression.[83,84] The 
normal development of MetS is characterized by chronic 
low‑grade inflammation and a pro‑oxidative environment 
that negatively affects multiple vascular beds, including 
in the brain.[85,86] We have recently shown that the 
cerebrovascular dysfunction  (impaired endothelial 
function and microvascular rarefaction) with UCMS 
was enhanced in the presence of MetS.[42,70] Interestingly, 
these cerebrovascular adaptions to UCMS in lean 
healthy rats reflect what we see in a MetS rats (without 
UCMS), i.e., 8 weeks of UCMS transformed a healthy 
cerebrovasculature to one with similar dysfunction 
seen in the MetS. However, when chronic exposure 
to stress was performed in rats that were developing 
the MetS phenotype resulted in greater pathological 
cerebrovascular adaptations. Unlike lean rats exposed to 
UCMS, the MetS rats also developed impaired smooth 
muscle dilation  (endothelial‑independent dilation) 
coupled with increased MCA stiffness. The profile of 
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vasoactive metabolites was further altered with the 
combined presentation of MetS and UCMS, such that the 
evolving pro‑oxidant and pro‑inflammatory environment 
within the cerebrovasculature nearly abolishes NO and 
prostacyclin levels and further elevated thromboxane 
production.[80] These results suggest that MetS results 
in greater pathological cerebrovascular alterations 
compared to lean rats when exposed to chronic stress. 
Obesity, a major epidemic in Western societies and an 
important component of the MetS, increases the severity 
of cerebrovascular dysfunction.[87] Adipose tissue 
conditioned media derived from lean subjects protected 
neuronal cells from oxidative stress damage, however 
conditioned media from adipose tissue obtained from 
obese subjects lacked this protection.[88] Adipokines by 
altering neuroinflammation and oxidative stress can 
modulate cerebral endothelial function.[89] For example, 
hypoadiponectinemia leads to endothelial dysfunction 
and is a predictor of cerebrovascular events.[90,91]

Inflammatory and Oxidative Stress

Neuroinflammation and oxidative stress are implicated 
in the cerebrovascular adaptations to chronic stress. The 
brain is particularly susceptible to oxidative stress due 
to its high levels of peroxidizable polyunsaturated fatty 
acids and transition metals, the low antioxidant defense 
mechanisms, and the brains high oxygen demand.[92,93] 
Data from postmortem human studies have provided 
strong evidence of neurovascular dysfunction with 
blood‑brain barrier hyperpermeability in association 
with oxidative stress and neuroinflammation.[82,94‑97] Brain 
samples from individuals with major depressive disorders 
have documented decreased levels of antioxidants,[93,98] 
and increased levels of lipid peroxidation end products.[99] 
Furthermore, an increase in serum concentrations of 
malondialdehyde coupled with decreased serum levels 
of nitrite, ascorbic acid, and superoxide dismutase were 
noted in patients diagnosed with unipolar disorders, 
compared to healthy controls.[100] Similarly, peripheral 
markers of oxidation are altered in individuals with 
major depressive disorders. For example, decreased 
activity of antioxidant enzymes (glutathione peroxidase, 
catalase, and superoxide dismutase 1), with increased 
activity of pro‑oxidant enzymes  (xanthine oxide), 
and increased iNOS and superoxides.[92,93] Further, 
support for the role of pro‑inflammatory cytokines 
in stress‑induced vascular damage comes from its 
actions on the peripheral vasculature. In various animal 
models, pro‑inflammatory mediators IL‑6, TNF‑α, 
soluble ICAM‑1, and C‑reactive protein  (CRP) have 
been increased following psychological stress.[101,102] 
Similarly, pro‑inflammatory cytokines  (IL‑6, IL‑8, 
IL‑2, and CRP) have been reported to be increased 
in the presence of psychological stress in several 
human studies.[103‑105] There is also increased activation 

of microglia,[106,107] upregulation of T‑helper 1  cells 
and pro‑inflammatory cytokines,[108] coupled with 
decreased anti‑inflammatory cytokines.[109] There is 
a close relationship and a bidirectional interaction 
between Inflammation and oxidative stress, whereby a 
pro‑oxidative stress environment can activate microglia 
and exacerbate the pro‑inflammatory reactions through 
the NF‑κB pathway.[110] In turn, activated microglia and 
pro‑inflammatory cytokines can perpetuate oxidative 
stress.[99]

A major mechanism for the impact of oxidative stress on 
vascular function is the decrease of NO bioavailability 
and/or signaling. The oxidative stress induced by 
stressful conditions can shift the functional balance of 
NO from the beneficial endothelial NO synthase (eNOS) 
generation of NO to the harmful superoxide generation 
from NO. NO synthase is expressed in endothelial cells 
and astrocytes as eNOS  (regulates vascular smooth 
muscle tone), and in the neurons as nNOS  (regulates 
neurotransmission). However, iNOS which occurs in the 
glial and inflammatory cells is induced by pathological 
inflammatory states.[94] The eNOS production of NO 
increases cellular cyclic guanosine monophosphate 
levels, which can increase cerebral blood flow 
through endothelial‑dependent dilation.[94] However, 
when combined with superoxides, the production 
of NO from iNOS and nNOS can impair vascular 
endothelial function and disrupt blood‑brain barrier 
integrity.[94] In addition, reactive oxygen species activate 
the PI3K/ras/Akt/MAPK pathway leading to redox gene 
expression, which results in inhibition of eNOS mRNA 
expression and eNOS activity. Increased oxidative stress 
has important consequences with respect to smooth 
muscle cell signaling by the soluble guanylate cyclase 
and the cyclic guanosine monophosphate‑dependent 
kinase I, whose activity and expression has been shown 
to be regulated in a redox‑sensitive manner.[111,112] It 
is well reported that pro‑inflammatory cytokines can 
impact endothelial function through its actions on 
decreasing eNOS activity, expression, and protein 
content.[113] Interestingly, CRP at concentrations known 
to predict cardiovascular disease downregulates eNOS 
and destabilizes eNOS mRNA, with resultant decreases 
in both basal and stimulated NO release.[114] However, 
pro‑inflammatory cytokines can also alter calcium 
channel expression and activity, and upregulation of 
Rho‑kinase expression and function.[115,116]

In addition to an upregulation of the oxidative stress 
pathway with stress, there is a decrease in the antioxidant 
pathway. Seven days of exposure to stress, induced by 
the social defeat model, significantly reduced protein 
levels of antioxidant enzymes  (glutathione reductase, 
magnesium, and copper/zinc superoxide dismutase) 
in the rat hippocampus but not in the amygdala or 
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prefrontal cortex. Concurrently, protein levels of 
glyoxalase‑1  (the main enzymatic detoxification of 
methylglyoxal) were also reduced in the hippocampus 
and amygdala after social defeat‑induced stress.[117] 
It was also noted that key second messengers, such 
as calcium/calmodulin‑dependent protein kinase 
type  (CAMK) IV and extracellular signal‑regulated 
kinase  (ERK)‑1/2 were decreased and increased 
respectively in the hippocampus after social stress.[117] 
Calcium  (Ca2+) is a universal second messenger that 
regulates many diverse cellular processes including cell 
proliferation, development, motility, secretion, learning, 
and memory, and there is converging signaling between 
CaMKII and CaMKIV. This congregated signaling 
has significant physiological actions, ranging from 
regulating contractile state and cellular proliferation 
to Ca2+  homeostasis and cellular permeability.[118] 
Furthermore, ERK1/2 plays an important role in vascular 
smooth muscle constriction,[119] and thus, an upregulation 
of ERK1/2 in accordance with stress could lead to 
an increase in vascular tone. Thus, it may not be 
surprising to note that the changes in the oxidative 
and anti‑oxidative markers were associated with 
impaired cognition function with stress.[117] Overall, 
these data would suggest that social defeat stress alters 
ERK1/2, IL‑6, GLO1, GSR1, and CAMKIV levels in 
specific brain areas, leading to oxidative stress‑induced 
anxiety‑depression‑like behaviors and as well as memory 
impairment in rats.

In addition to vessel reactivity, our previous efforts 
into the physiological mechanisms contributing 
to microvascular rarefaction in the brain[47]  have 
implicated the balance between oxidant stress and 
endothelial function (e.g., NO bioavailability and altered 
arachidonic acid metabolism) as a key contributor to the 
progression and severity of microvascular rarefaction. 
For example, interventions aimed at improving vascular 
NO bioavailability and reducing oxidant stress  (e.g., 
tempol, captopril, metformin, and rosiglitazone) were 
the most effective at blunting the severity of the cortical 
microvascular rarefaction.[47] With the degree of loss 
in NO bioavailability reflecting the severity of the 
rarefaction that followed.[47] As such the reduction in NO 
bioavailability, with a corresponding higher oxidative 
environment with stress in the brain, might have directly 
contributed to the loss of cerebral microvessel density.

Clinical Implications

The pathophysiological adaptations that manifest 
in the presence of chronic stress, especially with the 
co‑occurrence of metabolic and cardiovascular diseases 
could have important implications on cardiovascular 
disease, cognitive impairment, Alzheimer’s disease, and 
an increased risk of a cerebral infarction (stroke)[120‑124] for 

which impaired cerebrovascular endothelial function 
is likely a contributory factor.[125] Vessel diameter and 
functional hyperemic responses play a key role in 
maintaining adequate blood flow to each region of 
the brain, and must be able to respond accordingly 
to accommodate increases in flow during periods of 
higher neural activity. Impairments in any/all of these 
processes would likely have significant effects on 
neuronal metabolism and activity. Further, the reduction 
in cerebral microvessel density  (cortex and striatum) 
with UCMS could have important clinical consequences. 
Microvascular rarefaction affects spatial hemodynamics 
and induces a non‑uniform blood flow distribution, and 
has been implicated in reducing the capillary transport 
of small solutes.[126] Such pathological adaptations 
could also damage cerebral autoregulation and cerebral 
blood flow reserve, favoring the occurrence of cognitive 
impairment, and ischemic stroke.[127,128]

Lifestyle modifications such as changes in dietary 
fat[129] and moderate exercise[42,130] has shown to 
improve stress‑associated symptoms and lower risk to 
cerebrovascular dysfunction. The impaired cognitive 
function of high‑fat fed mice was improved by reduction 
of dietary fat.[129] We recently showed that aerobic 
exercise can protect the cerebrovascular function in 
obese Zucker rats exposed to UCMS.[42] This protection 
was attributed to changes in oxidative stress within the 
cerebral microvasculature. Although antioxidants can 
blunt most of the redox‑mediated events leading to 
cerebrovascular dysfunction in animal models,[131,132] its 
use clinically is still questionable.[133]

Conclusion

Chronic exposure to stress conditions leads to significant 
pathophysiological alterations to the cerebrovasculature 
and the creation of depressive symptoms in otherwise 
healthy rats. However, these pathophysiological 
responses to stress are somewhat sex‑specific and 
dependent on the preexistence of metabolic and 
cardiovascular diseases. Evidence would suggest 
that endothelial‑dependent dysfunction is a primary 
manifestation coupled with a reduction in cerebral 
microvessel density of the stress response. However, 
in female rats, a vascular protection exists against 
chronic stress that is dependent on normal sex hormone 
levels  (abolished in ovariectomized mice) that better 
maintains cerebral vasodilator reactivity compared to 
males or females with an ovariectomy following chronic 
stress. In the presence of MetS, the cerebrovascular 
dysfunction and elevated depressive symptoms to 
chronic stress are amplified. Further, female rats with 
MetS were no longer somewhat protected from the 
chronic stress response. The mechanisms behind the 
cerebrovascular dysfunction are partly linked to the 
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increased pro‑oxidative and inflammatory environment 
in the brain.
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