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Creatine supplementation improves 
neural progenitor cell survival in 
Huntington’s disease
Robert H Andres, Theo Wallimann1, Hans R Widmer

Abstract:
Preclinical and clinical studies suggest that striatal transplantation of neural stem cells (NSCs) and neural progenitor 
cells (NPCs) may be an appealing and valuable system for treating Huntington’s disease. Nevertheless, for a 
neural replacement to become an effective translational treatment for Huntington’s disease, a certain number of 
difficulties must be addressed, including how to improve the integration of transplanted cell grafts with the host 
tissue, to elevate the survival rates of transplanted cells, and to ensure their directed differentiation into specific 
neuronal phenotypes. Research focusing on the translational applications of creatine (Cr) supplementation in 
NSC and NPC cell replacement therapies continues to offer promising results, pointing to Cr as a factor with 
the potential to improve cell graft survivability and encourage differentiation toward GABAergic phenotypes in 
models of striatal transplantation. Here, we evaluate research examining the outcomes of Cr supplementation 
and how the timing of supplementation regimes may affect their efficacy. The recent studies indicate that Cr’s 
effects vary according to the developmental stage of the cells being treated, noting the dynamic differences in 
creatine kinase expression over the developmental stages of differentiating NPCs. This research continues to 
move Cr supplementation closer to the widespread clinical application and suggests such techniques warrant 
further examination.
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Introduction

Huntington’s disease  (HD) is a hereditary 
neurodegenerative disorder that presently 

affects over 20,000 people in the United States 
with an additional 70,000 living as carriers 
of the disease.[1] HD is known for its morbid 
pathology which involves the progressive 
degeneration of striatal neurons, specifically 
GABAergic interneurons, manifesting in 
fitful, involuntary movements coincident 
with deteriorating behavioral and cognitive 
functions.[2,3] Lethal and as‑of‑yet incurable, the 
disease results from a trinucleotide expansion in 
the gene Huntingtin which causes a buildup of 
mutant protein aggregates in the cytoplasm and 
nucleus.[4] However, the precise mechanism of 
its neurodegenerative effects remains elusive. 
Few effective treatments exist to stymie 
the progression of the disorder, with most 
available medications aimed at regulating the 
psychological and kinetic symptoms, making the 
need for new clinical treatments extremely vital. 

The recent preclinical and clinical studies suggest 
that striatal transplantation of neural stem 
cells (NSCs) and neural progenitor cells (NPCs) 
may be an appealing and valuable system for 
treating HD.[5‑16] In clinical trials, transplantation 
was shown to reduce hypometabolism in the 
striatum characteristic of the disease and to 
improve motor and cognitive functions up to 
2  years after implantation, with evidence that 
improvements may endure as far as 5  years 
posttransplantation.[17,18] Nevertheless, for neural 
replacement to become an effective translational 
treatment for HD, a certain number of difficulties 
must be addressed, including how to improve 
the integration of transplanted cell grafts with 
the host tissue, to elevate the survival rates of 
transplanted cells, and to ensure their directed 
differentiation into specific neuronal phenotypes. 
Discovering the factors necessary to promote the 
survivability and differentiation of grafted cells 
is crucial to advancing transplantation therapies 
for HD and may also provide ancillary insights 
as to the utility of such factors in other, similar 
therapies.
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Creatine and the Bioenergetics of Neurodegeneration

The recent studies point to creatine  (Cr) as a promising 
factor with the potential to improve cell graft survivability 
and encourage differentiation in models of striatal 
transplantation. Cr is a nitrogenous amine which can be 
reversibly phosphorylated by the creatine kinase  (CK) 
family of isozymes to form phosphocreatine  (PCr).[19,20] 
Cr and PCr function together as a cellular energy shuttle, 
transferring inorganic phosphate to ATP‑starved regions 
under high metabolic demand. In the central nervous 
system (CNS), two common forms of CK are expressed: The 
brain‑specific cytosolic form  (BB‑CK) and the ubiquitous 
mitochondrial isoform  (uMT‑CK).[21] The bulk of neural 
Cr reaches the brain by crossing the blood–brain barrier 
through the CRT transporter.[21] Prior investigations have 
revealed that neural degeneration in HD corresponds to a 
reduction in cellular energy metabolism in affected neurons, 
evidenced by a decrease in activity across mitochondrial 
complexes II and III.[22,23] Moreover, the quantity of neuronal 
PCr is reduced in Huntington’s patients, suggesting that 
metabolic dysfunction may arise as a result of the disease’s 
pathogenesis.[24] GABAergic neurons carry a high metabolic 
demand, and their proper function may depend on the 
maintenance of the Cr‑PCr pathway. This information has 
informed recent efforts to improve regenerative therapies 
intended to replace affected GABAergic neurons.

Creatine Improves the Induction Rates and 
Robustness of Striatal Neural Progenitor Cells Based 

on Developmental Age

A recent study conducted by Andres et  al. examined the 
efficacy of Cr supplementation as a translational method to 
improve striatal NPC transplantation. Noting the dynamic 
differences in CK expression over the developmental stage 
of differentiating NPCs, the study investigated whether 
Cr’s effects also varied according to developmental stage.[25] 
E14 (early development) and E18 (late development) NPCs 
were extracted from rat embryos and cultured in vitro for 
7 days with a chronic treatment of Cr (5 mM). A separate 
selection of E14 and E18 NPCs was treated with an acute, 
24 h supplement of Cr (5 mM). Chronic treatment greatly 
elevated the density of GABAergic neurons in the Cr‑treated 
NPC cultures as compared to controls, with the E14 culture 
experiencing a greater effect than the E18 culture. In the acute 
treatment, similar trends were observed in the induction of 
the GABAergic phenotype for E14 and E18 cultures. Cell 
numbers and total neuronal viability were not affected by 
Cr supplementation, but Cr did provide equal protection 
against metabolic insult for both groups, with an explicit 
protective effect on the survival of GABAergic neurons. Cr 
exposure also encouraged increased neuronal complexity 
in GABAergic neurons, elevating neurite length for both 
cultures and increasing the number of branching points 
for cells in the E18 culture but not E14 culture. This 
study establishes that Cr can be an effective factor in the 
promotion of GABAergic differentiation and a source of 
neuroprotection against metabolic insult. Of these two 
features, only the influence on induction rate is mediated 
by an NPC’s developmental stage.

Considerations for Future Clinical Applications

Differentiation of NSCs and NPCs into metabolically active 
neuronal lineages necessitates developmental changes 
in their bioenergetic systems, and experimental evidence 
suggests that the CK phosphotransfer system may serve as 
a key element in this transition.[21,25] In striatal NPCs isolated 
from E14 (early) rat embryos, BB‑CK and uMT‑CK exhibited 
high rates of coexpression and colocalization in GABAergic 
cells after differentiation.[26] In addition, acute and chronic 
supplements of 5 mM Cr to culture media encouraged 
GABAergic differentiation without adversely impacting cell 
survival while simultaneously providing a neuroprotective 
effect.[25] Cr addition also appears to elevate cellular ATP 
levels significantly above those of non‑Cr‑exposed cells.[27] The 
clinical safety of Cr supplementation has been tested in three 
Phase II clinical trials carried out on symptomatic HD patients 
with results demonstrating this treatment bears no adverse 
effects.[28‑30] Because Cr can cross the blood–brain barrier and 
has a low toxicity profile, Cr supplementation is an increasingly 
appealing paradigm for supporting cell‑based therapies to treat 
HD.[31,32] The safety of Cr supplementation suggests that it could 
be implemented both as a pretreatment for NSCs and NPCs 
before transplantation and as a systemic aid to support graft 
survival, differentiation, and integration after the procedure.

It is necessary to consider that the pathological microenvironment 
in the striatum of HD patients may encourage the degeneration 
of grafted NPCs. Therefore, developing treatments that combat 
HD‑related atrophy may also improve the success of graft 
survival. Bioenergetic dysfunction is a common marker of the 
pathogenesis of many neurodegenerative disorders and often 
involves compromised mitochondrial function, the release 
of reactive oxygen and nitrogen species, oxidative damage, 
Ca2+  accumulation, and cell death.[33,34] Oxidative stress can 
disable CK isozymes, resulting in a loss of BB‑CK generated 
ATP‑flux and a decrease in protection against the mitochondrial 
permeability transition through inactivation of uMT‑CK.[35‑37] 
Animal models of BB‑CK and Cr deficiency display similar 
patterns of cerebral dysfunction to those observed in 
patients suffering from BB‑CK or Cr‑deficient disorders and, 
importantly, HD.[38‑40] With decreased cellular CK activity and 
reduced mitochondrial function potentially encouraged by the 
microenvironment in which NPC transplants would be grafted, 
exogenous supplementation of Cr may improve graft survival 
by overcoming these conditions as Cr‑supplemented cells 
display higher metabolic rates and cellular ATP concentrations 
than controls.[27] In addition, Cr may improve the integration 
of grafted cells with host tissues as Cr supplementation has 
been reported to encourage axonal growth in NH4CL‑treated 
rat neurons.[41,42]

The expression of CKs in the CNS varies over a cell’s 
developmental age, and the most suitable donor age for 
transplantation of striatal NPCs has not been determined.[43‑46] 
In the investigation conducted by Andres et al., NPCs isolated 
from E14 (early) and E18 (late stage) rat embryos were grown 
in vitro as dissociated cultures and treated with a regime of 
chronic Cr supplementation up to a final concentration of 
5mM from DIV0‑7 (day in vitro).[25] Cr addition resulted in an 
increased incidence of induction toward GAGA‑ir neurons 
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for both E14 and E18 neurons as compared to controls, 
with GABAergic differentiation occurring at a significantly 
higher incidence in E14 cells. Moreover, the team’s findings 
indicated that induction to the GABAergic phenotype was 
permanent as GABA‑ir cell densities persisted for 3  days 
in culture without further Cr addition.[25] Functional GABA 
uptake was also increased in both E14 and E18 cultures, which 
corroborates previous data on the effects of chronic Cr addition 
in E14 cultures. Andres et al. also examined whether acute Cr 
supplementation for 24 h from DIV6‑7  (day in vitro) would 
result in similar patterns of induction.[25] Although E18 cells 
displayed significant trends toward GABAergic induction in 
this acute treatment, E14 induction toward this phenotype was 
less pronounced. An MTT assay of both cell groups exposed to 
acute and chronic supplementation revealed that total neuronal 
cells and viability were not affected by Cr addition, which did 
not suggest that Cr provides general neuroprotective effects.[25] 
Importantly, the results of the study point to Cr as a factor 
that promotes the directed differentiation of NPCs toward the 
GABAergic phenotype.

The facility of Cr to stimulate the differentiation of NPCs to the 
GABAergic phenotype may have important implications for 
improving the efficacy of cell replacement therapies for HD. 
However, the timing at which this differentiation occurs can 
influence the fidelity of the resultant graft. Complete induction 
before transplantation reduces the subsequent survival of 
grafted cells and lowers the efficiency of host integration.[25] This 
temporal consideration suggests that it would be advantageous 
to supplement NPCs with Cr acutely before grafting while also 
treating the patient chronically before and after transplantation 
with exogenous Cr on account of the facility of Cr to cross the 
blood–brain barrier.

Cr supplementation also represents an appealing paradigm for 
transplantation strategies as it may provide neuroprotective 
effects in response to metabolic insult. When Andres et  al. 
induced a metabolic insult in E14 and E18 cell cultures by 
depriving the cultures of serum and glucose, in cells that 
were supplemented with Cr, GABAergic cell loss was equally 
reduced across both E18 and E14 cells as compared to cultures 
that did not receive supplementation but did receive the 
insult.[25] Neuroprotective effects of Cr have been reported 
in experimental models of HD and other neurodegenerative 
diseases previously.[47‑58] Importantly, Andres et al. demonstrate 
with these results that the developmental stage of the treated 
neural cells does not influence the present neuroprotective 
outcome of Cr supplementation.

In the investigation by Andres et  al., Cr exposure was also 
found to encourage morphological differentiation in treated 
NPC‑derived neurons. Cr addition resulted in a significant 
increase in neurite length and the number of branching points 
for E18 neurons and a similar increase in neurite length, but 
not branching point, in E14 neurons.[25] As NPCs begin to 
differentiate into neurons, the spatial geometry of the cell body 
that houses the cellular phosphotransfer network becomes 
more intricate. Cr might indirectly facilitate morphological 
growth by increasing cellular energy reserves in the form of 
PCr and providing further substrate for energetic transactions 
of the phosphotransfer network to occur at a faster rate.[25] 
Andres et al. also tested whether morphological changes would 

be observed in cases of metabolic insult. No significant changes 
in neuronal complexity were found, suggesting acute metabolic 
stress outweighs the benefits to neuronal complexity provided 
by Cr supplementation.[25] However, the morphological effects 
that were observed under standard conditions indicate that 
Cr supplementation may help to improve graft integration 
with host tissues by promoting more complex morphologies 
in differentiating neural structures.

Conclusion

The developmental stage of NPCs does influence the success of 
Cr supplementation in promoting GABAergic differentiation 
but not its capacity to provide neuroprotective effects. The 
findings by Andres et al. point to Cr as an important factor 
in improving the efficacy of NPC or NSC‑based regenerative 
therapies to treat HD and other neurodegenerative diseases. 
Future studies should determine if developmental stage 
mediates the effects of Cr supplementation in human NPCs 
and NSCs.
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